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Abstract
In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in
regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe
representative mathematical models that have been developed to better understand kidney
physiology and pathophysiology, including the regulation of glomerular filtration, the regulation
of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic
mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal
oxygen transport. We discuss the extent to which these modeling efforts have expanded our
understanding of renal function in both health and disease.
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1 Introduction
The kidneys are commonly known to function as filters, removing metabolic wastes and
toxins from the blood and excreting them through the urine. But, through various regulatory
mechanisms, the kidneys also help maintain the body’s water balance, electrolyte balance,
nitrogen balance, and acid-base balance. Additionally, the kidneys produce or activate
hormones that are involved in erythrogenesis, calcium metabolism, and the regulation of
blood pressure and blood flow.

Despite decades of experimental efforts, some aspects of the fundamental kidney functions
remain yet to be fully unexplained. For example, the processes by which a concentrated
urine is produced by the mammalian kidney (or, more specifically, the production of a
substantial concentrating effect in the inner medulla) when the animal is deprived of water
remains one of the longest-standing mysteries in traditional physiology. In conjunction with
experimental work, mathematical models have helped to test, confirm, refute, or suggest a
number of hypotheses related to the urine concentrating mechanism (79).

This review will describe modeling efforts that have sought to better understand kidney
physiology and pathophysiology, including the regulation of glomerular filtration, the
regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and
of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and
regulation of renal oxygen transport.
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2 Glomerular Filtration
Most mammalian kidneys have three major sections: the cortex, the outer medulla, and the
inner medulla. The outer and inner medulla are collectively referred to as the medulla. The
outer medulla may be divided into the outer stripe and the inner stripe.

The functional unit of the kidney is the nephron; see Fig. 1. Each rat kidney (which is the
most well-studied mammalian kidney) is populated by about 38,000 nephrons; each human
kidney consists of about a million nephrons. Each nephron consists of an initial filtering
component called the renal corpuscle and a renal tubule specialized for reabsorption and
secretion. The renal corpuscle is composed of a glomerulus and the Bowman’s capsule. A
glomerulus is a tuft of capillaries arising from the afferent arterioles. Some of the water and
solutes in the blood supplied by the afferent arteriole are driven by a pressure gradient into
the space formed by the Bowman’s capsule. The remainder of the blood flows into the
efferent arteriole.

The most notable models of filtration of blood by glomerular capillaries are by Deen and co-
workers (16, 7, 14, 27, 17, 19, 20, 15). Most glomerular filtration models idealize the
tortuous capillaries as a network of identical, parallel, rigid cylinders with homogeneous
properties. Model equations typically consist of a system of coupled ODEs expressing fluid
and solute conservation:

(1)

(2)

(3)

where Q denotes plasma flow rate, S and L denote the surface area and length of the
capillary, Jv and Jk denote the fluid and solute fluxes, Ck denotes the total plasma
concentration (free and bound states) of solute k, the subscript pr denotes protein, and x
denotes the position along the capillary. Boundary conditions are given for Q, Ck, and Cpr at
the afferent end of the capillary. Volume flux is assumed to be driven by hydrostatic and
oncotic pressure differences, and fluxes for small solutes (smaller than proteins) are assumed
to be both advective and diffusive, through the fenestrated capillary walls.

Early models represent the capillary wall as an isoporous membrane formed of parallel,
cylindrical pores of uniform radius (14). The isoporous model has the advantage of being
relatively easy to formulate and to implement, and has successfully predicted clearance data
in a few cases, such as in normal and nephritic rats. However, isoporous model predictions
are incompatible with experimental results in quite a few human diseases, such as diabetic
nephropathy and glomerulonephritis. Deen and collaborators were thus motivated to develop
models that assume that the glomerular barrier can be represented by a distribution of pore
sizes, which better approximates the actual glomerular structure. Those “heteroporous
models” yield much improved clearance data in nephrotic humans when compared to
isoporous models. In later studies, Deen and collaborators sought to relate the permeability
properties of the wall to its unique cellular, and even molecular, characteristics, and they
developed new models of glomerular filtration based on the specific ultrastructure of the
capillary wall (20, 17, 15).
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Potential future extensions to glomerular filtration models include representation of charge
selectivity, which remains somewhat controversial, particularly concerning the selectivity of
the barrier to albumin and the origin of protenuria. A rigorious theoretical approach for
incorporating the effect of proteins on sieving coefficients would also be worthwhile.

