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Abstract

Dysregulation of iron metabolism in cancer is well documented and it has been suggested

that there is interdependence between excess iron and increased cancer incidence and pro-

gression. In an effort to better understand the linkages between iron metabolism and breast

cancer, a predictive mathematical model of an expanded iron homeostasis pathway was

constructed that includes species involved in iron utilization, oxidative stress response and

oncogenic pathways. The model leads to three predictions. The first is that overexpression

of iron regulatory protein 2 (IRP2) recapitulates many aspects of the alterations in free iron

and iron-related proteins in cancer cells without affecting the oxidative stress response or

the oncogenic pathways included in the model. This prediction was validated by experimen-

tation. The second prediction is that iron-related proteins are dramatically affected by mito-

chondrial ferritin overexpression. This prediction was validated by results in the pertinent

literature not used for model construction. The third prediction is that oncogenic Ras path-

ways contribute to altered iron homeostasis in cancer cells. This prediction was validated by

a combination of simulation experiments of Ras overexpression and catalase knockout in

conjunction with the literature. The model successfully captures key aspects of iron metabo-

lism in breast cancer cells and provides a framework upon which more detailed models can

be built.
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Author Summary

Iron is required for cellular metabolism and growth, but can be toxic due to its ability to

cause high oxidative stress and consequently DNA damage. To prevent damage, all organ-

isms that require iron have developed mechanisms to tightly control iron levels. Dysregu-

lation of iron metabolism is detrimental and can contribute to a wide range of diseases,

including cancer. This paper presents a predictive mathematical model of iron regulation

linked to iron utilization, oxidative stress, and the oncogenic response specific to normal

breast epithelial cells. The model uses a discrete modeling framework to generate novel

biological hypotheses for an investigation of how normal breast cells become malignant

cells, capturing a breast cancer phenotype of iron homeostasis through overexpression

and knockout simulations. The new biology discovered is (1) IRP2 overexpression alters

the iron homeostasis pathway in breast cells, without affecting the oxidative stress

response or oncogenic pathways, (2) an activated oncogenic pathway disrupts iron regula-

tion in breast cancer cells.

Introduction

Every aerobic organism requires iron for energy production, DNA synthesis, oxygen transport,

and cellular respiration. However, this essential element has the potential to exist in various

oxidation states and can enable the formation of reactive oxygen species. To avoid iron toxic-

ity, all organisms requiring iron have developed a complex machinery to tightly control iron at

both the systemic and the cellular levels. Our goal here is to understand how in cancer this

machinery is altered. Dysregulation of iron metabolism in cancer is well documented, and it

has been suggested that there is interdependence between excess iron and increased cancer

incidence and progression [1]. Recently, it was observed that reduced levels of ferroportin, a

cellular iron exporter, were associated with poor clinical outcome [2]. In the same study, a

direct relationship between intracellular iron and tumor growth was demonstrated, and in

subsequent work it was shown that high expression levels of the major iron importer, transfer-

rin receptor 1, and reduced levels of the gene HFE, were also associated with poor prognosis in

breast cancer patients [3].

In a previous study, we constructed a dynamic mathematical model of the core iron homeo-

stasis control system in normal breast epithelial cells [4]. This choice of cell type was motivated

by our interest in the role of intracellular iron homeostasis in the pathogenesis of breast cancer.

For the core control system we have focused on the proteins responsible for iron import,

export, and sequestration, together with the iron regulatory proteins and the labile iron pool.

We validated the model using experimental data from overexpression of ferroportin. Our ana-

lytical arguments and extensive simulations demonstrated that the model reaches a unique sta-

ble steady state for any choice of parameters, agreeing with experimental evidence that cellular

iron is tightly controlled [5].

We hypothesized there that major signaling pathways activated in cancer disrupt this iron

regulatory network. To test this hypothesis, it was necessary to first connect the core iron net-

work to known molecules whose expression levels are altered in cancer. Here, we build and

analyze an intracellular mathematical model specific to normal breast epithelial cells that

dynamically links iron metabolism to species from iron utilization, the oxidative stress

response, and oncogenic pathways. The model has allowed us to highlight dynamical features

of the system and identify key players in the system that lead to different phenotypes without

having to perform lengthy laboratory experiments. We have validated the model using
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experimental data and literature, and confirmed that the iron homeostasis pathway can be

modified by activating an oncogenic pathway.

Several models related to iron homeostasis have been developed and analyzed. Some are

aimed at systemic iron homeostasis, consisting of a number of compartments that capture the

amount of iron at a particular location [6–10]. Other models are cell type specific (kidney) [11]

or organ specific (liver) [12]. One of the first intracellular models of iron metabolism was pro-

posed by Omholt et al. [13], but this model did not explicitly include proteins responsible for

iron export and sequestration. Our earlier model [4] included this additional feedback struc-

ture and was further considered by Mobilia et al. [14], where the authors concentrated on the

same five species but a different system of differential equations. While all of these models are

valuable and address specific questions, none of of them, including our earlier model, connect

the iron network to an oncogenic pathway. The approach of identifying and uniting different

biochemical pathways was previously explored by Funke et al. [15], where the authors

attempted to explain Parkinson’s disease by considering gene products involved in disease,

and also included iron. We took a similar approach by producing one coherent model inte-

grating several pathways connected to the iron network. Our new model has a potential for

further inclusion of other pathways to produce a more comprehensive picture of dysregulation

of iron metabolism in cancer.

The Iron Core Control System and Expanded Network

This section provides biological background about iron metabolism and its connection to

some oncogenic pathways.

Iron metabolism. Free ferrous iron contributes to the formation of hydroxyl radicals

through the Fenton reaction, so intracellular iron levels are meticulously maintained in order

to limit toxicity. Iron levels are controlled by iron-regulatory proteins (IRPs) that coordinate

intracellular iron uptake, utilization, storage, and excretion. What follows is a brief description

of the core iron control system. For an overview of intracellular and systemic iron homeostasis

see [16].

Ferric iron, Fe3+, circulates in plasma bound to transferrin (Tf), a glycoprotein with two

binding sites for ferric iron. Tf retains iron in a soluble form, which limits the formation of

toxic radicals, and delivers iron to cells, with uptake mediated predominantly by transferrin

receptor 1 (TfR1). Iron-loaded Tf (Holo-Tf) is taken up by receptor-mediated endocytosis into

acidified endosomes where ferric iron is reduced to ferrous iron, Fe2+, with the assistance of

STEAP proteins. From the endosomes, Fe2+ is transported into the cytoplasm via divalent

metal transporter 1 (DMT1). We note that, in some cells, DMT1 is also located on the cell sur-

face and participates in the transport of extracellular iron. However, the role of DMT1 in

peripheral tissues is less studied. Thus, in our model we only consider TfR1 as the major iron

importer. From the endosomes, iron enters the labile iron pool (LIP), a cytosolic pool of

weakly bound iron. Ferroportin (Fpn), located on the plasma membrane, is believed to be the

only ferrous iron exporter. Excess ferrous iron that is not exported or utilized is oxidized by

the cytosolic protein ferritin (Ft), and is sequestered into its ferrihydrite mineral core.

