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Abstract

Background: Networks have been widely used to model the structures of various biological systems. The ultimate
aim of research on biological networks is to steer biological system structures to desired states by manipulating
signals. Despite great advances in the linear control of single-layer networks, it has been observed that many
complex biological systems have a multilayer networked structure and extremely complicated nonlinear processes.

Result: In this study, we propose a general framework for controlling nonlinear dynamical systems with multilayer
networked structures by formulating the problem as a minimum union optimization problem. In particular, we offer
a novel approach for identifying the minimal driver nodes that can steer a multilayered nonlinear dynamical system
toward any desired dynamical attractor. Three disease-related biology multilayer networks are used to demonstrate
the effectiveness of our approaches. Moreover, in the set of minimum driver nodes identified by the algorithm we
proposed, we confirmed that some nodes can act as drug targets in the biological experiments. Other nodes
have not been reported as drug targets; however, they are also involved in important biological processes from
existing literature.

Conclusions: The proposed method could be a promising tool for determining higher drug target enrichment or
more meaningful steering nodes for studying complex diseases.

Keywords: Multilayer networks, Network control, Nonlinear dynamical systems, IISG algorithm, Driver nodes

Background
Biological processes, which are indispensable for living
organisms, are often carried out by complex interactions
among various biological elements. Studying biological
elements and their interactions is vital for understanding
the roles of intracellular biomolecules and the mecha-
nisms of biological processes. The structure of biological
systems can be modeled by biological networks in which
nodes are biological elements and edges connect bio-
logical elements that interact with one another. There-
fore, networks have been widely used to model the
structures of various biological systems. Moreover, the
ultimate aim of research on biological networks is to
steer the states of biological systems to desired states by
manipulating signals. Recently, controllability, which is a

concept in control theory, has been applied to investi-
gate the dynamics of complex networks.
In the past few decades, the controllability of single-

layer networks with linear [1–5] and nonlinear [6–9]
dynamics have been widely studied in a variety of bio-
medical systems. In particular, an innovative study of the
newly developed linear control approaches is a structural
controllability framework [2], that involves using a
graph-based tool to identify the minimal driver nodes
set by formulating this problem as a maximum matching
problem. Then, many other methods related to linear
control of single-layer networks were proposed [1, 5]
and some important topics in network controllability,
including observability [10], control energy [3, 11, 12],
target control [13], etc., were discussed. With a deeper
realization of network controllability, many researchers
have observed that multiple real-world complex systems
are extremely complicated nonlinear processes. There-
fore, several new approaches have been proposed for
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controlling nonlinear single-layer networks [6–9]. In
particular, a breakthrough in recently developed
methods led to mapping the controllability of a single
network to the feedback vertex set (FVS) problem in
which the objective is to drive the nonlinear single
networked system from an arbitrary initial state to any
desired dynamical attractor (e.g., a steady state) by over-
riding the state of a certain node [8, 14]. In our recent
study [15, 16], we established a new theory of domain
controllability to describe the controllability of nonlinear
dynamical networks and demonstrated how to drive a
complex networked system in transition from the attrac-
tion domain of a stable steady state to the attraction
domain of another stable steady state.
However, with the development of network control-

lability theory, it has been shown that biological
networks are always governed by multiple types of inter-
actions or interact with other networks. Single networks
might be insufficient to discover the underlying bio-
logical mechanism. For example, cellular activities in
biochemical networks, gene regulatory networks, and a
biochemical reactions network are all highly inter-
dependent and are excellent choices for being analyzed
as multilayer networks [17–19]. In recent years, a multi-
layer network method has been proposed to describe
such complex, multidimensional biological systems. A
multilayer network can link human diseases with
genetic, biochemical, and environmental factors [20–23].
More recently, some advances [24–27] have focused

on the linear control of multilayer networks. Menichetti
et al. [25] proposed a combinatorial matching model to
identify the minimal set of driver nodes in multilayer
networks. Pósfai et al. [26] developed a theory based on
disjoint path covers to determine the minimum number
of inputs necessary for full control of multiplex, multi-
scale networks. Recent efforts have dedicated to under-
standing the interplay between the degree correlation of
interconnections and the controllability of multilayer
networks [27, 28].
However, from the perspective of a dynamical process,