3 Two Mechanisms for Renal Autoregulation
Normal renal function requires that the fluid flow through the glomerulus and nephron be
kept within a narrow range. When tubular flow rate falls outside of that range, the ability of
the nephron to maintain salt and water balance may be compromised. Tubular flow rate
depends, in large part, on glomerular filtration rate, which is regulated by several
mechanisms, including the tubuloglomerular feedback (TGF) and the myogenic mechanism.

3.1 Tubuloglomerular feedback
The delivery of water and electrolytes to the distal nephron is regulated by TGF (81). The
TGF response is initiated by changes in tubular fluid chloride concentration near the macula
densa, which is a cluster of specialized cells, located in the renal tubule wall near the end of
the thick ascending limb of the loop of Henle. If the macula densa chloride concentration is
too low, TGF acts to restore it to target by increasing tubular fluid flow rate. This is
accomplished by a dilation of the afferent arteriole, which increases glomerular filtration
pressure and consequently single nephron filtration rate (SNGFR). The opposite happens if
the macula densa chloride concentration is too high. Most experimental TGF studies were
done on the superficial nephrons, which give rise to the short loops of Henle. Because the
juxtamedullary nephrons, which give rise to long loops of Henle, are inaccessible, their TGF
properties are not well characterized.

The thick ascending limb actively pumps out NaCl from tubular fluid into the interstitium.
Because the thick ascending limb walls are water impermeable, the active reabsorption of
NaCl is not accompanied by water loss, and the tubular fluid NaCl concentration
progressively decreases along the thick ascending limb. Thus, the thick ascending limb is an
important segment of the TGF system, and its transport properties allow it to act as a key
operator of the TGF system. Typically, TGF models represent the conservation of chloride
ion, the concentration of which is believed to be the principal tubular fluid signal for the
TGF response (82):

(4)

where C is the tubular fluid chloride concentration, Ce is the time-independent extratubular
(interstitial) chloride concentration which is assumed to be fixed. The second component on
the right-hand side of the equation represents an axial advective chloride transport at the
intratubular flow rate Q. The two terms inside the large pair of parentheses corresponds to
active solute transport characterized by Michaelis-Menten-like kinetics (with maximum Cl−

transport rate Vmax and Michaelis constant KM) and transepithelial Cl− diffusion (with
backleak permeability κ). A schematic diagram of the TGF model in Ref. (77) is shown in
Fig. 2 as an example.

Additional model equations are needed to describe tubular fluid dynamics. Some models
assume that the renal tubule is a rigid tube with plug flow (e.g., Refs. (59, 61, 60, 52)),
whereas other represent pressure-drive fluid flow along compliant tubules (e.g., Refs. (30,
78, 107)); see discussion below. Together with a representation of the TGF response (see
below), the model equations can be solved to yield tubular fluid flow and chloride
concentration as functions of time and space.

Layton Page 3

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Model studies predict that, for some system parameters, the TGF system can exhibit
oscillatory behavior (30) By linearizing the model equations, Layton et al. (59) derived a
characteristic equation that predicts the appearance of TGF-mediated oscillations for
different model parameter values within a two-dimensional (τ−γ) parameter space; see Fig.
3. The first parameter, τ, is simply the signal delay from macula densa to afferent arteriole.
The parameter γ is the product of two terms: (a) the steady-state strength of the macula
densa signal on thick ascending limb fluid flow, and (b) the axial concentration gradient of
salt along the ascending limb at the macula densa. This latter term determines how
variations in ascending limb flow will be perceived at the macula densa as variations in
luminal concentration. These modeling efforts have yielded the conclusion that TGF-
mediated oscillations arise from a bifurcation: the dynamic behaviors of the system depend
on the feedback-loop gain, which is a function of how much output is fed back to the input,
or, more specifically, how much SNGFR is changed given a deviation in macula densa
chloride concentration. If feedback-loop gain is sufficiently large, then the stable state of the
system is a regular oscillation and not a time-independent steady state (30, 52, 59, 76).

The TGF system includes the glomerulus, proximal tubule, and loop of Henle, along with a
feedback signal from macula densa to afferent arteriole. Different TGF models represent
each component with different degrees of detail. For example, the action of the afferent
arteriole is explicitly represented in Refs. (33, 34), but implicitly through the tubular fluid
flow rate or pressure in Refs. (52, 59, 62, 76). A simple model that represents plug flow in
rigid tubes may describe the TGF response by assuming the boundary inflow Q(0, t) as a
function of time-delayed macula densa chloride concentration CMD:

(5)

In the above equation, K1 denotes half of the range of flow variation around its reference
value Qo; K2 quantifies TGF sensitivity; the target concentration Cop is the time-
independent steady-state TAL tubular fluid chloride concentration alongside the macula
densa when Q(0, t) = Qo (i.e., when Cop = CMD); and CMD(t − τ) is the chloride
concentration alongside the macula densa at the time t − τ, where τ represents the TGF
delay. The TGF response curve assumed in Ref. (59) is shown in Fig. 4 as an example.

