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ABSTRACT

Motivation: Prediction of synergistic effects of drug combinations
has traditionally been relied on phenotypic response data. However,
such methods cannot be used to identify molecular signaling
mechanisms of synergistic drug combinations. In this article, we
propose an enhanced Petri-Net (EPN) model to recognize the
synergistic effects of drug combinations from the molecular response
profiles, i.e. drug-treated microarray data.
Methods: We addressed the downstream signaling network of the
targets for the two individual drugs used in the pairwise combinations
and applied EPN to the identified targeted signaling network. In EPN,
drugs and signaling molecules are assigned to different types of
places, while drug doses and molecular expressions are denoted
by color tokens. The changes of molecular expressions caused by
treatments of drugs are simulated by two actions of EPN: firing and
blasting. Firing is to transit the drug and molecule tokens from one
node or place to another, and blasting is to reduce the number of
molecule tokens by drug tokens in a molecule node. The goal of EPN
is to mediate the state characterized by control condition without
any treatment to that of treatment and to depict the drug effects on
molecules by the drug tokens.
Results: We applied EPN to our generated pairwise drug
combination microarray data. The synergistic predictions using EPN
are consistent with those predicted using phenotypic response data.
The molecules responsible for the synergistic effects with their
associated feedback loops display the mechanisms of synergism.
Availability: The software implemented in Python 2.7 programming
language is available from request.
Contact: stwong@tmhs.org

1 INTRODUCTION
A combination of drugs, or a drug cocktail, is a common therapeutic
strategy used in oncology. The strategy reduces drug toxicology
caused by high doses of single drugs and generates enhanced effects
with lower doses of combined drugs. A combination of two drugs
may generate same effect (simple additive), blunted effect (sub-
additive) and exaggerated effect (super-additive or synergistic).
Drug combination focuses on the relationship between dosages
and effects as well as the methodology distinguishing between
additive and non-additive combinations. Methods of analysis for
distinguishing between simple additivity and other non-additive
outcomes include Lowe dose additivity (Chou and Talalay, 1983),

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

Bliss independence (Bliss, 1939), Gaddum’s non-interaction
(highest single agent) (Berenbaum, 1989) and Potentiation (Lehar
et al., 2007, 2009). Among them, Lowe dose additivity is the
most common model used in prediction of drug combination.
Lowe dose additivity distinguishes additive and non-additive drug
combinations by the combination index (CI), CI=Ca,r/ICX,a +
Cb,r/ICX,b (Chou and Talalay, 1983), where in case of an inhibitory
drug, X refers to a specific percent inhibition level (e.g. 50%),
Ca,r and Cb,r are the concentration of drugs A and B given
in a combination of the two drugs, and ICX,a and ICX,b are
the concentration of drugs A and B yielding the same effect
level, when treated alone, as the combination. If CI > 1, the drug
combination has a subadditive effect, and if CI < 1, the drug
combination has a synergistic effect. However, the existing methods
for prediction of synergistic effects of drug combinations restrict
to the phenotypic response data, and, therefore, cannot be used
to describe the underlying mechanisms of signal transductions or
signaling pathways.

The studies on signaling pathways and related interaction
molecules would make it possible to recognize downstream effect
of a drug or a drug combination on the targets. Exogenous
signals are initially imposed on the receptors, which then carry
the signals to second messengers, and eventually the signals are
led to transcription-related molecules of DNA in the nucleus, such
as transcription factors, RNA polymerases or histone modification
complexes. Many drugs target on the upstream of signaling
pathways, for example, membrane receptors or second messengers.
They assert a long-term effect, called off-target effect (Keiser et al.,
2009; Lamb, 2007; Lamb et al., 2006; MacDonald et al., 2006),
on gene transcription-related molecules through the downstream
signals along the pathway. Since the studies on drug targets alone are
not sufficient to indicate the off-target effects, we need to develop
computational models in order to simulate the effects of drugs on
the signaling pathways.