The iron regulatory proteins IRP1 and IRP2 regulate iron homeostasis post-transcription-

ally by binding to iron responsive elements (IREs), cis-regulatory hairpin structures that are

present in the untranslated regions (UTRs) of mRNAs involved in iron metabolism. The

mRNAs encoding ferritin and ferroportin contain a single IRE in their 5’UTRs. The mRNA

encoding TfR1 contains multiple IREs within the 3’UTR. In iron-deplete cells, IRPs are active

and have high affinity for IREs. Binding to the 3’UTR IREs results in the stabilization of

mRNA of TfR1, and binding of IRPs to the single 5’UTR IRE inhibits the translation of
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ferroportin and ferritin. In iron-replete conditions, IRPs have reduced affinity for IREs and

their regulatory effect is attenuated, which results in the degradation of TfR1 mRNA and trans-

lation of ferroportin and ferritin mRNAs. In the case of IRP1, the reduction in affinity for IREs

results from a completed iron sulfur cluster that impedes IRE binding; in the case of IRP2, loss

of binding to the IRE is due to ubiquitination and degradation of IRP2.

The peptide hormone hepcidin (Hep) regulates systemic iron homeostasis by inhibiting

iron release from duodenal enterocytes, macrophages, and hepatocytes. Hepcidin binds to the

iron exporter ferroportin and triggers its internalization and degradation in lysosomes. Hep is

transcriptionally induced by bone morphogenetic proteins (BMPs) and the inflammatory

cytokine interleukin-6 (IL-6). The induction of hepcidin by IL-6 is thought to be a major con-

tributor to the hypoferremia that frequently accompanies chronic infections, acute inflamma-

tion and cancer [17]. Recently, it has been established that breast epithelial cells also express

hepcidin and that it plays an important role in peripheral tissue by regulating ferroportin [2].

Iron utilization. The mitochondria are the major site of iron utilization. Cytosolic iron is

imported into the mitochondria by the SLC transporter mitoferrin (Mfrn), to be incorporated

into protoporphyrin IX (PPIX) during heme synthesis. There are two homologs, mitoferrin-1

(SLC25A37), which is expressed at high levels in erythroblasts and at low levels in other tissue,

and mitoferrin-2 (SLC25A28), which is expressed ubiquitously [18]. Once iron is transported

into the mitochondria it is then used in heme synthesis, iron sulfur cluster (ISC) synthesis, or

enters mitochondrial ferritin (Ftmt). Just like cytosolic ferritin, Ftmt is an iron storage protein.

It is encoded by an intronless gene located on chromosome 5q23.1, but lacks a consensus IRE

sequence [19, 20]. The primary function of Ftmt is not fully understood, but evidence indicates

that its role is to protect mitochondria from iron-dependent oxidative damage [21]. We will

denote the mitochondrial labile iron pool by LIPmt.

It is well established that intracellular heme regulates its own production and degradation

through delta aminolevulinate synthase (ALAS) and heme oxygenase (HO), respectively.

There are three distinct isozymes of HO: HO-1 (inducible form), and HO-2 and HO-3 (consti-

tutive forms) [22, 23]. We include the inducible isoform HO-1 in our mathematical model

because the expression of HO-1 is altered by oxidative stress, and because HO-1 contributes to

tumorigenicity in many cancers [24–28]. HO-1 maintains heme homeostasis by initiating the

oxidative cleavage of heme to ferrous iron (Fe2+), carbon monoxide (CO), and biliverdin [29].

Moreover, HO-1 inhibits the expression of IL-6, thus also taking on an anti-inflammatory

function [30]. ALA synthase has two forms: ALAS1, which is ubiquitously expressed and is

downregulated by heme, and ALAS2, which is erythroid-specific, and is regulated by the IRP

system [31–33]. Since our model is tissue specific, our network only includes ALAS1. Heme

synthesis involves several steps that occur in two compartments: (i) mitochondria with the ini-

tial and final steps, and (ii) cytosol with intermediate steps. The ALA synthase reaction is the

committed step of heme synthesis. Heme negatively regulates ALAS by multiple feedback

mechanisms, including effects on transcription, mRNA stability, and mitochondrial transloca-

tion of ALAS [34]. The mitochondria export the product, δ-ALA, to the cytoplasm, where the

next four reactions occur. The final steps of heme synthesis occur in the mitochondria, where

Fe2+ is incorporated into PPIX via ferrochelatase, which completes heme synthesis [33, 35, 36].

We do not include all the intermediate players involved in heme biosynthesis since all reac-

tions occur in sequence, and, from a mathematical standpoint, this will not affect the dynamic

behavior of the model. On the other hand, in iron-deplete conditions, heme synthesis will not

be completed and thus we will assume a feedback regulation from LIPmt to ALAS1 to allow

for this possibility (represented in our model by a dotted arrow in Fig 1). In addition, although

our understanding of the precise regulation of Ftmt and Mfrn is incomplete, experimental evi-

dence suggests that a feedback mechanism must exist, which responds to the levels of LIPmt,
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Fig 1. Intracellular iron network. Iron homeostasis pathway depicted in green (LIP, TfR1, Fpn, Ft, IRP1, IRP2, Hep), iron utilization depicted in orange

(Mfrn, LIPmt, Ftmt, ALAS1, heme, HO-1), oxidative stress response depicted in blue (ROS, Keap1, Nfr2, Antioxidant enzymes), and oncogenic pathway

depicted in pink (EGFR, SOS, GAPs, Ras, ERK, c-Myc). IL-6, in yellow, is the only inflammatory cytokine in the network. Arrows represent activation/

upregulation and hammer heads represent inhibition/downregulation. Dashed connections are explained in the iron utilization subsection of the introduction.

Rectangular shapes represent proteins/enzymes, circular; molecules, hexagon-like; receptors. CellDesigner [67] was used for visualization.

doi:10.1371/journal.pcbi.1005352.g001
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and some authors suggest that there might be even cross-talk between cytosolic and mitochon-

drial iron metabolism [21, 37]. The dotted arrows in Fig 1 represent the feedback mechanism

from LIPmt to Ftmt and Mfrn. Our current model does not include iron-sulfur cluster (ISC)

synthesis due to the complexity and incompletely understood nature of this process in mam-

malian cells [38].

