22-year-old female with h/o back pain, lower limb weakness and bowel incontinence

Keerthana Sharma Anand, MBBS
Leo Wolansky, MD
Sagittal T2 Thoracic Spine

Sagittal T2 Lumbar Spine
Sagittal T1 Thoracic Spine

Sagittal T1-Gd
Pilocytic Astrocytoma of the Spinal Cord
Sagittal T2 Spine

T2 hyperintense intramedullary expansile mass is seen in the conus region, which was confirmed as pilocytic astrocytoma on histology.

Hyperintense signal extending from the superior pole of tumor could be due to edema or infiltration.
The tumor is isointense to hypointense with the rest of the cord on T1. Cord expansion with mild scalloping of vertebral body is seen (red arrow). Patchy enhancement is seen post-contrast.
T2 hyperintensity in astrocytoma may be due to hyperintense solid tumor as well as intra/peritumoral cysts. Here, hyperintensity in the lower pole of tumor does not enhance post-contrast, which with pilocytic astrocytoma indicates cystic component.
Spinal Pilocytic Astrocytoma

General features:
• Second most common intramedullary tumor after ependymoma in adults. Most common intramedullary tumor in children.
• Increased incidence in neurofibromatosis (NF1, NF2)

Pathology:
Primary spinal cord neoplasm arising from astrocytes. Usually of lower grade than those found in the brain. Rosenthal fibres seen in pilocytic astrocytoma.

WHO Grading of Spinal Astrocytomas
I: Pilocytic astrocytoma
II: Fibrillary/ Diffuse astrocytoma
III: Anaplastic astrocytoma
IV: Glioblastoma
Imaging Findings

Location: Cervical > thoracic > lumbar. Lesions usually span <4 vertebral body segments. Holocord involvement seen in children.

CT: Osseous remodeling seen as vertebral body scalloping or thinned pedicles. Mild enhancement may be seen, but less sensitive than MR.

MRI: Contrast enhanced MR is the modality of choice.
- T1: Cord expansion seen. Lesion iso- to hypointense with rest of cord.
- T1 C+: majority enhance with usually patchy enhancement pattern. May help differentiate edema from tumor infiltration.
- T2: Hyperintense solid tumor with bright cystic components. Cystic components will not enhance.

PET: Increased 18F-FDG uptake.

Myelography: Non-specific cord enlargement with possible block to normal contrast flow.
Clinical Features

• Similar presentation to other intramedullary tumors. Usually presents with insidious back pain that is worse in recumbent position.
• May also present with myelopathy, scoliosis (due to bone remodeling) or cauda equina syndrome.
• Hydrocephalus in cervicomedullary lesions

Treatment:

• Survival depends on tumor grade, most are slow growing.
• Total resection indicated when possible. Role of chemo/radiotherapy unclear.
Differential Diagnoses

- **Ependymoma**: Central location, hemorrhage more common with hemosiderin capping, more frequent and prominent cysts. Can be radiologically indistinguishable from astrocytoma.

 Myxopapillary variant is commonly seen as an intramedullary mass within the conus medullaris.

- **Ganglioglioma**: similar imaging features, seen more commonly in pediatric population

- **Multiple sclerosis**: Lesions involve $< \frac{1}{2}$ of cross section of cord, usually seen dorsally

- **Metastases**: Thin rim of peripheral enhancement or flame-shaped enhancement- rim/flame sign is highly specific for mets
References

• Radiopaedia: Spinal Astrocytoma. https://radiopaedia.org/articles/spinal-astrocytoma

• STATdx: Spinal Cord Astrocytoma. Blaise V. Jones, MD.

• Spinal Pilocytic Astrocytoma. Sharma K, Wolansky L. Radiology Online (2021)