many biological systems are extremely complicated
nonlinear dynamical processes such as cell signaling,
information transmission [8, 29, 30]. Exploring the
controllability properties of these real-world complex
systems has fundamental importance and multiple appli-
cations in biological contexts [31, 32]. Until now, there
has been a lack of a suitable approach for controlling
nonlinear dynamical systems with multilayer networked
structures. Determining how to control a nonlinear
multilayer networked system still is a crucial and
challenging topic.
In this study, we focus on nonlinear multilayer net-

worked systems, which consist of a fixed set of nodes
connected by different types of links, and each layer has

a complicated nonlinear dynamical process. To explore a
general framework for controlling nonlinear multiplayer
networked systems, we propose a novel strategy for for-
mulating the problem as a minimum union optimization
problem. In particular, we offer a novel approach for
identifying the minimum set of driver nodes that steer a
multilayered nonlinear dynamical system toward any
desired dynamical attractor. Three disease-related bio-
logical multilayer networks are used to illustrate the
effectiveness of our proposed approach. We discovered
that in the minimal set of driver nodes, which were iden-
tified using the proposed algorithm, some nodes could
act as drug targets in biological experiments. Other
nodes were also demonstrated to be involved in im-
portant biological processes from the existing literature.

Results
We investigated the minimal feedback vertex set
(MFVS) of three regulatory multilayer networks, including
the Colitis-Associated Colon Cancer (CACC) network,
Human-HIV1 Multiplex Gpi (HHMG) network and Can-
cer–Immune Cell–Cell (CICC) interaction network
(Figs. 1, 2 and 3, respectively). We demonstrated that our
proposed method is capable of determining the MFVS of
networks such that the steering nodes in the MFVS can
steer a multilayer nonlinear dynamical system. The data
sources used in constructing multilayer networks are
shown in Table 1. The identified driver nodes for these
three networks are listed in Table 2, and their detailed
functions are shown in Additional file 1: Table S1.

Colitis-Associated Colon Cancer (CACC) network
F. Balkwill et al. [33] discovered that inflammation and
cancer are closely related. Lu et al. [34] investigated
inflammation-associated cancer and constructed a CAC
network with 70 nodes and 154 regulatory interactions
by exploring the GeneGo database.
To deeply understand the mechanisms of inflam-

mation and cancer, we integrate colon cancer data from
different sources, including the DirectedPPI database
(www.flyrnai.org/DirectedPPI), KEGG database (www.
kegg.jp/) and the work of Lu et al. [34] to build a duplex
network (Fig. 1). The data sources are shown in the first
column of Table 1.
Applying our method to the CACC network, we

identify the two-layer MFVS, which can drive this
multilayer networked system from an arbitrary initial
state to any desired dynamical attractor by providing
proper external signals. There are 17 steering nodes,
including AKT, CASP9, P21, BCATENIN, IFNG, IL4,
JAK, JUN, NFKB, IKB, PI3K, RAF, SMAD, SPHK1,
P53, TREG and IAP in the identified MFVS. Among
these nodes, there a 13 steering nodes, including
AKT, P21, BCATENIN, IFNG, JAK, JUN, NFKB,
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IKB, PI3K, RAF, SMAD, P53 and IAP, that are drug
targets and each node can interact with 5.00 drugs on
average according to the DrugBank database (https://
www.drugbank.ca) [35]. The different names for the drugs
are listed in Additional file 1: Table S2.
Though SPHK1, TREG, CASP9 and IL4 cannot be

considered as drug targets, they are also involved in im-
portant biological processes. SPHK1 plays an important
role in tumorigenesis, hormonal therapy, chemotherapy
resistance, and it is considered to be a new target for
cancer therapeutics [36]. TREG is a type of regulatory T
cell that is one of the major components for immuno-
suppression and promotes suppressive cytokines as well

as inhibiting effector T cells (CD8 T cells and NK cells)
directly in the cancer-immune system [37]. Based on the
STITCH database (http://stitch.embl.de/) [38], CASP9
can interact with 4 chemicals, namely, cisplatin,
15d-PGJ2, cordycepin and hydrogen peroxide. Of these
chemicals, cisplatin is a platinum-based chemotherapy
drug used to treat various types of cancers, including
sarcomas, some carcinomas (e.g., small cell lung cancer
and ovarian cancer), lymphomas and germ cell tumors.
IL4 can interact with 4 chemicals, namely, montelukast,
ALLERGENS, retinoic acid, and tacrolimus. Tacrolimus
is an immunosuppressive drug and retinoic acid is also a
medication used for the treatment of some certain