In many TGF models (e.g., Refs. (30, 43, 59, 62, 71)) the thick ascending limb is
represented in detail, because model investigations have indicated that the transduction
process in the thick ascending limb exhibits a number of features, such as the generation of
harmonics that transform sinusoidal waves into waves that are periodic but nonsinusoidal,
that may help explain phenomena found in regular and irregular oscillations that are
mediated by TGF (52, 60, 61). Thus, these models solved the hyperbolic partial differential
equation that explicitly represents the advective transport of solute and its coupling with
transepithelial active and diffusive transport (e.g., Eq. 4). In contrast, other components of
the TGF loop were represented in those TGF models by means of simple, phenomenological
representations: the actions of the proximal tubule and descending limb of a short-looped
nephron were modeled by a linear function that represents glomerular-tubular balance in
proximal tubule and water absorption from the descending limb (59). Other TGF models
include more detailed representation of the proximal tubular and descending limb (30, 77).
Other models employ simple, non-spatially distributed formulations to represent the TAL
and its delays—e.g., a linear system of three first-order ordinary differential equations in
Ref. (2).

TGF systems in neighboring nephrons are known to be coupled, via electrotonic conduction
along the pre-glomerular vasculature (29, 35, 106). A schematic diagram of two short-
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looped nephrons coupled through their afferent arterioles is shown in Fig. 5. Thus, for two
nephrons having afferent arterioles that are nearby on the cortical radial artery, the
contraction of one nephron’s afferent arteriole tends to result in the contraction of the other
nephron’s afferent arteriole. To represent a system of n coupled nephrons, the flow equation
(5) can be modified to include the influences of neighboring nephrons:

(6)

where φij denotes the coupling strength between nephrons i and j.

Modeling investigations of coupled nephrons (75, 53, 52) have shown that differing gain
parameters and time delays between coupled nephrons, which merely reflect differences in
nephron dimensions and TGF gains, can introduce doublet and triplet spectral peaks into the
power spectrum, and generate irregular flow oscillations and complex power spectra similar
to those observed in spontaneously hypertensive rats. Other studies suggest that
internephron coupling may induce synchronization, quasiperiodicity, and perhaps chaos in a
nephron tree (42, 68).

3.2 Myogenic mechanism
The afferent arteriole exhibits an intrinsic property that induces a compensatory
vasoconstriction of the afferent arteriole when the vessel is presented with an increase in
transmural pressure. Measurements by Loutzenhiser et al. of afferent arteriolar diameter at
different perfused pressures are exhibited in Fig. 6. This phenomenon, in which vascular
smooth muscle responds to increased stretch with active force development, is termed the
myogenic response. This response enables arterial blood vessels to constrict as intraluminal
pressure increases under physiological conditions. In the arteriolar system, myogenic
responses is thought to be important for local autoregulation of blood flow and regulation of
capillary pressure.

Based on the kinetic attributes of the afferent arteriole myogenic response and the steady-
state pressure and afferent arteriole diameters, Loutzenhiser et al. (64) developed a
mathematical model of renal autoregulation. That model is a phenomenological one that
predicts vascular responses in terms of arteriolar diameter only, and those appear to be
consistent with the dynamic features of renal autoregulation observed in the intact kidney. In
a follow-up study, Williamson et al. (105) developed a more extensive systems model to
examine the impact of systolic-pressure sensitivity on renal autoregulation. Their results
show that the asymmetry in time delays in the myogenic response is more important than
differences in the time constants of vasoconstriction versus vasodilation in accounting for
the sensitivity to systolic pressure in the hydronephrotic kidney.

Secomb and co-workers developed a model of blood flow regulation (4, 1). Their model’s
representations of the active contractile force and resulting muscle mechanics are similar to
the model by Lush and Fray (65), but the model by Secomb and co-workers represents also
metabolic vasoactive and shear stress-dependent responses. Their model was formulated for
both large and small arterioles, each with a different set of parameters.