Many models have been established for network modeling on
biological systems, such as ordinary differential equations (ODE),
Fuzzy logic system (FLS) and Petri net (PN). ODE is to encode
a network as a system of differential equations, which generates
a detailed and biochemically realistic representation. However, the
ODE model suffers the cost of many free parameters, which must
be estimated. If the number of the nodes of the network reaches
tens or hundreds, parameter estimation would become challenging.
FLS modeling has the same parameter issue. Comparing with
these quantitative models, PN model is a better choice to describe
biological systems qualitatively. PN has been recently applied in
metabolic (Reddy et al., 1996; Voss et al., 2003), genetic (Steggles
et al., 2007) and signaling networks (Ruths et al., 2008) where few
accurate kinetic data are accessible.
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The basic PN (Grunwald et al., 2008; Hardy and Robillard, 2008;
Koch, 2011; Peterson, 1981; Ruths et al., 2008) is composed of four
parts: a set of places P, a set of transitions T, an input function I
and an output function O. The input function I is a mapping from a
transition tj to a place I(tj), known as the input place of the transition.
The output function O maps a transition tj to a place O(tj), known
as the output place of the transition. A PN structure, C, is defined as
a four-tuple, C= (P,T,I,O).

2 APPROACH
In this study, we propose a new type of PN model, Enhanced PN
(EPN), to predict the synergistic effects of drug combinations using
the drug-treated microarray data. We extended the basic PN as
multiple-color tokens, places and transitions comparing with the
basic one-color PN (Fig. 1). The multiple-color tokens, places and
transitions enable EPN to simulate the process in which the drugs
impose their effects on molecules.

The goal of EPN is to find an optimal state in which the expression
profile of genes exactly matches with the treated case. Once the
optimal state is identified, we use the marking of one type of
tokens, called effect tokens, to evaluate the effects of the treated
drug on the molecules. In this way, we can predict the drug effects
on the molecules. To verify whether a drug combination shows
synergistic effect, we compare the identified drug effects from the
microarray treated by pairwise combination of drugs A and B with
those from the corresponding two microarrays treated by drugs A
and B separately. Our hypothesis for synergism is that there exists
at least one molecule that shows the enhanced effect in the pairwise
combination comparing with the summation of the effects generated
by the two drugs individually. The molecules with enhanced effects
are used to predict whether the combination has synergistic effect.

To test our model, we generate a gene expression profile for breast
cancer cell line MCF7 with 16 microarrays for gefitinib with the

Fig. 1. The EPN model.

doses, 0, 5, 10 and 40 µMol and docetaxel with 0, 0.15, 0.6 and
1.2 µMol. The synergistic effect of the two drugs, gefitinib and
docetaxel, has been confirmed by Takabatake et al. (2007). Then,
we apply EPN model to the profile. The analysis shows that EPN
predicts the synergistic pairwise drug combinations well. Most of
the prediction results are consistent with the prediction results based
on the phenotypic response data and the published literature.

Comparing with the existing methods, the advantage of using EPN
in prediction of synergism is that it explains how two drugs could
generate the synergistic effects. For the synergistic combinations of
gefitinib and docetaxel, we found that docetaxel assists gefitinib in
the synergy, while the synergistic molecules, such as KRT8, play a
leading role in this process. The positive feed-forward loops between
EGFR, target of gefitinib and KRT8 enable gefitinib to amplify
its effect and dominate the synergism, whereas certain negative
feedback loops between BCL2, target of docetaxel and KRT8 reduce
its contribution to the synergism.

3 METHODS

3.1 RNA isolation and gene expression profiling
MCF-7 cells were seeded at 2×105/ml in 6-well plates. After confluence
was achieved, the cells were treated with different concentrations of the
two drugs or Dimethyl sulfoxide (DMSO) in duplicate for 48 h. RNA was
extracted from the cells using RNAeasy mini kit (Qiagen). The quality of the
RNA samples was monitored using 2100 bioanalyzer (Agilent) before gene
expression profiling with Agilent human 4×44 k microarrays.

3.2 EPN model
An EPN structure, C, is defined as a four-tuple, C= (P,T,I,O), where
P={PD,PG}, PD is a set for the places of drugs, PG is a set of places
for molecules, such as genes or proteins, sometimes, called as gene places;
T={TD,TG}, TD is a set of transitions for drug tokens, TG is a set of
transitions for gene tokens; I={ID,IG}, ID is an input mapping between
a drug transition tj

D and the place I(tj
D), IG is an input mapping between

a gene transition tj
G and the place I(tj

G); O={OD,OG}, OD is an output

mapping between a drug transition tj
D and the place O(tj

D), OG is an output

mapping between a gene transition tj
G and the place O(tj

G).
An EPN graph has four types of nodes. A circle © represents a gene place,

a triangle � represents a drug place, a bar | represents a gene transition
and a bar || represents a drug transition (Fig. 1). The arcs AD and AG

have two colors, AD is for drugs and AG is for genes. Green arcs AG

transit gene tokens from input place to transitions or transit gene tokens
from transitions to output place. Red arcs AD transit drug tokens from
input place I(tj