Fig. 1 Colitis-Associated Colon Cancer (CACC) network. The first layer contains 70 nodes and 154 regulatory interactions and the second layer
has the same 70 nodes and different 200 different links
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cancers. Therefore, we believe SPHK1, TREG, CASP9 and
IL4 can be regarded as potential drug targets that are crit-
ical for the treatment of colon cancer.
If we only consider a single-layer network, i.e., the

CAC network with the SG algorithm, the driver nodes
we obtained represented 10 nodes, including AKT, P21,
IFNG, IL4, IKB, SMAD, P53, TREG, MEK and STAT3. 7
Proteins AKT, P21, IFNG, IKB, SMAD, P53 and MEK
are demonstrated as drug targets from DrugBank data-
base. Moreover, we compared the proportion of drug
targets for the different driving nodes (Table 3). Com-
pared to single-layer network (0.7), a multilayer network
(0.72\0.77) obtained driver nodes with higher target pro-
portions. These results show that by integrating different
interaction relations, multilayer networks can describe bio-
logical processes more accurately than single-layer net-
works, and more significant results can be obtained from
them. In particular, the steering nodes with the IISG algo-
rithm are more enriched with known drug targets (0.77),
which support the applicability of the method.

Based on DAVID Database (https://david.ncifcrf.gov/
), the 18 significant pathways of genes in CACC net-
work that p values are less than 7.00E-13 are shown in
Fig. 4 and Additional file 1: Figures S1-S5. From Fig. 4
and Additional file 1: Figures S1-S5, we can observe
that identified driver nodes are enriched in T cell and
B cell receptor signaling pathways and apoptotic
process, which are three of eight hallmarks of cancer.
Moreover, we obtained the top 10 genes in pathways
through sorting the p values from small to large by
using MSigDB Database (http://software.broad-
institute.org/gsea/msigdb). Additional file 1: Figure S6
illustrates that whether a gene belongs to a particular
pathway clearly. Specifically, in “Pathways in cancer” and
“Colorectal cancer pathway” with the minimal p values,
we discovered the same module of “PI3K-AKT signaling
pathway”, “MAPK signaling pathway” and “NF-κB sig-
naling pathway” in these two pathways (Additional file 1:
Figures S1-S5), which could provide a novel research
direction on colon cancer treatments.

Fig. 2 Human-HIV1 Multiplex Gpi (HHMG) network. The first layer represents physical associations with 1157 edges and 1004 nodes. The second
layer represents direct interactions with 1135 edges and 1004 nodes. The interaction relationships are derived from the BioGRID database
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Human-HIV1 Multiplex Gpi (HHMG) network
Human Immunodeficiency Virus (HIV) is one of the
most notorious viruses that humans have ever faced.
Despite many HIV studies conducted over 30 years, the
mechanism of HIV remains poorly understood.
Researchers found that the infection processes of HIV-1
are related to different types of genetic interactions,
which can be represented by a multiplex network
(https://comunelab.fbk.eu/data.php). We integrated this
HHMG network into a two-layer duplex network (Fig. 2)
in which the first layer represents a physical association
with 1157 edges and 1004 nodes. The second layer
represents direct interaction with 1135 edges and 1004
nodes. The interaction relationships are derived from
the BioGRID database and literature.
Applying the IISG algorithm to the HHMG network,

we identified the MFVS with 9 steering nodes, including
VPR, TAT, ENV, GAG-POL, GAG, NEF, VPU, REV and

VIF, which are shown in the second column of Table 2.
More importantly, four proteins, including ENV,
GAG-POL, GAG and NEF, were experimentally vali-
dated to be drug targets in the DrugBank Database
(Additional file 1: Table S1). The different names for the
drugs are listed in Additional file 1: Table S3. Moreover,
another five nodes, which are VPR, TAT, VPU, REV and
VIF, were also involved in important biological pro-
cesses. HIV-1 encodes VPR, which is a 96-amino-acid
protein that can prevent proliferation of infected cells by
acting primarily as a cytostatic drug [39]. It has been
revealed that the mechanism of TAT activation involves
RNA Polymerase II elongation of the integrated HIV-1
[40]. VPU, which is an accessory protein that is encoding
by HIV-1, is involved in several immunomodulatory
functions, including counteraction of the host restriction
factor tetherin and down modulation of CD4 T cells
[41]. In addition to controlled processing of RNA, HIV-1