Oxidative stress. Oxidative stress is an imbalance between the production of reactive oxy-

gen species (ROS) by oxygen-dependent metabolic reactions and the production of antioxi-

dants. Oxidative stress can result from excess production of ROS, insufficient production of

cytoprotective proteins that produce antioxidants and detoxify ROS (here termed antioxidant

enzymes), or a combination of both. Reactive oxygen species are a family of molecules with

one or more unpaired electrons, and are generated during many cellular processes. Antioxi-

dant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, defend the

organism by neutralizing free radicals and thus protecting cells from oxidative stress and oxi-

dative damage to DNA, lipids, and proteins [39].

Iron can contribute to the formation of ROS. In aerobic organisms, oxygen (O2) is mostly

bound to hydrogen (H2) as water. However, a small portion of O2 can be converted to a variety

of reactive oxygen species (ROS), including the superoxide radical (O2�)
−, hydrogen peroxide

H2O2 and the hydroxyl radical �OH [40, 41]. Ferrous iron Fe2+ can interact with O2 to form

(O2�)
− and H2O2, which then leads to the formation of the highly active, unstable and most

damaging oxidant �OH via an iron-catalyzed Haber-Weiss reaction [39, 42, 43]:

FeðIIÞ þO2 ! FeðIIIÞ þ ðO2�Þ
�

FeðIIÞ þ ðO2�Þ
�
þ 2Hþ ! FeðIIIÞ þH2O2

FeðIIÞ þH2O2 ! �OHþOH� þ FeðIIIÞ

Nuclear factor (erythroid-derived 2)-like2 (Nrf2) is an important contributor to the reduction

of oxidative stress. The main function of Nrf2 is to transcriptionally activate genes containing

antioxidant response elements (ARE). Kelch-like ECH-associated protein 1 (Keap1) is the

main regulator of Nrf2, and plays a central role in sensing and protecting cells against ROS.

Under normal conditions, Nfr2 binds to Keap1, which promotes degradation of Nrf2 [44].

Upon exposure to ROS, Keap1 is inactivated, Nrf2 disassociates from Keap1 and becomes sta-

bilized, and heterodimerizes with small musculoaponeurotic fibrosarcoma (Maf) proteins to

drive transcription of antioxidant enzymes [45].

ARE-containing antioxidant enzymes counterbalance the harmful effects of ROS through a

variety of mechanisms [46, 47]. For this study, we focus on 4 enzymes that contribute to the

antioxidant response: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase

(GPx), and heme oxygenase-1 (HO-1). Of these, GPx and HO-1 are directly inducible by Nrf2.

Different isoforms of SOD exist in the cytosol and mitochondria, but both catalyze the dismu-

tation of superoxide radical (O2�)
− to form hydrogen peroxide H2O2 and O2 [39, 42]. GPx in

cytosol and mitochondria and CAT in tissue peroxisomes can reduce H2O2 to water and O2 to

control production of the hydroxyl radical �OH [39, 41]. The hydroxyl radical has a very short

half-life of approximately 10−9 seconds, and is largely scavenged by endogenous and dietary

�OH scavengers (e.g. melatonin, vitamin E) whose concentration cannot be accurately pre-

dicted. These variables have therefore not been considered in our study. Besides playing a

destructive role, ROS can also act as signaling molecules to promote cell proliferation, survival,

apoptosis, differentiation, and migration [43, 48]. For example, ROS induce the synthesis of
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the inflammatory cytokine IL-6 [49, 50], and also act as signaling molecules in the EGFR onco-

genic pathway.

Oncogenic pathways. The epidermal growth factor receptor (EGFR) regulates cell

growth, differentiation, and motility through interaction with its ligand, epidermal growth fac-

tor (EGF). EGFR activation stimulates transient activation of Ras-GTP, and this eventually

leads to activation of extracellular-signal-regulated kinases (ERKs) [51], which in turn results

in phosphorylation and stabilization of c-Myc [52]. It has been established that c-Myc stimu-

lates the expression of the iron regulatory protein 2 (IRP2) [53] and activates transferrin recep-

tor 1 (TfR1) [54], which provides a link between oncogenic and iron homeostasis pathways.

Ras is a small guanosine triphosphatase (GTPase), and its activity is controlled by a regulated

GDP/GTP cycle. The duration of Ras activity (time spent in the GTP-bound form) and the

level of activation (GTP-bound form / total Ras) are controlled by (a) the guanine nucleotide

exchange factors (GEFs) that promote exchange of GDP for GTP, and (b) GTPase-activating

proteins (GAPs) that stimulate the intrinsic GTPase activity of Ras to promote formation of

the inactive, GDP-bound form of Ras. The activator of Ras is a GEF protein, son of sevenless

(SOS), which facilitates the switch from Ras-GDP to Ras-GTP. Both SOS and Ras-GAP are

recruited to phosphorylated EGFR [51, 55]. ERK phosphorylates SOS, resulting in its dissocia-

tion from growth factor receptor-bound protein 2 (Grb2) providing a negative feedback and

thus limiting activation of Ras [55, 56]. Ras is also activated by IL-6 [57, 58].

Results

Based on the known biology described in the previous section, we have constructed a network

model, depicted in Fig 1. We have incorporated simplifications, as follows. Recall that HO-1 is

part of the iron utilization pathway, and thus this enzyme is modeled in our network as a sepa-

rate node. On the other hand SOD, CAT and GPx, which can eliminate specific reactive oxy-

gen species, are represented as a single node, labeled Antioxidant enzymes (AE). Similarly,

(O2�)
−, H2O2 and �OH are modeled as one species, labeled ROS in our network (Fig 1). Onco-

genic pathways and reactive oxygen species (ROS) have a close and intricate relationship. Our

model is not detailed enough to capture all the complexities of their interactions, but we do

include many known established connections. In particular, it has been shown that activated

Ras induces the production of ROS, which is required for oncogene-mediated cellular trans-

formation and Ras dependent proliferation [59–62]. Moreover, there is a direct induction of

EGFR by endogenous H2O2 and a localized generation of H2O2 by EGFR through an NADPH

oxidase (Nox)-mediated process [48, 63]. Extracellular-signal regulated kinases (ERKs) and

Ras are also involved in the oxidative pathway by activating Nrf2 [64–66].