D) to transition tj
D or transit drug tokens from transitions

tj
D to output place O(tj

D). EPN has four types of tokens, that is, gene
tokens, drug tokens, effect tokens (blasting tokens) and drug transportation
tokens. A marking µ of an EPN, C= (P,T,I,O), is a function from the
set of places P to the non-negative integer space, N4,µ :P→N4. The
marking µ=(

µD,µT ,µB,µG
)

can also be defined as a 4n-vector, µ=(
µ1

D,µ2
D,...,µn

D,µ1
T ,µ2

T ,...,µn
T ,µ1

B,µ2
B,...,µn

B,µ1
G,µ2

G,...,µn
G

)
, where n=

|P| and each µi
D ∈N, µi

T ∈Nµi
B ∈N, µi

G ∈N, i=1,2,...,n. Another making
πT of the TD is a function from the set of drug transitions TD to the
non-negative integers N, π :T→N. The marking πT can be defined as
an m-vector, π=(

π1
T ,π2

T ,...,πm
T

)
, where m=|TD| and each πi

D ∈N, i=
1,2,...,m.

EPN executes by firing of transitions and blasting of drug tokens. A drug
transition fires by removing drug tokens from its input places and creating
new drug tokens which are distributed to its output places. A drug transition
may fire if it is enabled. A drug transition tj ∈TD in a marked EPN C=
(P,T,I,O) with marking µ is enabled if for all pi ∈P, µD

(
pi

)≥#
(
pi,ID(tj)

)
,
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where #
(
pi,ID(tj)

)
is the token number transited from pi to ID(tj). Firing

an enabled transition tj results in a new marking µ′ defined by µ′
D

(
pi

)=
µD

(
pi

)−#
(
pi,ID(tj)

)
µ′

D

(
OD(tj)

)=µD
(
OD(tj)

)+#
(
pi,OD(tj)

)
, µ′

T

(
pi

)=
µT

(
pi

)+#
(
pi,ID(tj)

)
, and π′

T (tj)=πT (tj)+#
(
pi,ID(tj)

)
, where the markings

µ′
T

(
pi

)
and π′

T

(
ti
)

can record the number of drug tokens that passed by the
place pi and transition tj . In the same way, a gene transition fires by removing
gene tokens from its input places and creating new gene tokens which are
distributed to its output places. A gene transition may fire if it is enabled. A
gene transition tj ∈TG in a marked EPN C= (P,T,I,O) with marking µ is
enabled if for all pi ∈P, µG

(
pi

)≥#
(
pi,IG(tj)

)
. Firing an enabled transition tj

results in a new marking µ′ defined by µ′
G

(
pi

)=µG
(
pi

)−#
(
pi,IG(tj)

)
and

µ′
G

(
OG(tj)

)=µG
(
OG(tj)

)+#
(
pi,OG(tj)

)
.

Blasting only executes on the drug tokens in the output places. The effect
tokens are also called as bombs. After blasting in the output place, a bomb
can destroy b gene tokens and the bomb is consumed. A blasting may occur
if it is enabled. A blasting of B bombs in the output place pj of a marked PN
C= (P,T,I,O) with marking µ is enabled if µD

(
pj

)≥B and µG
(
pj

)≥B×b.
Blasting B bombs in a place pj results in a new marking µ′ defined by
µ′

D

(
pj

)=µD
(
pj

)−B, µ′
G

(
pj

)=µG
(
pj

)−B×b, and µ′
B

(
pj

)=µB
(
pj

)+B.
The state of EPN is defined by its gene marking µG. The firing of a

transition and blasting of bombs represent a change in the state of the EPN
by a change in the gene marking of the EPN. The state space of an EPN
with n places is the set of all gene markings, that is, Nn. The change in state
caused by firing a transition and blasting a place is defined by two change
functions δT and δB called the next-state functions. Since tj can be fired only
if it is enabled, δT

(
µ,tj

)
is undefined if tj is not enabled in marking µ, If tj

is enabled, then δT
(
µ,tj

)=µ′, where µ′ is the marking which results from
removing tokens from the input of tj and adding tokens to the outputs of tj . If
blasting in place pj is enabled, δB

(
µ,pj

)
can be defined, which satisfies that

δB
(
µ,pj

)=µ′′, where µ′′ is the marking which results from the consuming
of bombs and reducing tokens from the output place pj .

