68-year-old male with a 1-month history of dyspnea on exertion

Brandon Byrd, MS3

Echocardiogram

PET Scan

SPECT

Cardiac Amyloidosis

Echocardiogram

Parasternal short-axis view

Parasternal long-axis view

Concentric left ventricular wall thickening with increased echogenicity of the myocardium

Reduced systolic and diastolic function

Widened interventricular septum

Left ventricular hypertrophy

Late gadolinium enhancement

PET Scan

Mild increased radiotracer cardiac uptake

SPECT

Diffuse myocardial tracer uptake

HEALTH

RADIOLOGY

Cardiac Amyloidosis

Amyloidosis: A heterogeneous group of diseases characterized by extracellular accumulation of abnormal fibrillar protein deposits (amyloid)

- Types of amyloidosis that affect the heart
 - Immunoglobulin light chain amyloidosis (AL),
 - Familial transthyretin-related amyloidosis (ATTR)
 - Senile systemic amyloidosis (wild-type TTR)
 - Secondary amyloidosis (AA)
 - Isolated atrial amyloidosis (atrial natriuretic peptide)

Prognosis depends on type of amyloid and extent of cardiac and systemic involvement

Imaging Findings

Echocardiogram

- Concentric thickening of the left ventricle, an abnormal bright echotexture, and/or asymmetric thickening of the septum
- Bi-atrial enlargement, valvular thickening, right ventricular hypertrophy, and small pericardial effusion may be observed
- With a small left ventricular cavity, low-gradient aortic stenosis is suspicious for hereditary amyloidosis
- +/- systolic and diastolic dysfunction

Contrast-enhanced cardiac MRI

- Helpful in infiltrative cardiomyopathies; gadolinium-based contrast can reveal abnormal patterns suggestive of cardiac amyloidosis
 - T1 signal may significantly be increased with amyloid deposition
- Inability to "null" or blacken the myocardium has been suggestive of cardiac amyloidosis.
- Left ventricular late gadolinium enhancement is very common
- Other features include, patchy myocardial scarring, right ventricular thickening, bi-atrial enlargement, and delayed enhancement of respective structures

SPECT (single-photon emission computed tomography)

- Tc-99m PYP bone tracer uptake graded visually with scores ranging from 0 to3
 - 0 no cardiac uptake
 - 1 cardiac uptake < rib uptake
 - 2 cardiac uptake = rib uptake
 - 3 cardiac uptake > rib uptake
- Contralateral lung uptake ration > 1.5 at 1 hour is also diagnostic
- Planar SPECT confirms myocardial tracer retention

References

Echo - Di Carli, Marcelo F., et al. "Atlas of Noninvasive Imaging." *Harrison's Principles of Internal Medicine, 21e* Eds. Joseph Loscalzo, et al. McGraw Hill, 2022

MRI - Chapter 107 Immunoglobulin Light Chain Amyloidosis, Kaushansky K, Prchal JT, Burns LJ, Lichtman MA, Levi M, Linch DC. *Williams Hematology, 10e;* 2021

SPECT - Chapter 43 Cardiac Amyloidosis, Fuster V, Narula J, Vaishnava P, Leon MB, Callans DJ, Rumsfeld J, Poppas A. *Fuster and Hurst's The Heart, 15e;* 2022.

Gertz, Morie A., et al. "Cardiac Amyloidosis." *Fuster and Hurst's The Heart, 15e* Eds. Valentin Fuster, et al. McGraw Hill, 2022

Gertz, Morie A., et al. "Immunoglobulin Light Chain Amyloidosis." *Williams Hematology, 10e* Eds. Kenneth Kaushansky, et al. McGraw Hill, 2021Kaufman, Gregory P., et al. "Systemic Immunoglobulin Light Chain Amyloidosis." *The MD Anderson Manual of Medical Oncology, 4e* Eds. Hagop M. Kantarjian, et al. McGraw Hill, 2022,

Munshi, Nikhil C., et al. "Plasma Cell Disorders." Harrison's Principles of Internal Medicine, 21e Eds. Joseph Loscalzo, et al. McGraw Hill, 2022