Layton and collaborators (11, 83) developed a mathematical model of the myogenic
response of the afferent arteriole, based on an arteriole model by Gonzalez-Fernandez and
Ermentrout (26). The model incorporates ionic transport, cell membrane potential,
contraction of the arteriolar smooth muscle cell, and the mechanics of a thick-walled
cylinder. The model’s representation of the myogenic response is based on the hypothesis
that changes in hydrostatic pressure induce changes in the activity of non-selective cation
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channels. The resulting changes in membrane potential then affect calcium influx through
changes in the activity of the voltage-gated calcium channels, so that vessel diameter
decreases with increasing pressure values. Model results suggest that the interaction of Ca2+

and K+ fluxes mediated by voltage-gated and voltage-calcium-gated channels, respectively,
gives rise to periodicity in the transport of the two ions. This results in a time-periodic
cytoplasmic calcium concentration, myosin light chain phosphorylation, and crossbridges
formation with the attending muscle stress. A flow chart the illustrates the step by which
periodic oscillations in cytosolic calcium concentration gives rise to spontaneous
vasomotion of the model afferent arteriole is shown in Fig. 7, top-left panel; oscillations in
key model variables are shown in Fig. 7, bottom panels. Further, the model predicts
myogenic responses that agree with experimental observations (see Fig. 7, top-right panel),
most notably those which demonstrate that the renal AA constricts in response to increases
in both steady and systolic blood pressures (11). Model simulation of vasoconstriction
initiated from local stimulation also agrees well with findings in the experimental literature,
notably those of Steinhausen et al. (84), which indicated that conduction of vasoconstrictive
response decays more rapidly in the upstream flow direction than downstream. Marsh et al.
(67) also adopted the smooth muscle cell model of Gonzalez-Fernandez and Ermentrout (26)
to study the interactions between afferent arteriole myogenic response and TGF.

4 Urine Concentration
When deprived of water, the kidney of a mammal can conserve water by increasing the
solute concentration (or, osmolality) in the urine to a level well above that of the blood. This
process of urine concentration occurs in the renal medulla, and has the effect of stabilizing
the osmolality of blood plasma. Such urine, which is said to be hypertonic, is concentrated
in the final stages of urine production: water is absorbed, in excess of solute, from the
collecting ducts and into the vasculature of the medulla, thus increasing the osmolality of the
collecting duct fluid—fluid that is called urine after it emerges from the collecting ducts.

The highest human urine osmolality was measured to be 1,430 mosm/(kg H2O), which is
~4.8 times above blood plasma (300 mosm/(kg H2O)). Note that that is the maximum value
ever measured, so it is fair to say that most of us don’t do that well. That human maximum
urine osmolality value is also the reason that one should refrain from drinking sea water to
quench thirst, given that sea water osmolality ranges from 2,000–2,400 mosm/kg H2O.
Some mammals can do much better. A rat kidney can produce a urine (in units of mosm/(kg
H2O)) as concentrated as 2,849; mouse, 2,950; chinchilla, 7,599 (3). The kidney of an
Australian hopping mouse, which lives in the desert, can produce an amazingly concentrated
urine that has an osmolality >30 times that of blood plasma at 9,374.

In the outer medulla of the rat kidney, water absorption from collecting ducts is driven by
active transepithelial transport of NaCl from the water-impermeable thick ascending limbs
into the surrounding interstitium, where the NaCl promotes, via osmosis, water absorption
from collecting ducts, descending limbs, and some blood vessels. Although this
concentrating mechanism is well-established in the outer medulla—by both physiological
experiments and theoretical investigation—the nature of the concentrating mechanism in the
inner medulla, where the concentrating effect is the largest in some mammals, remains to be
elucidated. For details on current understanding of the mammalian urine concentrating
mechanism, see reviews (51, 80, 13).

Steady-state urine concentrating mechanism models typically consist of ODEs that describe
water and solute conservation:
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(7)

(8)

where Q denotes tubular water flow rate, Jv denotes water flux through the tubular walls,
taken positive into the tubules, Ck denotes the concentration of the k-th solute, Jk denotes its
transmural flux, and x denotes the medullary depth.

Urine concentrating mechanism models typically assume single-barrier transport. Water flux
into a renal tubule can be described by

(9)

where Lp is the water permeability of the tubule, ΔP denotes the hydrostatic pressure
gradient, φk denotes the osmotic coefficient, and  denotes the interstitial concentration
of the k-th solute.

A typical model describes two pathways by which a solute may be transported across renal
tubular walls, passive and active:

(10)

The first term on the right represents active solute transport, which is characterized by
Michaelis-Menten kinetics, with maximum transport rate Vmax and Michaelis constant KM.
The second term represents transmural diffusion, with solute permeability Pk.