3.3 Apply EPN to identify the drug effects on molecules
The firing of transitions and blasting of bombs result in the change of gene
marking µG. The state of EPN is defined by its gene marking µG. The
task for EPN is to mediate the state, µ

(C )
G , before treatment to that, µ

(D )
G ,

after the treatment of a drug. It is formulated as an optimization problem
in (1). The hypothesis is that the final state µ

(D )
G is a reachable state from

the control state µ
(C )
G . There exists a transition set

{
T0,T′,T′′,...,T(k−1)

}

and a change function set
{
δ0,δ′′,δ′′′,...,δ(k−1)

}
that satisfies δ0

(
µ

(C)
G ,T0

)
=

µ′
G,...,δ(k−1)

(
µ

(k−1)
G ,T(k−1)

)
=µ

(k)
G =µ

(D)
G . The EPN outputs the simulated

drug effects on molecules.
Simulating of drug effects using EPN can be described as follows:

min
∣∣∣µ(k)

G −µ
(D)
G

∣∣∣
s.t. δ(i−1)

(
µ

(i−1)
G ,T0

)
=µ

(i)
G ,

µ
(i)
G = f (i)(P),

π(j) =g(j)(Tj),

µ
(i)
G ∈N4n

π(j) ∈Nm

i=1,2,...,k

j=1,2,...,m

(1)

Input: µ
(0 )
G : gene expressions before treatment;

µ
(n )
G : gene expressions after treatment;

ℵ: downstream signaling network of targets;
Output: µ

(n )
B : drug effects on the molecules.

3.4 Transition algorithm
To optimize (1), we proposed a greedy transition algorithm, called Final State
Oriented Token Transition. The transitions of drug tokens and gene tokens are
implemented by the algorithm. The steps in the algorithm are: (1) shuffling
of the interactions in the downstream targets of the signaling network, (2)
transition of drug or gene tokens, and (3) decision of termination. The pseudo
code is described as following (2)

Step 1. Shuffle all interactions as �.

Step 2. Token transition
for every interaction (G1 →G2) in �{
Gfold-change

2 =µTreatment
G

(
G2

)
/µδ

G

(
G2

)
if (Gfold-change

2 <1){
transit drug tokens
blast effect tokens
update markings of drug, gene, effect, transportation
tokens}

if (Gfold-change
2 >1){
transit gene tokens
update markings of gene tokens}

}
Step 3. Termination

�δ =∑
i

|1-Gδ
i /GTreatment

i |,�Control =∑
i

|1-GControl
i /GTreatment

i |
if (�δ/�Control <10−10){Exit},else go back to Step 2.

(2)

4 RESULTS
We developed an EPN model to predict synergistic effects of
pairwise drug combinations using drug-treated gene expression
microarray data. To test the EPN model, we generated a gene
expression profile with 16 combinations of two drugs with different
dosage pairs. The drug effects on molecules identified by EPN model
were used to predict the synergistic effects of the combinations.

4.1 Drug combinations for EPN
Sixteen pairwise drug combinations for gefitinib with doses 0, 5,
10 and 40 µMol and docetaxel with 0, 0.15, 0.6 and 1.2 µMol,
are treated on MCF7 breast cancer cell line. We generated the
phenotypic response data, that is, the inhibition rates on cell
proliferation, and the treatment of microarray data simultaneously.
Applying CalcuSyn software (Tallarida, 2001) on the phenotypic
response data, we identified that the combinations of (5, 1.2), (20,
0.15), (20, 0.6), (20, 1.2), (40, 0.15), (40, 0.6) and (40, 1.2) exhibit
synergistic effects. The results are shown in Table 1. Takabatake
et al. (2007) also revealed that gefitinib with dosage 19±2.4µMol
and docetaxel with dosage 0.29±0.042µMol are synergistic.

4.2 Downstream signaling network of the targets
Before implementation of EPN on the drug-treated microarray data
of pairwise drug combinations, we have to identify the downstream
signals and related protein–protein interactions (PPIs) of the targets,
i.e. epidermal growth factor receptor (EGFR) of gefitinib and B-cell
lymphoma 2 (BCL2) of docetaxel. The combined data for signaling
pathways were derived from three pathway databases, including
KEGG: Kyoto Encyclopedia of Genes and Genomes (Kanehisa
et al., 2004), NCI PID: Pathway Interaction Database (Schaefer
et al., 2009) and BioCarta (Schaefer et al., 2009). The PPIs used here
are the physical interactions gathered from five PPI databases, IntAct
(Kerrien et al., 2007), DIP (Xenarios et al., 2002), MINT (Chatr-
aryamontri et al., 2007), MIPS (Mewes et al., 2002) and BioGrid
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Table 1. The CI identified by phenotypic responses

