Modeling and bioinformatics of combination immunotherapy in T cells

Project principal researcher: Anna Konstorum, Adjunct Associate, CQM

Subproject 1: Model response to T cell dual costimulation

- OX40 (CD134) and 4-1BB (CD137) are T cell coreceptors that can boost antitumor T cell activity when stimulated by agonists [1].
- Dual costimulation (DCo) of both receptors results in a 'supereffector' T cell response [2].
- Goal: to develop and use a mathematical model of CD8+ T cell response to OX40 and/or 4-1BB agonists in order to better understand the mechanisms for supereffector T cell generation under DCo.

For a concise introduction to mathematical modeling for immunotherapy, please see our review in the Journal of Royal Society Interface [4].

Results: We developed a discrete, dynamic model that shows increased T cell response to dual costimulation vs. mono-costimulation, recapitulates known experimental outcomes, and provides insight into the underlying mechanisms for supereffector T cell generation [5].

Funding support

This work is supported by the National Cancer Institute of the National Institutes of Health (NIH), Postdoctoral Fellowship F32CA214030 (A.K.), and NIH Grant. nos. R01Al094640 and R21Al139891 (A.J.A., A.T.V.).

Collaborators: Anthnoy T. Vella¹, Adam J. Adler¹, Reinhard Laubenbacher^{2,3}

¹Department of Immunology, UConn Health

²Center for Quantitative Medicine, UConn Health

³Jackson Laboratory for Genomic Medicine, UConn Health

References

[1] Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev Immunol 23, 23–68, DOI: 10.1146/annurev.immunol.23.021704.115839 (2005).

[2] Lee, S.-J. et al. 4-1BB and OX40 dual costimulation synergistically stimulate primary specific CD8 T cells for robust effector function. J Immunol 173, 3002–12 (2004).

[3] Chen D.S. and Mellman I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunology. July;39(31):1-10 (2013)

[4] Konstorum A, Vella AT, Adler AJ, Laubenbacher RC. Addressing current challenges in cancer immunotherapy with mathematical and computational modelling. J R Soc Interface. 2017 Jun;14(131). https://doi.org/10.1098/rsif.2017.0150.

[5] Konstorum, A., Vella, A.T., Adler, A.J., Laubenbacher, R.C. A mathematical model of combined CD8 T cell costimulation by 4-1BB (CD137) and OX40 (CD134) receptors. Scientific Reports, volume 9, Article number: 10862 (2019). https://doi.org/10.1038/s41598-019-47333-y.

Subproject 2: Dimension reduction methods for CyTOF data

- In order to develop data-driven models of T cell activation and other immune-mediated processes, we need to use and develop algorithms to extract information from high-throughput data generated on experiments involving immune cells.
- Mass cytometry, also known as CyTOF, is a newly developed technology for quantification and classification of immune cells that can allow for analysis of >30 markers per cell [6].
- We conducted a comparative analysis of four dimension reduction techniques principal component analysis (PCA), isometric feature mapping (Isomap), t-distributed stochastic neighbor embedding (t-SNE), and Diffusion Maps by implementing them on a benchmark mass cytometry data set [7].

Two-dimensional embeddings of a random sample of 10,000 cells from the benchmark dataset for the four dimension reduction techniques. Manually gated cell subtypes are labeled.

Collaborators: Nathan Jekel¹, Emily Vidal², Reinhard C. Laubenbacher^{3,4}

¹ Department of Mathematical Sciences, Penn State Harrisburg, Middletown, PA

² Department of Mathematics, Angelo State University, San Angelo, TX

³Center for Quantitative Medicine, UConn Health ⁴Jackson Laboratory for Genomic Medicine, UConn Health

Our preprint of this work is currently available here (link to https://www.biorxiv.org/content/early/2018/12/03/273862).

We are using the results to inform our analysis of data of both publicly-available and collaborator-generated T cell data.

Funding

This work is supported by the National Cancer Institute of the National Institutes of Health (NIH), Postdoctoral Fellowship F32CA214030 (A.K.), and National Science Foundation - Division of Mathematical Sciences Award 1460967.

References

[6]Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler's guide to cytometry. Trends Immunol. 2012 Jul;33(7):323-32.

[7]Konstorum, A., Vidal, E., Jekel, N., Laubenbacher, R. Comparative Analysis of Linear and Nonlinear Dimension Reduction Techniques on Mass Cytometry Data bioRxiv 273862; doi: https://doi.org/10.1101/273862. December, 2018.