Hoppensteadt and Peskin (31) presented a simple model of the loop of Henle that
exemplified the countercurrent multiplication that may take place between the descending
and ascending limbs of the loop. Their model assumes that NaCl is actively pumped out of
the ascending limb, and water is reabsorbed from the water-permeable descending limb. The
limbs interact through an external compartment, which represents the peritubular capillaries.
The model assumes that the reabsorbate (i.e., NaCl from the ascending limb and water from
the descending limb) is picked up locally, i.e., axial flow is not allowed in this compartment.
The collecting duct is not represented in this model, although an extension to include a
collecting duct is straightforward. Owing to the simplicity of this model, analytical solution
can be derived to relate the concentrating effect (loop-bend concentration) to active NaCl
transport rate or loop length.

Because the Hoppensteadt and Peskin model (31) assumes that there is no axial flow outside
of the loop, water and solute absorbed from tubules into the interstitium enter the peritubular
capillaries directly, at each medullary level, and afterward, that absorbate was assumed to
have no further interaction with the medulla. Consequently, relatively concentrated
ascending fluid does not equilibrate with progressively less concentrated surrounding
interstitium. And as a result, that model may be unrealistically dissipative of the axial
osmolality gradient. An alternative model formulation is the central core assumption,
developed by Stephenson (85). In the central core formulation, blood vessels, the interstitial
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cells, and the interstitial spaces are merged into a single tubular compartment, in which the
loops of Henle and collecting ducts interact. Axial flow is allowed within the central core.
The central core formulation assumes maximum countercurrent exchange by the
vasculature, and is thought to be least dissipative of the axial osmolality gradient. A
schematic diagram of the central core model is shown in Fig. 8.

The central core formulation was used in urine concentrating mechanism models of the rat
kidney (e.g., (54, 55, 58, 86)) and of the avian (quail) kidney (57, 66). While birds and
mammals can regulate blood plasma osmolality by producing a concentrated urine when
deprived of water, the avian kidney differs from the mammalian one in that all the ascending
limbs of the avian loop of Henle have active transepithelial transport of NaCl, whereas only
the thick ascending limbs in the outer medulla of the mammalian kidney have significant
active NaCl transport. Thus, the avian urine concentrating mechanism is relatively well
understood, and the mathematical models (57, 66) predicted tubular fluid concentrations that
are consistent with experimental measurements in Gambel’s quail. In contrast, the thin
ascending limbs found in the inner medulla have no significant active transepithelial
transport of NaCl or of any other solute (32). Thus, active solute transport coupled with
countercurrent flow does not explain the concentrating process in this region, where the
steepest osmotic gradient is generated.

The most influential theory for the generation of the inner medullary osmolality gradient has
been the “passive mechanism” hypothesis, proposed independently in 1972 by Kokko and
Rector (37) and by Stephenson (85). The passive mechanism depends on the assumption that
the interstitium has a much higher urea concentration than NaCl concentration, and that fluid
in the ascending limbs has a much higher NaCl concentration than urea concentration. If the
ascending thin limb has a sufficiently high permeability to NaCl, and a sufficiently low
permeability to urea, then much NaCl will diffuse (passively) from the ascending thin limb
lumen into the interstitium, while simultaneously little urea will diffuse from the interstitium
into the thin limb lumen. If the transepithelial concentration differences are sustained, the
interstitial fluid will be concentrated while the luminal fluid is being diluted. The passive
mechanism hypothesis assumes that the concentrations are sustained by continuous diffusion
of urea from the collecting duct lumen and by continuous delivery of tubular fluid having a
high NaCl concentration to the ascending thin limb; this delivery depends on the descending
thin limb having sufficiently low NaCl and urea permeabilities that transepithelial
concentration gradients are not dissipated along the course of the descending thin limbs.
Thus, the passive mechanism is critically dependent on specific loop-of-Henle
permeabilities to NaCl and urea.

However, mathematical models using measured values of urea permeability have generally
been unable to predict a significant axial osmolality gradient (80). Indeed, unless idealized
tubular transport properties are used, central core models of the rat kidney fail to produce
substantial concentrating effect (58, 102). The inconsistency between measured urine
osmolalities and the predictions of mathematical models has motivated the formulation of a
number of alternative hypotheses, extensively reviewed in Ref. (56).