Doses of gefitinib (µMol) Doses of docetaxel (µMol) CI

5 0.15 3.361
5 0.6 5.121
5 1.2 0.894
20 0.15 0.610
20 0.6 0.687
20 1.2 0.664
40 0.15 0.672
40 0.6 0.753
40 1.2 0.619

CI used here is developed by CalcuSyn. If CI < 0.7, strong synergism or synergism;
if 0.7 < CI < 0.9, moderate or slight synergism; and if CI > 0.9, nearly additive or
antagonism.

Fig. 2. The downstream signaling network for targets of the pairwise
combination of gefitinib and docetaxel. The related PPI data are not shown.

(Breitkreutz et al., 2008). The identified downstream signaling
network comprises 575 proteins with 919 signaling interactions, as
shown in Figure 2, which interacts with another 433 proteins via
4365 PPIs.

4.3 Apply EPN to the pairwise-combination
microarray data

The task of EPN is to figure out those molecules with enhanced
effects by comparing the effects of pairwise combinations with those
effects of the corresponding single drugs. It involves three steps: (i)
initiate the EPN model, (ii) detect the effects on the molecules of
the pairwise combinations and of two single drugs, and (iii) identify
the molecules with enhanced effects.

4.3.1 Initiate the EPN model To construct an EPN, we have to
add transitions and tokens in the identified downstream signaling
network of the targets of the combinations. The signaling molecules
with their interacting protein molecules in Figure 2 are considered
as the gene places in EPN while the marking of the gene places is

determined by the expression values in the treatment microarray
data. The drugs are considered as drug places, and the marking
of their drug tokens is initiated as relative large numbers, which
ensures their related transitions are enabled. The transitions for
drugs and genes were assigned to the interactions between the
places. If the interaction

(
p1 →p2

)
is activation or phosphorylation

or drug → target, the new interactions were defined as from p1
to transition, p1 →T and from transition to p2, T →p2. If the
interaction

(
p1 →p2

)
is inhibition or dephosphorylation, the new

interactions were defined reversely, from p2 to transition, p2 →T
and from transition to p1, T →p1.

As described in transition algorithm of (2), we randomly selected
an interaction from the downstream signaling network of the targets,
then determine to transit either drug tokens or gene tokens. The
number of gene tokens for every transition is a randomized number
µGamma derived from a Gamma distribution,

f
(
x;k,ϑ

)=xk−1 e−x/θ

θk�(k)
, x≥0 and k,ϑ>0 (3)

where k,ϑ are two parameters for scale and shape of the Gamma
distribution, and �(k)= (k−1)!. Implementing the Final State
Oriented Token Transition algorithm of (2), we do not expect the
final state (treated state) is achieved immediately by transition of a
relatively large number of tokens, which will cause a high deviation
for the identified numbers of gene or drugs tokens by running
the algorithm for 1000 times. Instead, we selected a large shape
parameter (k =10) and a small scale parameter (θ=1). The large
shape parameter enables the Gamma distribution to have a relatively
high probability for small numbers while the small-scale parameter
determines that only a relatively small range of numbers would have
higher probabilities.

The transition of drug tokens is forced by the output place. The
number of drug tokens for every transition is determined by two
parts, one is the number of drug tokens in the output place that
have been transited by its downstream interactions, and another is
a randomized number also derived from (3) to indicate how many
drug tokens should be transited additionally. The markings for gene
tokens, drug tokens, transportation drug tokens and transitions are
updated with the transitions.

In contrast to conventional PNs, EPN has not only the action of
firing, that is, transitions of tokens, but also the action of blasting.
The role of blasting is to consume drug tokens as effect tokens and to
reduce the number of gene tokens in the output place simultaneously.
The markings for gene tokens, drug tokens and effect tokens are
updated with blasting. Here, a blasting parameter b is needed to
indicate how many gene tokens can be destroyed by one effect token.
We set b as 1. The identified effect tokens by blasting are used to
denote the drug effects on the molecules.