The model in Fig 1 was built in a very general way, and is based primarily on the pertinent

literature, including several connections derived from different cell types. For clarity, we refer

to the network in Fig 1 as the normal cell network.

Dynamic Model

We describe a discrete dynamic model of the network in Fig 1, based on an encoding of the

regulatory logic for each node through a “logical” update rule. This type of model is qualitative,

in the sense that each species can assume a finite set of states rather than quantitative concen-

trations of molecular species. For this study, we adopted a ternary logic, an extension of Bool-

ean logic. Our choice of ternary logic was motivated by the fact that iron levels cannot be

viewed as either ON = 1 or OFF = 0. The iron homeostasis pathway is the major focus of our

study and both low and high levels of iron are detrimental, so that it is tightly controlled. Addi-

tionally, IRP2 at both low and high activity levels does alter the iron pathway [68]. With only
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two states it would not be clear when IRP2 operates at low activity levels, as it would be repre-

sented the same way as normally active protein. For our model to be able to differentiate

between iron homeostasis (normal levels of iron) and low/high iron levels as well as activities/

concentration levels of various proteins, we chose to represent each species by three levels: low,

normal and high. In the language of logical models the state of a particular species is described

by 0 if the species is low/inactive, by 1 if at normal/intermediate activity, and by 2 if high/

active.

In analogy to the Boolean formalism, we can compute the future state of a species at time

step t + 1 using the states of other species at time step t. Fundamental OR and AND gates for

two species X and Y are defined as max{X, Y} and min{X, Y}, respectively, where X, Y 2
{0, 1, 2}. To differentiate from the Boolean OR and AND gates, we denote these gates by

Max and Min, respectively. The NOT gate (denoted here by X) is defined by inverting the

input, i.e., leaving 1 unchanged and inverting 0 and 2. For a concrete example, consider

heme in Fig 1. It is produced through ALA synthase (ALAS1) but inhibited by HO-1. Then

the logical function (update rule) that predicts how much heme is present at time t + 1 can

be computed as follows:

hemeðt þ 1Þ ¼ MinðALAS1ðtÞ;HO� 1ðtÞÞ:

This means that, if HO-1 was 0 (low) and ALAS1 was 2 (high) at time t, then heme will be 2

(high) at time t + 1.

Based on the biological knowledge described in the previous section, we translated the

interactions of the normal cell network into logical functions (see Table 1). One caveat about

logical models that is not present for Boolean models is that species can change for example

from a low state to a high one in one time step, skipping intermediate concentrations. This is

biologically unrealistic. Thus, to address the continuity issue we have also implemented a

methodology commonly used for logical models that takes into account the previous state of

the regulated species (see [69] for details). For purposes of simulation, we converted the logical

rules into polynomial functions to obtain a so-called polynomial dynamical system (PDS). A

description of the construction of the PDS and the entire system can be found in the Materials

and Methods section and in the supplemental file S1 PDS, respectively.

Simulation Results

To analyze the dynamic properties of the model we simulated the entire state space and com-

puted the basins of attraction of the system. For this purpose, we used an encoding of the

model as a polynomial dynamical system, as described above, and customized scripts written

in Perl and Python (see Materials and Methods section). The size of the model’s state space is

324 = 282, 429, 536, 481, where 24 is the number of species in the network and 3 is the number

of states (low, medium, high) per species. We employed a synchronous update schedule for the

species in the network; all species were updated simultaneously based on the states of their

input species at the previous time step. Each state leads to another state, eventually converging

to a steady state or a limit-cycle (a set of recurring states), which are called attractors. A collec-

tion of initial states that lead to a particular attractor is termed the basin of attraction. Under

this scheme, each state belongs to the basin of attraction of only one attractor: a point attractor

(steady state) or a cycle attractor (limit-cycle). These attractors correspond to different pheno-
types in the biological context and can describe various behaviors of the system such as

homeostasis.

We simulated the normal cell model and also investigated the long-term behavior of this

model under different conditions, namely, the effects of knockout (k/o) or overexpression (o/
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e) of one or more species. To simulate these experimental conditions, we set the update rule

for a particular species to a constant equal to 0 or 2, respectively. In other words, regardless of

the input (regulators), the species of interest will always stay at the chosen level. Our results are

summarized in Fig 2, which shows all the species and their long-term behavior. Simulations

were performed by exhaustively enumerating the transitions of the model on all possible 324

states. The normal cell network has no cycle attractors and reaches a unique stable steady state

(point attractor) indicating that all species are at their respective normal levels regardless of the

initial starting state (Fig 2 top line of the heat map labeled Normal).
Model validation using experimental data: IRP2 overexpression only alters the iron

homeostasis pathway. The iron regulatory protein IRP2 plays a central role in the regulation

of the iron homeostasis pathway. It was observed that IRP2 levels are higher in breast cancer

cells when compared with nonmalignant mammary epithelial cells, and it was suggested that

IRP2 regulates breast tumor growth [68]. Moreover, the authors of the same study concluded

that IRP2 expression levels are linked to transcriptional programs in breast cancer [68]. Thus,

our initial step was to investigate whether overexpression of IRP2 in non-tumorigenic cells

alters other pathways. In particular, we set the update polynomial for IRP2 to active (i.e., 2) in

the normal cell model and computed the entire state space and the basin of attraction of this

IRP2 overexpression model. Our simulations revealed that IRP2 overexpression leads to a

Table 1. Summary of all model variables and their logical update rules. An asterisk (*) in the table means

that the strength of regulation for that species was adjusted based on the biology (see Materials and Methods

for description and supplemental file S1 PDS).

Classification Variable Update Rule

Iron Homeostasis LIP Min(Max(TfR1, HO-1), Min(Fpn, Ft, Mfrn))

TfR1 Max(*IRP1, IRP2, c-Myc)

Fpn Min(*IRP1, IRP2, Hep)

Ft Min(*IRP1, IRP2)

IRP1 LIP

IRP2 Max(LIP, c-Myc)

Hep IL-6

Iron Utilization Mfrn LIPmt

LIPmt Min(Mfrn, Ftmt, heme)

Ftmt LIPmt

ALAS1 Min(heme, LIPmt)

heme Min(ALAS1,HO-1)

HO-1 Max(heme, Nrf2)

Oxidative Stress Response ROS Min(Max(LIP, Ras, EGFR), AE)

Keap1 Min(ROS, *Nfr2)

Nrf2 Max(Keap1, Ras, ERK)

AE Nrf2

Oncogenic EGFR ROS

SOS Max(EGFR, ERK)

GAPs EGFR

Ras Min(Max(IL-6, SOS), GAPs)

ERK Ras

c-Myc ERK

Inflammatory Cytokine IL-6 Max(HO� 1, ROS)

doi:10.1371/journal.pcbi.1005352.t001
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single point attractor, only affects the iron homeostasis pathway, and leaves other pathways

unchanged (second row in Fig 2).