One attempt to salvage the passive hypothesis is by means of representation of the
preferential interactions that arise from three-dimensional medullary structure (87, 103).
Both the Hoppensteadt and Peskin model (31) and the central core model (85) assume that
solute concentrations are uniform at each medullary level, i.e., tubules (and blood vessels, if
represented) were assumed to interact with each other through a common surrounding
medium in which solute concentrations varied only along the corticomedullary axis.
However, this assumption appears to be inconsistent with anatomical studies. A number of
investigators, notably Kriz and colleagues, have reported that the medullary organization of
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tubules and vessels is highly structured in a number of mammals (40) including rats and
mice (39, 41, 108). Descending and ascending vasa recta form tightly-packed vascular
bundles that appear to dominate the histotopography of the outer medulla, especially in the
inner stripe. Throughout the outer medulla, collecting ducts are found distant from vascular
bundles, whereas the loops of Henle are positioned nearer the bundles. Recent anatomic
studies of three-dimensional architecture of rat inner medulla and expression of membrane
proteins associated with fluid and solute transport in nephrons and vasculature have revealed
transport and structural properties that likely impact the inner medullary urine concentrating
mechanism in the rat kidney. These studies have shown that the inner medullary-portion of
the descending limbs have at least two or three functionally distinct subsegments, and that
clusters of collecting ducts form the organizing motif through the first 3–3.5 mm of the inner
medulla (72, 73, 74). Schematic diagrams of tubular organization in the rat renal medulla are
shown in Fig. 9 for the inner stripe and upper inner medulla. The structural organization is
believed to result in preferential interactions among tubules and vasa recta, interactions that
may contribute to more efficient countercurrent exchange or multiplication, to urea cycling
and inner medullary urea accumulation, and to sequestration of urea or NaCl in particular
tubular or vascular segments (63, 87).

Several investigators have sought to represent aspects of three-dimensional medullary
structure in mathematical models of the urine concentrating mechanism (e.g., Ref. (5, 36))
Notably, Wexler, Kalaba, and Marsh (103, 104) developed a model (the “WKM” model)
that represented a very substantial degree of structural organization by means of weighted
connections between tubules and vessels. Although the WKM model was formulated
primarily to investigate the concentrating mechanism of the inner medulla, outer medullary
function played a large role in both the original (103) and subsequent WKM studies (87, 89).

More recently, Layton and co-workers developed high-detailed mathematical models for the
rat kidney’s concentrating mechanism. To represent the radial distribution of tubules and
vasa recta, with respect to the vascular bundle, the model separate the medulla into
“regions” (see Fig. 10), with radial structure incorporated by assigning appropriate tubules
and vasa recta to each region. The region-based approached was used to first develop a
model of the rat outer medulla (48, 49, 50), and then used in a series of models of the rat
renal medulla (44, 45, 46). These models predicted moderately concentrated urine at flow
rates consistent with experimental measurements, but were unable to predict highly
concentrated urine. Further progress may be contingent upon new experimental data,
especially on the transport properties of the tubules, some of which remain poorly
characterized.

5 Epithelial Transport
As the tubular fluid flows along the nephron, its composition is constantly modified as water
and solutes are secreted or reabsorbed, based on the animal’s daily intake. The secretion or
reabsorption of water and solutes is mediated by epithelial transport processes.
Transepithelial transport can proceed via transcellular and/or paracellular pathways.
Transport pathways across the apical and basolateral cell membranes of the rat proximal
convoluted tubule cell, shown in Fig. 11, include Na+-glucose cotransporter, Na+-H+

antiporter, H+-pump, K+-Cl− cotranspoter, ionic channels, and many more. Given the many
different types of pathways that are present in a given cell, mathematical models of
epithelial transport are useful for understanding how Na+, K+, Cl−, and acid-base fluxes are
coupled, and how overll cell function is regulated.

Modeling of renal epithelial transport has been pioneered by Weinstein, whose early work
was dedicated to the proximal tubule (90, 91, 93, 38), focusing on the forces and route of
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water transport and subsequently ion transport through the paracellular pathway. An early
model (91) of the proximal tubule predicted that solute-solvent coupling represents a major
force for water reabsorption, which implies that the observed epithelial water permeability
obtained in osmotic experiment is significantly less than the water permeability of the tight
junction and cell in parallel. Another interesting aspect of proximal tubular transport
considered is the nature of the mechanisms underlying perfusion-absorption balance, which
was initially at odds with model predictions (92). To address that discrepancy, Guo et al.
(28) hypothesized that proximal tubule brush-border microvilli may serve as
mechanosensors that activate luminal transporters or insert membrane transporters in
response to changes in tubular fluid flow rate. Du et al. (18) later provided experimental
confirmation of the hypothesis that, indeed, Na+ and HCO3 reabsorption varies
proportionally with the torque exerted on the microvilli.