Fig. 3 Cancer-Immune Cell–Cell (CICC) interaction network. The first layer has 14 nodes and 38 links, and the second layer contains the same 14
nodes and 42 regulatory interactions

Table 1 Data sources for three multilayer networks: CACC, HHMG and CICC networks

CACC network HHMG network CICC network

First layer Second layer First layer Second layer First layer Second
layer

CAC network
[34]

DirectedPPI database +KEGG
database+ CAC network [34]

CoMuNe lab
(https://comunelab.fbk.eu/data.php)

CoMuNe lab
(https://comunelab.fbk.eu/data.php)

CIC
network
[47]

CIS
network
[48]
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replication is also dependent on the activities provided by
TAT and REV encoding by HIV-1 [40]. VIF, HIV-1
accessory protein is necessary for the production of infec-
tious virions by CD4 lymphocytes [42] Moreover,
according to the STITCH Database, VPR, TAT, REV and
VIF can interact with 1, 5, 2, 4 kinds of chemicals, res-
pectively. Therefore, VPR, TAT, VPU, REV and VIF can be
considered potential drug targets for treating the HIV-1.
To further demonstrate the advantages of using multi-

layer network, we compared the results using only a
single-layer network and multilayer network. Table 4 lists
the driver nodes using the first layer network (DNL1), the
second layer network (DNL2) and a network with two
layers (DNL3). From Table 4, we can observe that the
main difference is the obtained protein ENV, which is an
important drug target because it can combine with 8 kinds
of drugs according to DrugBank (Additional file 1:
Table S3). We also analyzed the gene enrichment of
genes in MFVS of the HHMG network. From the results
in Additional file 1: Table S4, we can see that these genes
are involved in host-virus interactions, which are agree-
ment with the experimental evidences.

Cancer–Immune Cell–Cell (CICC) interaction network
Immune cells have been suggested to play paramount
roles in controlling malignancy [43, 44]. Recently, large
efforts have been devoted to cancer immunotherapy by in-
vestigating the cancer–immunity interaction network [45,
46]. Li [47] mapped the complicated interactions among
cancer cells and immune cells onto a cancer–immunity

cell–cell interaction network (CIC network) including
10 nodes (9 representative cell types and an important
cytokine) and 28 interaction links to explore the
biological principles between cancer and immunity.
Similarly, Wang et al. [48] constructed a comprehen-
sive cancer–immune system (CIS network) including
26 nodes (13 representative cell types and 13cytokine)
and 107 interaction links by collecting data from the
existing literature.
To deeply understand the mechanisms between the

cancer and the immune system, we integrate the CIC
network and CIS network to build a duplex network
(Fig. 3). The data sources are shown in the third column
in Table 1. Applying the IISG algorithm to the CICC
network, we identified the MFVS for two layers with five
nodes, which was reduced by one (“TREG”) compared
to the ISG algorithm (see the last row in Table 5). To
further demonstrate the advantages of using a multilayer
network, we compare the results using only a
single-layer network and multilayer network. Table 5
lists the driver nodes using the first layer network
(DNL1), the second layer network (DNL2) and a net-
work with two layers (DNL3). From Additional file 1:
Table S5, we can see that the identified TGFß is consi-
dered to be a critical suppressor of T cell activities which
kill the tumor cells directly [37]. TGFß leads to cancer
proliferation [49]. Cancer cells and natural killer (NK)
cells have a self-growth system. Cancer cells are the
major target we would like to investigate and the NK
cells, by boosting the immune system and restricting the
growth of tumors, reconsidered to be one of the major
inhibitors of tumor cells. Increasing the proliferation of
NK cells is an anticancer strategy [47]. By promoting the
activity of CD8, CD4 and TREG cells, dendritic cells
(DC) provide major mechanisms for T cell activation.
CD4 T cells are one of the inhibiting cell types for can-
cer. CD4 T cells are an equally critical component for
the antitumor immune response. Successful immunity to
cancer therefore requires activation of tumor-specific
CD4 T cells [50]. In Additional file 1: Table S5, we dis-
play the detailed biological information of cytokines and
cell types related to cancer immune system. To sum up,
these results demonstrated that in cancer-immune re-
lated cell types and cytokines, five nodes including four
cell types (Cancer cells, NK cells, DC and CD4 T cells)
and one cytokine (TGFß), are critical for discovering the
biological principles and insights that clarify the inter-
play between cancer and immunity, and these nodes are
identified targets for cancer immunotherapy.