To test the outcome made by our model and to validate the model, we have conducted an

experiment using an MCF10A non-tumorigenic immortalized human mammary breast epi-

thelial diploid cell line [70], overexpressing IRP2 (see Materials and Methods for a detailed

description of the experiment). We selected two proteins from the iron homeostasis pathway

(TfR1 and Ft) and one protein from each of the other pathways in our network (HO-1, Keap1,

IL-6, EGFR and c-Myc). We have found that IRP2 overexpression in MCF10A cells increases

TfR1 and moderately decreases ferritin (Ft) production (Fig 3). On the other hand, there was

no significant change in the levels of other proteins when IRP2 overexpressing cells were com-

pared to MCF10A cells (Fig 3). This result agrees with our simulation results that IRP2 overex-

pression only alters the iron homeostasis pathway but does not have a significant effect on

other pathways in the network.

Model validation using current literature: Mitochondrial ferritin overexpression. It

was reported that overexpression of mitochondrial ferritin (Ftmt) has a dramatic effect on

intracellular iron homeostasis. Specifically, Ftmt overexpression reduces both cytosolic and

mitochondrial iron pools, cytosolic ferritin (Ft) and heme synthesis, and increases transferrin

receptor (TFR1) levels, as well as IRP1 and IRP2 activity [71]. To test our model further, we

have simulated Ftmt overexpression by setting the update rule of Ftmt to “high.” Our simula-

tions produced a single point attractor agreeing with the experimental findings and thus again

validating the model (third row in Fig 2).

Cancer phenotype of the iron homeostasis pathway. To investigate our hypothesis that

the iron homeostasis pathway is disrupted by an oncogenic pathway in breast cancer cells, we

simulated several experimental conditions to match the cancer phenotype of the iron homeo-

stasis pathway, as suggested by the extant literature. We concentrated on two pairs of mam-

mary epithelial cell types for which extensive experimental evidence has been previously

Fig 2. Simulation results of the intracellular iron network. Heatmap of point and cycle attractors of seven different knockout (k/o) and

overexpression (o/e) models. Catalase low bioactivity (CAT k/o) is modeled by setting the AE group to zero inside the update rule for ROS (see cancer

phenotype subsection for more details).

doi:10.1371/journal.pcbi.1005352.g002
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published and for which the cancer phenotype of the iron homeostasis pathway is well defined

[2, 68]. The two pairs of cell types are: (i) primary human mammary epithelial cells (HMECs)

and their tumor-forming transformed variants, referred to here as R5 cells, which were gener-

ated by transduction of HMEC cells with expression vectors for SV40, hTERT and H-Ras [72],

and (ii) the MCF10A non-tumorigenic immortalized human mammary epithelial diploid cell

line [70], and the MCF7 breast cancer cell line, which is estrogen receptor positive (ER+), that

was derived from a pleural effusion in a patient with metastatic cancer [73]. Transformed

HMECs (R5 cells) contain a c-myc gene amplification and also a moderate increase in the level

Fig 3. Effect of IRP2 overexpression (o/e) in MCF10A cells. (a) One representative experiment. Proteins were analyzed by Western

blotting. Loading was assessed with an antibody to GAPDH. (b) Proteins in empty vector cells and IRP2 overexpressing cells. Graphs show

mean and standard deviation of three separate experiments.

doi:10.1371/journal.pcbi.1005352.g003
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of the c-Myc protein [72]. MCF7 cells also have the c-myc gene amplified [74], and it has been

reported that these cells have higher protein levels of Ras and, consequently, ERK activation,

and higher levels of ROS than MCF10A cells [75]. Note, that Ras is frequently constitutively

activated by mutations in up-stream regulators in breast cancer [76], and c-myc gene overex-

pression in basal-like breast cancer (* 50%) contributes to cancer progression and is highly

associated with poor prognosis [77].

The iron homeostasis pathway in the normal network consists of seven species (see Fig 1).

It was established that the levels of cytosolic LIP, TfR1, hepcidin, IRP1 and IRP2 were

increased while ferroportin (Fpn) and ferritin (Ft) had decreased levels when R5 and MCF7

cell lines were compared to their non-malignant counterpart HME and MCF10A cells, respec-

tively [2, 68]. This suggests a specific phenotype for R5 and MCF7 cell lines termed here as the

cancer phenotype of the iron homeostasis pathway (CP-IHP). Particularly, if 1 represents indi-

vidual normal levels of the seven species in HME and MCF10A cells, then the cancer pheno-

type can be denoted as:

ðFpn; Ft; Hep; TfR1; IRP2; IRP1; LIPÞ ¼ ð0; 0; 2; 2; 2; 2; 2Þ: ð1Þ

The oncogenic pathway is directly connected to two components (TfR1 and IRP2) in the

iron pathway via c-Myc, which is downstream of Ras. Since Ras is highly expressed in R5 cells

and is increased in MCF7 cells we began our exploration of CP-IHP by simulating the behavior

of the model under the overexpression of Ras. We found that in this case the model has two

attractors: a point attractor with a basin of size 74, 444, 483, 228 (26.4%) and a cycle attractor

of size 207, 985, 053, 253 (73.6%) (4th and 5th rows in Fig 2). We note that cycle attractors

depend on the mode of simulation, e.g., update schedule (synchronous vs. asynchronous).

In the Ras overexpression model, four components of the point attractor, Fpn, Ft, TfR1,

and IRP2, agreed with CP-IHP as defined by Eq (1). In addition, these four species do not

oscillate in the cycle attractor. Furthermore, close examination of the cycle attractor suggests

that under Ras overexpression three pathways (i.e., oxidative stress, oncogenic and inflamma-

tory) are fixed while all species that belong to the iron utilization pathway and two from the

iron homeostasis pathway (LIP and IRP1) do oscillate. Even though this simulation did not

produce the exact CP-IHP, it confirmed that the iron homeostasis pathway can be altered by

Ras overexpression alone. Hepcidin, IRP1 and LIP did not achieve the desired levels specified

by CP-IHP since (i) ROS under RAS overexpression in the model is low and thus IL-6 and,

consequently, hepcidin are low, and (ii) LIP is the only regulator of IRP1 and the iron utiliza-

tion pathway is still allowed to traffic iron into the mitochondria.