Mathematical models have also been developed for other segments of the nephroh, but
owing to space constraint those models will only be mentioned briefly. Chang and Fujita
developed the first model of the distal tubule (6). Almost a decade later, Weinstein
constructed a more comprehensive model (98), and used that model to understand the
distribution of K+ secretion, which was predicted to occur primarily along the connecting
tubule. Models of the collecting duct (94, 95, 96, 97) were used to study urinary
acidification and other aspects of collecting duct transport, whereas models of the thick
ascending limb (70, 69, 99, 100, 101), were used to study transporter function and fluid
dilution.

6 Regulation of Oxygen
While oxygen is relatively abundant in the cortex of the rat kidney (~40–50 mmHg), it
becomes quite low in the medulla, from ~20 mmHg in the outer medulla to ~10 mmHg in
the inner medulla. That low medullary oxygen availability is in large part a consequence of
the high metabolic requirements of medullary thick ascending limbs, which consumes
oxygen and energy to actively pump NaCl against a concentration gradient, and the low
medullary blood flow (IM blood flow is < 1% of total renal blood flow (12)).

Evans et al. (23) recently argued that arterial-to-venous (AV) oxygen shunting could play an
important role in the dynamic regulation of kidney oxygenation as well as the development
of renal hypoxia in kidney disease. They proposed that blood flow-dependent changes in AV
oxygen shunting may explain why renal oxygen tension is stable when renal blood flow is
varied within physiological ranges (±30% relative to basal levels) and oxygen consumption
does not vary significantly. They developed models of oxygen transport in the renal cortex
(24, 25), which predict that cortical AV oxygen shunting limits the change in oxygen
delivery to cortical tissue and stabilizes tissue oxygen tension when arterial oxygen tension
changes, but renders the cortex and perhaps also the medulla susceptible to hypoxia when
oxygen delivery falls or consumption increases.

Detailed models of oxygen transport in the outer medulla by Edwards and co-workers (10, 9,
8, 109) have confirmed the suggestion that the countercurrent arrangement of decending and
ascending vasa recta in the medulla results in oxygen shunting from descending vasa recta to
ascending vasa recta (109), similar to AV oxygen shunting in the cortex, and significantly
limits oxygen delivery to the deep medulla. Also, the segregation of descending vasa recta,
the main supply of oxygen, at the center and immediate periphery of the vascular bundles
limits oxygen reabsorption from descending vasa recta that reach into the inner medulla,
thereby preserving oxygen delivery to the inner medulla but severely restricting oxygen
distribution to the interbundle region where thick ascending limbs are located. The model
predicts that, as a result, the concentrating capacity of the outer medulla is significantly
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reduced. The validity of the predicted impact on the concentrating effect depends on the
model assumption that medullary thick ascending limbs active Na+ transport is supported
solely by aerobic metabolism. That assumption, which is based on the observation that the
amount of ATP produced by glycolysis in thick ascending limbs is a small proportion of that
produced by aerobic metabolism (88), but should perhaps be more thoroughly verified. The
oxygen transport models were subsequently extended to represent nitric oxide and its
scavenger superoxide (22, 21), both of which modulate renal medullary vascular and tubular
function, albeit in opposite ways.

7 Conclusions
Mathematical models of renal transport and dynamics have shed light into various aspects of
kidney function and dysfunction. Together with advances in experimental techniques,
modeling efforts have the potential of bringing further progress in the understanding of renal
function. Indeed, further progress in many modeling areas now depends on new
experimental advances, such as in vivo and in vitro measurements. Thus, it is imperative that
modelers ensure that their work is accessible to physiologists and is widely disseminated
among the renal community.
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Figure 1.
An illustration of three nephrons, together with their glomeruli. Adapted from Ref. (41).
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Figure 2.
Schematic representation model TGF system. Hydrodynamic pressure Po(t) = P (0, t) drives
flow into loop entrance (x = 0) at time t. Oscillations in pressure result in oscillations in loop
pressure P (x, t), flow rate Q(x, t), radius R(x, t), and tubular fluid chloride concentration
C(x, t). Reprinted from Ref. (77).
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Figure 3.
Left: Bifurcation diagrams indicating observed behavior of TGF model solutions. Four
qualitatively different model solutions are possible: (1) a regime having one stable, time-
independent steady-state solution (labelled “Steady State”); (2) a regime having one stable
oscillatory solution only, with fundamental frequency f (“1−f LCO”); (3) a regime having
one stable oscillatory solution only, with frequency ~2f (“2−f LCO”) and (4) a regime
having two possible stable oscillatory solutions, of frequencies ~f and ~2f (“1,2−f LCO”).
Reprinted from Ref. (52). Right: Oscillations in SNGFR and TAL tubular fluid Cl−