Discussion
In this study, we investigated the nonlinear control of
multilayer networks by proposing a novel approach, the
IISG algorithm, for identifying the minimal set of driver

Table 2 Identified driver nodes for three multilayer networks:
CACC, HHMG and CICC networks

CACC network (17) HHMG network (9) CICC network (5)

AKT RAF ENV TGFß

P21 SMAD GAG-POL Cancer cells

BCATENIN P53 GAG NK cells

IFNG IAP NEF CD 4 T cells

JAK CASP9 VPU DC

JUN IL4 REV

NFKB SPHK1 VIF

IKB TREG VPR

PI3K TAT

Table 3 Comparisons of the proportion of drug targets using
three different methods, including SG, ISG and the proposed
IISG for the CAC and CACC networks

Proportion of Drug Targets

SG algorithm with CAC network 0.7

ISG algorithm with CACC network 0.72

IISG algorithm with CACC network 0.77
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nodes that steer a multilayered nonlinear dynamical
system toward any desired dynamical attractor.
We applied the algorithm to three real biological

networks, including the CACC, HHMG and CICC
networks. The IISG algorithm is capable of obtaining the
minimal FVS of a duplex network compared to the ISG
algorithm. Through comparisons of the results using a
single-layer network and a multilayer network, its effec-
tiveness are demonstrated. In future work, we will extend
these approaches to drug targets of complex diseases.
It has been demonstrated that diabetic pathway bio-

markers can be identified from gene expression profiling
data [51]. Therefore, in future work, we will focus on
integrating disease-related signaling networks in the
network controllability study and designing methods for

identifying drug targets and biomarkers for specific genes.
In addition, other multilayer nonlinear controllability objec-
tives, such as an improved algorithm for larger multilayer
networks, could be explored in future work. In addition,
other meaningful node information, such as drugs specifi-
city and particular node functions could be considered for
identifying meaningful MFVS for multilayer networks.

Conclusions
In this study, we have presented a computational frame-
work for detecting the driver nodes in multilayer networks
and applied to three real networks. The obtained results
suggest that our proposed method could be a promising
tool for higher drug target enrichment or discovering
more meaningful steering nodes. This work can provide a
good foundation for exploring and analyzing complex net-
works based on big data sets.

Fig. 4 The 18 significant pathways of genes in CACC network and p values are less than 7.00E-13. The p values of pathways in cancer and
Colorectal cancer pathway are minimal

Table 4 Comparisons of identified driver nodes using single-
layer and multilayer networks for the HHMG network

DNL1 VPR TAT ENV GAG-
POL

GAG NEF VPU VIF

DNL
2

VPR TAT CD 4 T
cells

GAG-
POL

GAG NEF VPU REV VIF

DNL
3

VPR TAT ENV GAG-
POL

GAG NEF VPU REV VIF

Table 5 Comparisons of identified driver nodes using single-
layer and multilayer networks for the CICC network

DNL1 Cancer cells NK cells TREG

DNL2 TGFß Cancer cells CD 4 T cells DC

DNL3 TGFß Cancer cells NK cells CD 4 T cells DC
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Methods
Mathematical model of nonlinear multilayer networks
Most real-world biological systems are multilayer net-
worked structures characterized by different types of in-
terrelationships and extremely complicated nonlinear
processes. In this study, we focus on nonlinear multi-
player networked systems, which consist of a fixed set of
nodes connected by different types of links (Fig. 5) and
each layer is a complicated nonlinear dynamical process.
To explore the controllability of multilayer networks
with nonlinear dynamics, a system with S layers and N
nodes can be described with the following ordinary dif-
ferential equations (ODEs):

x tð Þ � ¼ F xð Þ þ Bu tð Þ ð1Þ

Where x(t)= [x(1),x(2),⋯,x(S)]Tand xðαÞ ¼ ðxðαÞ1 ; xðαÞ2 ;⋯; xðαÞN ÞT
(α = 1, 2,⋯, S) represent the state of nodes in layer α.