4.3.2 Detect the effects on the molecules We implemented EPN
on every combination microarray data for 1000 times. A list of
effect token markings is generated, �=[µB,1,µB,2,...,µB,1000].
For every place or gene pi, the drug effect Epi

is defined as

Epi = 1

1000

∑
j

µ
pi

B, j (4)

4.3.3 Find the molecules with enhanced effects The synergistic
effects of drug combinations are evaluated by the identified drug
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effects on molecules. A pairwise combination (a,b) denotes the
treatment achieved by gefitinib with dose a and docetaxel with
dose b. If the combination generates a synergistic effect, there

exists at least one gene pi satisfied with Epi

(a,b) >Epi

(a) +Epi

(b), where

Epi

(a,b), Epi

(a) and Epi

(b)are the drug effects on gene pi generated by

combination(a,b), gefitinib with dose a, and docetaxel with dose b.
We defined

Spi =Epi

(a,b) − (Epi

(a) + Epi

(b)) (5)

The genes with Spi
>0 were filtered out as synergistic markers for

combination (a, b).
We designed a random process to evaluate to what degree a

combination shows synergistic effect. We randomly generated the
treatment expression data for the pairwise combinations and single
drugs. The expression of each gene was randomly selected from
the 16 expression values of this gene in the treatment microarrays
with 16 dose pairs. We repeated the random process for a thousand
times and generated 1000 randomized microarrays. To evaluate
the significance of synergistic effects, we randomly chose three
microarray data for pairwise combination (a, b) and single drugs
from the generated randomized microarrays so that we could
compute the randomized effect on every place. Thus, we found a
randomized distribution f for the total synergistic effects

∑
i S

pi
of a

combination (a, b). The P-value is derived from the complementary
cumulative distribution function (ccdf) of f .

We applied EPN model to our generated combination microarrays.
Our results are consistent with the prediction results based on
phenotypic response data and the published results in (Takabatake
et al., 2007). EPN model not only indicates which combination has
synergistic effects but also shows which molecules result in the
synergistic effects. The prediction results are shown in Table 2.

Comparing with the prediction results based on the phenotypic
response data, we confirmed that the pairwise combinations (5, 1.2),
(20, 0.6), (20, 1.2) and (40, 1.2) have synergistic effects, in which
(20, 1.2) shows the strongest synergistic effect. The other three
combinations, (20, 0.15), (40, 0.15) and (40, 0.6) are abandoned by
the randomized analysis although they have the genes with enhanced
effects (0<Spi

< 50.1). Our results are consistent with the published
results in (Takabatake et al., 2007), which indicate the efficacious
dose 19 ± 2.4µMol of gefitinib and 0.29±0.042µMol of docetaxel.
We also predict the combination (5, 0.6) has synergistic effect.

4.4 Further understanding of synergism
The conventional prediction methods based on phenotypic response
data only indicates whether two drugs are synergistic, but cannot
explain how the two drugs derive the synergistic effect. EPN fills
this void.

4.4.1 How is synergism generated? Conventional studies on
synergism aim to find the combination whose combined dosage is
lower than dosages of individual drugs. The CI was defined as (Chou
and Talalay, 1983):

CI=Ca,r/ICX,a +Cb,r/ICX,b (6)

where in case of an inhibitory drug, X refers to a specific percent
inhibition level (e.g. 50%), Ca,r and Cb,r are the concentrations of
drugs A and B given in a combination of the two drugs, and ICX,a

Table 2. The predicted effects on molecules for combinations

Combs(a,b) P-value Genes with significantly
higher synergistic effects

Gene Pi Synergistic effect Spi

(5, 0.15) 0.85
(5, 0.6) <10−2 NFKBIA 646.15
(5, 1.2) <10−3 NFKBIA 1020.46

PXN 51.39
(20, 0.15) 0.32
(20, 0.6) 0.03 NFKBIA 280.39
(20, 1.2) <10−10 KRT8 3248.89

KRT18 2229.01
ACTB 1563.20
STMN1 862.19
HMGN2 628.15
CDH1 482.05
SREBF1 254.53
CDC2 223.16
RAC1 163.42
PCNA 113.11
CCND1 107.30
SYN1 89.33
RRAS 89.12
GYS1 80.93
RHOA 65.68
TRADD 56.81
HLA-A 54.14

(40, 0.15) 0.44
(40, 0.6) 0.053
(40, 1.2) <10−2 NFKBIA 691.81

The application of EPN to randomized gene expression microarray data indicates a

cutoff for Spi
, i.e. 50.1. The genes with Spi

>50.1 are shown. The bold values in the
P-value column indicates the P-value is significant (P<0.01).

and ICX,b are the concentrations of drugs A and B yielding the same
effect level, when treated alone, as the combination.