concentration and at the macula densa obtained using τ and γ values denoted by the point
B3.
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Figure 4.
Typical TGF response, with operating point (Q, CMD) = (30, 32)
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Figure 5.
A schematic drawing of two short-looped nephrons and their afferent arterioles (AA). The
arterioles branch from a small connecting artery (unlabeled), which arises from a cortical
radial artery (CRA). The nephron consists of the glomerulus (G) and a tubule having several
segments, including: the proximal tubule (PT), the descending limb (DL), the thick
ascending limb (TAL), and the distal convoluted tubule (DCT). Each nephron has its
glomerulus in the renal cortex, and each short-looped rat nephron has a loop that that
extends into the outer medulla of the kidney. The axis on the TAL of the lower nephron
corresponds to the spatial axis used in the model (vide infra, Section 2.1); in this figure
distance is indicated in terms of fractional (nondimensional) TAL length. Tubular fluid from
the DL flows into the TAL lumen at x = 0; the chloride concentration of TAL luminal fluid
is sensed by the macula densa (MD) at x = 1. The MD, a localized plaque of specialized
cells, forms a portion of the TAL wall that is separated from the AA by a few layers of
extraglomerular mesangial cells; in this figure, the MD is part of the short TAL segment that
passes behind the AA. Fluid from the DCT enters the collecting duct system (not shown),
from which urine ultimately emerges. Structures labeled on one nephron apply to both
nephrons. (Figure and legend adapted from Ref. (75).)
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Figure 6.
A: Steady-state diameter at renal arteriolar pressure of 60 to 180 mmHg. B: Percent change
from basal (60 mmHg) diameter, fitted using a simple quadratic equation. Reprinted from
Ref. (64).
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Figure 7.
Top-left: A flow chart that illustrates the steps by which periodic oscillations in cytosolic
calcium concentration give rise to spontaneous vasomotion of the model afferent arteriole in
Refs. (11, 83). Top-right: Average vessel inner diameter as a function of steady-state
transmural pressure, with and without a myogenic response. A: Oscillations in Ca2+ and K+

currents (denoted ICa and IK, respectively) and membrane potential v. D: Oscillations in
intracellular arteriolar inner diameter. Reprinted from Ref. (11).
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Figure 8.
Schematic diagram of the central core model. Panel A, tubules along spatial axis. DL,
descending limb; AL, ascending limb; CD, collecting duct; CC, central core. Arrows,
steady-state flow directions. Heavy lines, water-impermeable boundaries. Panel B, cross-
section showing connectivity between CC and other tubules. Modified from Ref. (47).
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Figure 9.
Schematic diagrams of tubular organization in the rat renal medulla. A: cross section
through the inner stripe of outer medulla, where tubules appear to be organized around a
vascular bundle. B: cross section through the upper inner medulla, where tubules and vessels
are organized around a collecting duct cluster. Inset: schematic configuration of a collecting
duct, ascending vasa recta (AVR), an ascending thin limb, and a nodal space. Reprinted
from Ref. (51).
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Figure 10.
Schematic diagram of a cross section through the outer stripe, inner stripe, upper inner
medulla (IM), mid-IM, and deep IM, showing regions and relative positions of tubules and
vessels. Decimal numbers in panel A indicate relative interaction weightings with regions.
R1, R2, R3, and R4, regions in the outer medulla; R5, R6, and R7, regions in the IM. SDL,
descending limbs of short loops of Henle. SAL, ascending limbs of long loops of Henle.
LDL, descending limb of long loop of Henle. LAL, ascending limb of long loop of Henle.
Subscripts ‘S,’ ‘M,’ and ‘L’ associated with a LDL or LAL denote limbs that turn with the
first mm of the IM (S), within the mid-IM (M), or reach into the deep IM (L). CD, collecting
duct. SDV, short descending vasa recta. SAV3 and SAV4, two populations of short
ascending vasa recta. LDV, long descending vas rectum. LAV1, LAV2, …, LAV7,
populations of long ascending vasa recta. Reprinted from Ref. (45).
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Figure 11.
Transport pathways across apical and basolateral membranes of the proximal convoluted
cell of the rat. Reprinted from Ref. (93).
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