Breast cancer cells are frequently under persistent oxidative stress [78], and human tumor

cell lines have higher levels of ROS than their non-tumorigenic versions [39]. It was found that

MCF7 cells exhibited higher H2O2 levels and lower bioactivity of catalase (CAT), while the

protein expression levels of CAT were higher when compared to non-malignant cells [79].

Note that CAT is part of the group termed here antioxidant enzymes (AE), and H2O2 is part of

the ROS family. Thus, if at least one component of the group exhibits differential levels then

we view the entire group as having higher/lower expression levels or activity. To model low

bioactivity of CAT we set to zero the AE group inside the update rule for ROS. Similar to the

first model, simulations of the model under the overexpression of Ras and low bioactivity of

CAT revealed two attractors, with a point attractor of size 74, 461, 261, 392 (26.4%) and a cycle

attractor of size 207, 968, 275, 089 (73.6%) (6th and 7th rows in Fig 2). This model, however,

has an additional component, hepcidin, that agrees with CP-IHP, i.e., (Fpn, Ft, Hep, TfR1,

IRP2) = (0, 0, 2, 2, 2).
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Next, we investigated iron trafficking into the mitochondria. Recall that cytosolic iron (LIP)

is transported into the mitochondria by mitoferrin (Mfrn), to be incorporated into PPIX to

synthesize heme. It has been found that the level of Mfrn in MCF7 cells is lower when com-

pared to MCF10A cells [18]. Additionally, the same study concluded that the uptake of iron

ions into the mitochondria was lower in MCF7 cells, resulting in decreased mitochondrial

iron accumulation (LIPmt) and a severe reduction in heme synthesis [18]. Initially, we have

tested only Mfrn knockout (k/o). The simulation of the model produced a single point

attractor with both LIPmt and heme at low levels, agreeing with the above finding (8th row in

Fig 2). Additionally, this simulation suggested that reduced levels of Mfrn alone do not affect

any other pathway. Next, we have added Mfrn k/o to the latter model (Ras overexpression and

low bioactivity of CAT), which resulted in the single point attractor with five out of six species

from the CP-IHP achieving desired levels (9th row in Fig 2):

ðFpn; Ft; Hep; TfR1; IRP2; IRP1; LIPÞ ¼ ð0; 0; 2; 2; 2; 0; 2Þ: ð2Þ

It is not surprising that IRP1 is low since in the network it is only down-regulated by LIP,

but it is plausible that it is also regulated by other species. In addition, it has been shown that

other breast cancer cell lines had variable IRP1 mRNA and protein levels [68]. Thus, IRP1

requires further investigation and careful experimentation to understand its role beyond regu-

lation of iron metabolism in breast cancer. Even though our simulations did not produce the

exact CP-IHP, we confirmed that the iron homeostasis pathway can be altered by Ras overex-

pression alone. Moreover, understanding and involving the iron utilization pathway seems to

be the other key in differential regulation of intracellular iron homeostasis.

Discussion

It is well-known that iron metabolism in breast epithelial cells is differentially regulated as cells

transition to malignancy. Determining the causes for this altered phenotype is complicated by

the complexity of iron regulation and its connection to several other processes, such as response

to oxidative stress and changes in iron consumption [80], as well as crosstalk with oncogenic

pathways. Integrating these different influences on the iron phenotype in normal and malignant

cells can benefit greatly from a systematic approach through dynamic mathematical modeling,

beyond the network approach taken in [80]. The model presented here is a first step toward a

comprehensive understanding of the iron phenotype of cells as it changes in breast cancer. We

have chosen to construct a qualitative model of an intracellular iron network (Fig 1) to capture

its fundamental dynamic features (attractors). The main reason for our choice of modeling plat-

form is that our current knowledge of the kinetics involved in these different processes as well

as mechanisms underlying these complex reactions is very limited, so that a quantitative model,

such as a system of ordinary differential equations is more challenging to construct.

We have validated our model using both experimental data and information from the liter-

ature not used in model construction. In particular, we have experimentally validated the

model prediction that IRP2 overexpression in the normal cell network only alters the iron

homeostasis pathway, leaving the other model components unchanged. Also, our model agrees

with the current literature that overexpression of mitochondrial ferritin (Ftmt) increases both

IRPs and TfR1, decreases cytosolic Ft and reduces cytosolic and mitochondrial iron pools [71].

In addition, we have shown that shutting down trafficking of iron into the mitochondria,

together with Ras overexpression and Cat reduced bioactivity, does lead to the observed cancer

phenotype of the iron homeostasis pathway. However, it might be possible that further refine-

ments of the model can lead to the required phenotype by altering only the oncogenic

pathway.
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Not all known information about the normal and cancer phenotypes can be captured by

the model, however. This is likely due to the fact that some key features of this system are not

represented completely, such as an iron-sensing regulator in the mitochondria and iron-sulfur

cluster (ISC) synthesis. It has been suggested that frataxin, a nuclear-encoded mitochondrial

protein, may act as an iron-sensing regulator and even function as a switch between heme and

ISC synthesis [81–83]. At this stage, one cannot determine whether it is frataxin or some other

iron sensor/regulator, but we have suggested the possibility of a mitochondrial iron-sensing

node in our current model (depicted as a question mark in Fig 4(a)). This adjusted normal cell

model also reaches a unique stable steady state agreeing with our model discussed in the

Results section (Fig 4(b)). Additionally, we simulated two more models using the following

perturbations: (i) knockout of the sensor node and (ii) overexpression of Ras and of the sensor

node, and low bioactivity of CAT (2nd and 3rd rows in Fig 4(b)). Interestingly, the sensor node

k/o model agrees with experimental data that in frataxin k/o mice heme is decreased, TfR1 is

upregulated and iron uptake via Mfrn is increased, leading to cytosolic iron-deficiency and

mitochondrial iron overload [84, 85]. This strongly indicates that there is a sensor/regulator,

and thus further refinements of the model can provide insight into mitochondrial iron regula-

tion and utilization, and potentially suggest new experiments that can validate new connec-

tions. The latter model produced the same cancer phenotype of the iron homeostasis pathway

(see Eq (2)) and also implied that cancer cells have reduced heme biosynthesis. Furthermore,

we note that the latter model allows Ftmt and ALAS1 from the iron utilization pathway to

have high expression levels (compare 9th row in Fig 2 to row 3 in in Fig 4(b)). While we do not

have much evidence about Ftmt in cancer, there are some studies about ALAS1 in lung cancer.