If CI<1 and R= ICX,a/ICX,b is defined as the relative potency of
the two drugs, (6) is reformatted as

Ca,r +R ·Cb,r < ICX,a or Ca,r/R+Cb,r < ICX,b (7)

From (6) and (7), we can see that the explanation of synergism is
based on the doses used for achievement of a specific effect level in
the treatments of combinations and single drugs. It is still difficult
to explain how the synergistic effects are exactly generated.

The drug tokens in drug places can be used to explain how
the synergistic effects are generated. In EPN, one type of tokens,
that is, drug transportation tokens, record how many drug tokens
have entered into the downstream signaling network of the targets.
By comparing the transportation tokens of µT in drug places for
combinations and their corresponding single drugs, we found that
the synergistic effects are dominated by gefitinib, while docetaxel
assists gefitinib to generate the enhanced drug effects (Table 3).
The analysis indicates that two pairwise combinations (5, 1.2)
and (20, 1.2) are the most confident combinations with synergistic
effects. These two combinations were also confirmed by the analysis
on phenotypic response data (Table 1). The combination (5, 1.2)
is also comparable with the results in (Takabatake et al., 2007),
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Table 3. The predicted effects for gefitinib and docetaxel in single and
combination treatments

Doses (µMol) Effects

Single drug Combination

Gefitinib Docetaxel Gefitinib Docetaxel Gefitinib Docetaxel

5 0.15 22 819 150 841 112 439 64 102
5 0.6 22 819 91 527 59 973 39 987
5 1.2 22 819 105 586 90 328 50 503
20 0.15 50 728 150 841 89 474 49 301
20 0.6 50 728 88 472 75 844 34 687
20 1.2 50 728 104 450 136 433 77 516
40 0.15 118 677 150 841 117 948 67 537
40 0.6 118 677 88 472 97 426 54 183
40 1.2 118 677 104 450 87 338 54 436

The bold value indicates that (i) the dose-pair has a significant P-value in Table 2 and
(ii) total of the predicted effects of the two drugs in combinations are higher than that
in single drugs.

the combination (19±2.4, 0.29±0.042). The combination (5, 1.2)
shows that docetaxel assists gefitinib with 5 µMol to generate a
higher effect, 90 328, than that of 20µMol, 50 728, by using a higher
dose of 1.2 µMol, instead of 0.3 µMol.

4.4.2 How does the combination achieve the synergism? The
combination (20, 1.2) is used to illustrate the molecular mechanisms
for the synergistic effects. In EPN, we defined a marking πT of
the drug transition TD, which records how many drug tokens are
transited between gene places by drug transitions. The transition
marking, πT , helps to find the pathways by which the drug tokens
are transited from drug places to the synergistic molecules as shown
in Table 2.

We chose KRT8 (CK8, keratin 8) from the list of synergistic
molecules as an example to show how docetaxel assists gefitinib
to achieve the synergistic effects. KRT8 is a member of the type II
keratin family clustered on the long arm of chromosome 12. Type
I and type II keratins heteropolymerize to form intermediate-sized
filaments in the cytoplasm of epithelial cells. The product of this
gene typically dimerizes with keratin 18 to form an intermediate
filament in simple single-layered epithelial cells. This protein
plays a role in maintaining cellular structural integrity and also
functions in signal transduction and cellular differentiation. KRT8
with another synergistic molecule KRT18 has been revealed as
prognostic biomarkers for the patients of triple negative breast
cancers (Williams et al., 2009) and invasive breast cancer (Takei
et al., 1995).

Using the transition marking, πT , we filtered out the transitions
T ′ whose πT ′ >0. These identified transitions facilitate us to chase
the drug effects from the two combined drugs to the interested
synergistic molecule, KRT8. The transitions are also helpful to
understand the mechanisms of the synergistic effects. We showed
the identified transitions in Figure 3.

The synergistic effect of (20, 1.2) is elucidated by the identified
transitions of the treatment pathway in Figure 3. The reason for
the synergism is that the two drugs have many common output
places that are, for example, KRT8, the locations for the two drugs to
exchange their effects and generate the synergistic effects. Besides

Fig. 3. The pathway for getifinib and docetaxel to generate the synergistic
effects on KRT8. The red interactions are for activation or phosphorylation
between signaling molecules, while the green ones denote inhibition or
dephosphorylation between signaling molecules. And the black interactions
are for drug–target relationships and the simulated pathway interactions from
PPIs. The pathway was generated using IPA software (Ingenuity Systems,
Inc, Redwood City, CA, USA).