F(x) = [F(1)(x) … F(S)(x)]T and F ðαÞ ¼ ðF ðαÞ
1 ; F ðαÞ

2 ;⋯; F ðαÞ
N ÞT

(α= 1, 2,⋯, S) is a continuously nonlinear differentiable
vector function for layer α. B = diag (B(1), B(2),⋯, B(S))
∈ℝNS ×M is the control matrix and B(β)(β = 1, 2,⋯, S)
are the N × Pβ matrices describing the coupling
between the nodes of each layer α and Pβ ≤N external
signals.

The controllability of nonlinear multilayer networks was
studied under the assumption that driver nodes are the
same in all layers, which mimics the situation in which in-
put nodes can send different signals in the different layers
of the multiplex but the position of the external signals in
the layers is correlated. In this study, the objective of con-
trol problems for multilayer networks with nonlinear dy-
namics is to identify the minimal driver nodes in the system
(1) that steer this multilayered nonlinear dynamical system
toward any desired dynamical attractor of each layer.

The minimum union optimization model for controlling
nonlinear multilayer networks
In this section, we present a minimum union optimization
model for identifying the minimum set of driver nodes
that steer the system (1) toward any desired dynamical
attractor of each layer.
In the nonlinear single-layer networks, Fiedleret al.

[14] showed that controllability of a single network can
be mapped to the feedback vertex set problem. The
explanation of FVS is shown in Fig. 6. In real multilayer
networks, however, nodes are usually univocally defined
and share common properties across different layers,
therefore, we made the assumption that each node of
the multilayer network is either a driver node in each
layer or it is not a driver node in any layer.
Based on the above assumption, the problem of finding

the minimal set of driver nodes in the nonlinear multilayer

Fig. 5 The N-layer network shares the same set of nodes and different interactions
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network can be thus formulated as a minimum FVS union
optimization problem, which can drive the nonlinear
multilayer networked system from an arbitrary initial state
to any desired dynamical attractor. Mathematically, we
formulate the nonlinear control of multilayer networks as
a minimum FVS union optimization problem as follows:

minF1∪F2∪…∪Fn ð2Þ

Where Fi is the number of FVS in layer i, which is a
set of driver nodes of the layer i(i = 1 ,2,…,N). The
model can be illustrated as shown in Fig. 7.

The algorithm for solving the minimum union
optimization model
Currently, several algorithms have been applied to investi-
gate the MFVS in a single-layer network. Razgon [52] pro-
posed the GetMAS algorithm to find the MFVS of a
directed graph in O(2n). To save time, Cai X. [53] investi-
gated simplification of a directed graph when calculating
the MFVS. We combined the two concepts and proposed
the simplified GetMAS (SG) algorithm to quickly obtain
the MFVS of single-layer networks. Thus, the MFVS of a
multilayer network can be solved as follows:

1)Find the feedback vertex set of each layer with the
SG algorithm.
2)Get an intersection of the above sets.

We named the method of getting the intersection of
FVS directly as the intersection simplification GetMAS
(ISG) algorithm. However, the feedback vertex set from
the ISG algorithm is not a minimal set of driver nodes.
The algorithm presented in this study was meant to
optimize the ISG algorithm.
The improved ISG (IISG) algorithm based on a

greedy principle was proposed to identify the MFVS
of multilayer networks with N(N ≥ 2) layers. Before
introducing the algorithm, we define three following
concepts.

Definition 1:(Reference layer): The reference layer is the
layer for which we first obtain the FVS with the SG
algorithm.
Definition 2:(Study layer): The study layer is the layer
for which we obtain the FVS with the IISG algorithm.
Definition 3:(Dominated nodes): Dominated nodes
consists of three kinds of nodes: nodes with more
loops, nodes in the FVS of the reference layer and
nodes with more functions.