It was found that ALAS1 protein levels were substantially increased in non-small-cell lung can-

cer cells compared to normal cells [86]. This suggests the possibility to expand the cancer phe-

notype of the iron homeostasis pathway to the iron utilization pathway. Of course, one can

simulate a model by setting various proteins to their respective observed levels, but then we

gain no information about the drivers that change iron metabolism in cancer. Ideally, we

would like to include other pathways implicated in breast cancer to capture different molecular

subtypes of breast cancer and iron cancer phenotypes associated with them.

Materials and Methods

Mathematical Model

We begin by defining a set of rules that describe various relations between molecular species,

from which we then build the entire model. If species X is, inducing species Y (X! Y) or spe-

cies X is inhibiting species Y (X a Y) then we represent these relationships via a transition table

as depicted in Table 2.

Notice that inhibition in Table 2 is just a logical NOT gate, denoted here by X . The other

two fundamental gates, OR and AND, for two species X and Y regulating species Z (X! Z 
Y), are defined as max{X, Y} and min{X, Y} respectively, for X, Y 2 {0, 1, 2}, and denoted here

by Max and Min. We can express the above gates as polynomials over a finite field on three ele-

ments, F3. If we limit the exponent of each variable in a polynomial to be less than or equal to

2, then one can show that any logical rule constructed from these three operations has a unique

polynomial representation, using

x ¼ 2þ 2x

Maxðx; yÞ ¼ x2y2 þ x2y þ xy2 þ 2xyþ x þ y

Minðx; yÞ ¼ 2x2y2 þ 2x2y þ 2xy2 þ xy:

ð3Þ
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Fig 4. Intracellular iron network with iron-sensing node. (a) Simplified version of Fig 1 that includes a hypothesized mitochondrial iron-sensing

node, which is depicted as a question mark. (b) Heat map of point attractors of three different knockout and overexpression models. (iron homeostasis

(IH); oxidative stress response (OSR); oncogenic (Onc.); knockout (k/o); overexpression (o/e).)

doi:10.1371/journal.pcbi.1005352.g004
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One can check that polynomials given by Eq (3) agree with definitions of fundamental gates as

described in the paragraph above, e.g., max{1, 2} = 2 and Max(1, 2) = (1)2(2)2 + (1)2(2) +

(1)(2)2 + 2(1)(2) + 1 + 2 = 2, where the right-hand side is computed modulo 3. Various adjust-

ments to the strength of a particular regulation can be made by altering entries in the Table 2.

For example, it has been suggested that IRP1, when active, contributes less to the regulation of

ferritin (Ft) than IRP2 [68] (see Table 3). These tables mean that when IRP2 = 2 (active) it will

inhibit Ft, whereas when IRP1 = 2 (active) it will have a lesser effect on Ft.

Thus, we can represent regulation of Ft by IRP2 in Table 3 using Eq 3:

IRP2 ¼ 2þ 2 � IRP2:

Now, for IRP1 regulating Ft according to this new adjustment, one can also find a polynomial

representing Table 3 (left table). For convenience, whenever we use an adjusted regulation we

will place an asterisk (�) in front of the variable inside the logic gate.

�IRP2 ¼ 2þ 2 � ðIRP1Þ
2
:

To match current biological knowledge we have adjusted regulation of IRP1 for TfR1 and

Fpn as well [68]. The transition table for Fpn is similar to Ft. For IRP1 regulating TfR1: when

IRP1 = 2, then Tfr1 = 1, while, when IRP1 is 0 or 1 then TfR1 is also 0 or 1, respectively. Addi-

tionally, we modified regulation of Keap1 by Nrf2 to reflect current literature [44]. For Nrf2

regulating Keap1 we have that when Nrf2 = 0 then Keap1 = 1, while when Nrf2 is 1 or 2 then

Keap1 is also 1 or 2, respectively.

To make sure that we preserve continuity (i.e., each species changes at most one unit in one

time step), we are going to employ methodology as described in [69]. The underlying reason-

ing is that this can be accomplished by taking into account the previous state (e.g., concentra-

tion or activity) of the regulated species, in effect adding a self-regulation loop to each network

node. The future value of the regulated species under continuity is computed as follows. Let fxi

be the update function for xi. To ensure that each variable changes at most 1 unit, define a

function h(xi, fxi
) for the future value of the variable xi:

hðxi; fxi
Þ ¼

xi þ 1 if fxi
> xi

xi if fxi
¼ xi

xi � 1 if fxi
< xi

8
><

>:
ð4Þ

Table 2. Transition tables for activation and inhibition.

X! Y X a Y

0 0 0 2

1 1 1 1

2 2 2 0

doi:10.1371/journal.pcbi.1005352.t002

Table 3. Transition tables for IRP1 and IRP2 regulating Ft.

IRP1 a Ft IRP2 a Ft

0 2 0 2

1 1 1 1

2 1 2 0

doi:10.1371/journal.pcbi.1005352.t003
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LIP, heme, and ROS do not undergo self-degradation/self-regulation and hence we do not

apply continuity to these species. In order to compute final polynomials, we are going to make

use of the following property of finite fields:

Remark 0.1 If h : Fn
p ! Fp is any function then there is a polynomial g : Fn

p ! Fp so that h
(x) = g(x) for all x 2 Fn

p .

One can find g by using the following formula,

gðxÞ ¼
X

c2Fn
p

hðcÞ
Yn

j

ð1 � ðxj � cjÞ
p� 1
Þ; ð5Þ

where h(c) is the update function as defined by Eq (4), c is a vector of input variables, and the

right-hand side is computed modulo p.

All of these logic gates, transition tables describing different strength of regulation and con-

tinuity, are then appropriately translated into final polynomial functions over a finite field

with three elements. These polynomial functions then form what is called a polynomial dynam-
ical system (PDS) over a finite field. Below, we fully describe a construction of the update func-

tion for ferritin (Ft) in our network (see Fig 1). The entire PDS system can be found in the

supplemental file S1 PDS.

Example: Ferritin (Ft). According to our network (Fig 1), Ft has two inputs, inhibition by

IRP1 and IRP2. States {0, 1, 2} for Ft will denote protein concentrations low, medium and high,

respectively. Active IRP’s have high affinity for IRE’s and their binding to 5’ UTR IREs inhibits

the translation of Ft. It has been suggested that active IRP2 has a greater affect on Ft, thus we

will adjust the strength of each IRP as described by Table 3. The logic gate between two

negated IRP’s is a Min gate:

fFt ¼ Minð�IRP1;IRP2Þ

This gate (Min) ensures that when, for example, IRP1 = 0 (inactive) and IRP2 = 2 (active), we

get that Ft is inhibited by IRP2, i.e. Ft = 0 in that case, otherwise it would be 2 with a Max gate.