this, the transitions in Figure 3 also explain why docetaxel assists
gefitinib to generate the synergistic effect. The target of gefitinib,
EGFR, has a direct effect on KRT8 through the transition, EGFR→
KRT8, whereas the target of docetaxel, BCL2, does not. In addition,
gefitinib has a number of positive feed-forward loops through
RAS pathway, for instance, EGFR→SOS1→RRAS2→RAF1→
KRT8,EGFR→SOS1→HRAS2→RAF1→KRT8, and EGFR→
PLCG1→PRKCA→RAF1→KRT8. The feed-forward loops in
accelerating transductions of signals have been extensively studied
(Milo et al., 2002; Shen-Orr et al., 2002). They are, here, considered
as the important paths for accelerating gefitinib to have an effect on
KRT8. In contrast, besides positive feedback loops, docetaxel has
many negative feedback loops to KRT8 caused by two inhibitory
interactions, BCL2−|TP53 and SOCS3−|JAK2. The positive feed-
forward loops for gefitinib and the negative feedback loops for
docetaxel together help us to understand why gefitinib dominates
the synergistic effects and the role of docetaxel is to assist gefitinib
to generate such effects.

5 DISCUSSION
In this article, we developed a new model, EPN, to predict the
synergistic effects of pairwise drug combinations using drug-treated
gene expression microarray data. The effects of drugs on molecule
expressions and the associated pathways are simulated by the defined
tokens and transitions in different colors in the model. Synergism is
predicted using enhanced synergistic molecules recognized by EPN.
The activated drug transitions help to interpret the mechanisms of
the synergistic effects of the combinations.
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Table 4. The phenotypic response data for the pairwise drug combinations

Docetaxel
(µMol)

Gefitinib (µMol)

0 2.5 5 10 20 40

0 100.00 103.16 94.19 92.36 81.37 64.57
0.15 87.94 108.54 91.92 87.33 67.75 55.39
0.3 83.98 105.46 88.21 84.14 63.61 55.03
0.6 72.68 95.56 73.31 67.25 60.87 44.29
1.2 74.48 90.14 68.35 64.73 58.09 47.83
2.4 75.39 96.33 70.41 68.72 62.78 42.08

The application of EPN to the microarray profile for gefitinib
and docetaxel not only predicts the synergistic dose pairs but also
illustrates the mechanism for the synergistic effects. We identified
that gefitinib dominates the synergistic effects while docetaxel
assists gefitinib to achieve that. The results are also confirmed by the
phenotypic response data as shown in Table 4. We tested another two
dosages, 2.5 and 10 µMol, for genfitinib and another two dosages,
0.3 and 2.4 µMol, for docetaxel in the response data. We could
see that the proliferation inhibition rates are significantly decreased
along with the increase of dosage of gefitinib, and the tendency is,
however, not with docetaxel.

The molecule, KRT8, helps us to make it clear how the two
drugs generate the synergistic effect. While the drugs treat the
cells separately, gefitinib is known to inhibit the Ras pathway by
its target, EGFR, so that the drug prevents the proliferation of
cells. On the other hand, docetaxel binds to another target, TUBB1,
instead of BCL2, which stabilizes microtubules and prevents
depolymerization from calcium ions, decreased temperature and
dilution, preferentially at the plus end of the microtubule. For
the mechanisms of the synergistic combination of two drugs, it
remains unclear. Our analysis indicates that gefitinib still uses the
target EGFR and its downstream Ras pathway, while docetaxel
alternatively imposes its effects on the target, BCL2, so that it helps
gefitinib generate the synergistic effects on KRT8. KRT8 is also
known as cytokeratin-8 (CK-8) or keratin-8 (K8) is a keratin protein
that in human is encoded by the KRT8 gene. It is overexpressed in
the patients of breast cancer. So it has been a prognostic biomarker
for the patients of triple negative breast cancers (Williams et al.,
2009) and invasive breast cancer (Takei et al., 1995). Therefore, it
is the synergistic molecules, such as KRT8, to help gefitinib and
docetaxel to generate the synergistic effects.

The proposed method of EPN is suitable for studying the target-
therapy drugs. The model works best if the targets with their
downstream signaling pathways are already known. Otherwise, one
has to ask for assistance from other types of computational methods
to simulate the downstream signaling network for the targets, for
example, drug–target identification or pathway simulation based
on Bayesian network, Boolean network or other gene interaction
network using the microarray or protein array data from the patients
tissues or disease cell lines.
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