Therefore, the IISG algorithm for finding the MFVS
can be described in the following steps:

Step 1: In the reference layer, the set Fr (the set of
reference layer FVS nodes) is obtained with the SG
algorithm.
Step 2: In the study layer, calculate Li(i = 2, 3,…,N) (the
set of the passing loops of all nodes in set Fr).
Step 3: In the study layer, choose the dominated nodes
and remove them from the study layer to set Fi(i = 2, 3,
…,N) (which is the set of study layer FVS
nodes). Calculate Li(i=2,3,...,N).
Step 4: Judge whether the set Li(i = 2, 3 ,…,N) is empty
or not. If it is an empty set, execute step 5; otherwise,
repeat Steps 2 and 3.
Step 5: In the study layer, calculate Li

′(i = 2, 3,…,N)
(the collection of all the passing loops of the current
nodes in the study layer after removing dominated
nodes from the study layer to set Fi(i = 2, 3,…,N)).
Step 6: In the study layer, choose the dominated node sand
remove them from the study layer to set Fi(i = 2, 3,…,
N). Calculate Li'(i=2,3,...,N).
Step 7: Judge whether the set Li

′(i = 2, 3,…,N) is empty
or not. If it is an empty set, execute step 8; otherwise,
repeat Steps 5 and 6.
Step 8: F1, 2,…, i (the minimal driver nodes of a
multilayer network where there is a multiplex with
N = i layer) is the union of Fr and Fi(i = 2, 3,…,N).

Fig. 6 Schematic illustration of FVS in single-layer networks. The
black vertices are one choice for a minimal feedback vertex set in
two single-layer networks. The feedback vertices set is a subset of
vertices in a directed graph, such that the removal of the set leaves
the graph without directed cycles

Fig. 7 Illustration of the minimum FVS union optimization problem
in a multilayer network. Suppose that F1, F2 ,…, FN is the FVS in layer
1, layer 2, …, layer N respectively. The problem is converted to find
the minimal union of F1, F2 ,…, FN, namely, minF1 ∪ F2 ∪ … ∪ FN
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In particular, when the number of layers in a multi-
layer network exceeds two, the set F1, 2,…, i is regarded
as the set Fr, and then we can start the next calculation.
The pseudocode of the IISG algorithm is presented as

follows. .

Where Fr is the set of reference layer FVS nodes with
the SG algorithm and Li(i = 2, 3,…,N) is the set of the
passing loops of all nodes in set Fr in the study layer.
Fi(i = 2, 3,…,N) is the set of study layer FVS nodes.
Li

′(i = 2, 3,…,N) is the collection of all the passing

loops of the current nodes in the study layer after
removing the dominated nodes from the study layer
to set Fi. Set F12,…, n is the minimal driver nodes of
the N-layer network.
To further illustrate the IISG algorithm, we con-

sider a simple duplex network in Fig. 8. Because
there is no biological process involved in this ex-
ample, dominated nodes with more biological func-
tions were not considered when the dominated
nodes were selected. The nodes numbered 2 and 5
are one choice for MFVS in the reference layer (the
layer with red nodes in Fig. 8). The 4 circles, 2, 2; 1,
2, 5; 2, 5, 4, 3 and 1, 5, 7, were found in the study
layer (the layer with green nodes in Fig. 8). Nodes 2
and 5 pass through the most circles (3 circles) 2, 2;
1, 2, 5; 2, 5, 4, 3 and 1, 2, 5; 2, 5, 4, 3; 1, 5, 7,
respectively, and there are also nodes in the re-
ference layer FVS. Therefore, we consider nodes 2
and 5 as the dominated nodes and as members of
FVS in the study layer. Next, they are removed from
the study layer. In the study layer, there were only
nodes 1, 3, 4, 6 and 7, which contained only one
circle for 3 and 4. If it is a specific biological pro-
blem, we can choose a node as the FVS according to
the biological function of nodes 3 and 4. In this
study, we temporarily selected node 3. In conclusion,
the FVS of the reference layer contains nodes 2 and
5 and the FVS of the study layer contains nodes 2, 5
and 3. Therefore, the MFVS of the duplex network
contains nodes 2, 5 and 3.

Fig. 8 Control of a duplex network (multiplex with N = 2 layers). The layer with red nodes is the reference layer and the layer with green nodes is
the study layer
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are clustered near the PI3K-AKT signaling pathway. Figure S2. In
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ing pathway, MAPK signaling pathway and NF-κB signaling pathway.
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Table S1. Biological functions of nodes in MFVS for three multilayer net-
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