Modeling and bioinformatics of combination immunotherapy in T cells

Project principal researcher: Anna Konstorum, Adjunct Associate, CQM

Subproject 1: Model response to T cell dual costimulation

- OX40 (CD134) and 4-1BB (CD137) are T cell coreceptors that can boost anti-tumor T cell activity when stimulated by agonists [1].

- Dual costimulation (DCo) of both receptors results in a synergistic T cell response [2].

- **Goal**: to develop and use a mathematical model of CD8+ T cell response to OX40 and/or 4-1BB agonists in order to better understand the mechanisms for synergy under DCo.

Collaborators: Anthnoy T. Vella¹, Adam J. Adler¹, Reinhard Laubenbacher²,³
¹Department of Immunology, UConn Health
²Center for Quantitative Medicine, UConn Health
³Jackson Laboratory for Genomic Medicine, UConn Health

The model is currently in preparation for submission: stay tuned for updates! For a concise introduction to mathematical modeling for immunotherapy, please see our review in the Journal of Royal Society Interface [4].

Funding support
This work is supported by the National Cancer Institute of the National Institutes of Health (NIH), Postdoctoral Fellowship F32CA214030 (A.K.), and NIH Grant. nos. R01AI094640 and R21AI139891 (A.J.A., A.T.V.).

References
Subproject 2: Dimension reduction methods for CyTOF data

- In order to develop data-driven models of T cell activation and other immune-mediated processes, we need to use and develop algorithms to extract information from high-throughput data generated on experiments involving immune cells.
- Mass cytometry, also known as CyTOF, is a newly developed technology for quantification and classification of immune cells that can allow for analysis of >30 markers per cell [5].
- We conducted a comparative analysis of four dimension reduction techniques – principal component analysis (PCA), isometric feature mapping (Isomap), t-distributed stochastic neighbor embedding (t-SNE), and Diffusion Maps by implementing them on a benchmark mass cytometry data set [6].
Two-dimensional embeddings of a random sample of 10,000 cells from the benchmark dataset for the four dimension reduction techniques. Manually gated cell subtypes are labeled.

Collaborators: Nathan Jekel¹, Emily Vidal², Reinhard C. Laubenbacher³,⁴
¹ Department of Mathematical Sciences, Penn State Harrisburg, Middletown, PA
² Department of Mathematics, Angelo State University, San Angelo, TX
³ Center for Quantitative Medicine, UConn Health
⁴ Jackson Laboratory for Genomic Medicine, UConn Health

Our preprint of this work is currently available here (link to https://www.biorxiv.org/content/early/2018/12/03/273862).

We are using the results to inform our analysis of data of both publicly-available and collaborator-generated T cell data.

Funding
This work is supported by the National Cancer Institute of the National Institutes of Health (NIH), Postdoctoral Fellowship F32CA214030 (A.K.), and National Science Foundation - Division of Mathematical Sciences Award 1460967.

References