Now we translate the above expression into a polynomial equation. First, let x4 ≔ Ft, x5 ≔
IRP1, and x6 ≔ IRP2 (this is the same assignment as we have in the supplemental file S1 PDS).

The polynomial functions over a field on three elements for each transition table are:

�x5 ¼ 2x2

5
þ 2 and x6 ¼ 2x6 þ 2 ð6Þ

Using an appropriate polynomial for the Min gate as described by Eq (3), i.e., Min(x, y) = 2x2

y2 + 2x2y + 2xy2 + xy, we compute the following update function for Ft, keeping in mind that

all the calculations are over F3.

fx4
ðx5; x6Þ ¼ Minð�x5 ; x6Þ

¼ Minð2x2
5
þ 2; 2x6 þ 2Þ

¼ 2ð2x2
5
þ 2Þ

2
ð2x6 þ 2Þ

2
þ 2ð2x2

5
þ 2Þ

2
ð2x6 þ 2Þ

þ 2ð2x2
5
þ 2Þð2x6 þ 2Þ

2
þ ð2x2

5
þ 2Þð2x6 þ 2Þ ðsimplifymod3and getÞ

¼ x2
5
x2

6
þ 2x2

5
þ 2x6 þ 2:

Now we apply the continuity process as described by Eq (4) and substitute that into Eq (5) to

compute the final polynomial f4, representing an update polynomial for x4 (computations are
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modulo 3).

f4 ¼ hð0; fx4
ð0; 0ÞÞ � ð1 � ðx4 � 0Þ

2
Þð1 � ðx5 � 0Þ

2
Þð1 � ðx6 � 0Þ

2
Þ

þ hð1; fx4
ð0; 0ÞÞ � ð1 � ðx4 � 1Þ

2
Þð1 � ðx5 � 0Þ

2
Þð1 � ðx6 � 0Þ

2
Þ

þ hð2; fx4
ð0; 0ÞÞ � ð1 � ðx4 � 2Þ

2
Þð1 � ðx5 � 0Þ

2
Þð1 � ðx6 � 0Þ

2
Þ

..

.

þ hð1; fx4
ð2; 2ÞÞ � ð1 � ðx4 � 1Þ

2
Þð1 � ðx5 � 2Þ

2
Þð1 � ðx6 � 2Þ

2
Þ

þ hð2; fx4
ð2; 2ÞÞ � ð1 � ðx4 � 2Þ

2
Þð1 � ðx5 � 2Þ

2
Þð1 � ðx6 � 2Þ

2
Þ

¼ 1þ x2
4
þ 2x2

4
x2

5
þ 2x6 þ x4x6 þ 2x2

4
x6 þ x2

6
þ 2x4x2

6
þ x2

4
x2

5
x2

6
;

where

hð0; fx4
ð0; 0ÞÞ ¼ hð0; 2Þ ¼ 1

hð1; fx4
ð0; 0ÞÞ ¼ hð1; 2Þ ¼ 1

hð2; fx4
ð0; 0ÞÞ ¼ hð2; 2Þ ¼ 2

..

.

hð1; fx4
ð2; 2ÞÞ ¼ hð1; 0Þ ¼ 0

hð2; fx4
ð2; 2ÞÞ ¼ hð2; 0Þ ¼ 1:

Computational Methods

The attractors of the models were found using 2 algorithms: the attractor finder by random

sampling (Algo. 1) that is written in Perl and the attractor finder by iterating over all possible

states (Algo. 2) that uses a custom written Python package. The codes can be found at https://

github.com/LoLab-VU/LogicalModel. Models that were used for simulations are located in

the same directory under NewModels_2015_12_18and NewModels_2015_8_17 fold-

ers. Supporting file S1 Simulations provides additional o/e and k/o simulation results using

attractor finder by random sampling. The index for the order of variables is available from row

21 to row 45. After 3,000 random sampling, the basin size of the attractor is specified in the

table.

The first program requires a model file, the number of states and a sampling size, which is

100,000 here. We randomly selected 100,000 states and stored the attractor states to have a

broad perspective on the possible attractors of a model. It was utilized to test which overex-

pression and knockout models could be potential cancer models. To ensure that we know all

attractors of the models of interest, we ran the second program, which requires a model file

and number of states. Optional arguments include start and end states and an option to create

images of attractor states. The model file is parsed and compiled into an executable function

with Cython [87]. We iterated through all possible states of each model (3N), storing only the

attractor states. Simulations were performed in parallel using mpi4py [88] running on large

cluster computers.

Algorithm 1 Pseudo code for attractor finder by random sampling

1: procedureFor I IN 100,000 .Iterateover 100,000randomlyselected
states

2: sampled= emptyset
3: state= changebase(random(3N))
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4: whilestate =2 sampleddo
5: sampled.add(state)
6: state= update(state) .Updatefunctionis the compiledmodel
7: state.pop() .Returnsthe last stateaddedto sampled

Algorithm 2 Pseudo code for attractor finder by iterating over all possible states

1: procedureFor I IN 3N .Iterateover all possiblestates
2: sampled= emptyset
3: state= changebase(i)
4: whilestate =2 sampleddo
5: sampled.add(state)
6: state= update(state) .Updatefunctionis the compiledmodel
7: state.pop() .Returnsthe last stateadded to sampled

Experimental Methods

MCF10A, non-tumorigenic immortalized human mammary epithelial cells were obtained

from the Wake Forest University Comprehensive Cancer Center Tissue Culture Core facility.

The cells were maintained in a suggested condition by ATCC.

To overexpress IRP2 in MCF10A cells, the lentiviral vector pSL2-IRP2 [68] was applied.

Briefly, MCF10A cells were infected with the concentrated viral particles from pSL2-IRP2 and

pLS2 empty vector (as a control). The infection efficiencies for both infections were over 90%

based on GFP fluorescence in cells. The cell lysates were harvested for subsequent analysis

seven days after infection.

Western blotting was performed as previously described [68]. Antibodies: GAPDH (Fitz-

gerald), TfR1 and c-Myc (Invitrogen), IRP2 and EGFR (Santa Cruz Biotechnology), Keap1

(Cell Signaling Technology), HO-1 and IL-6 (Abcam), ferritin H ([89]).

Supporting Information

S1 PDS. Polynomial Dynamical System. The entire PDS system is coded in Mathematica.

(PDF)

S1 Simulations. Several different simulation results of iron network model. Attractors are

found using attractor finder by random sampling (Algo. 1).

(XLSX)
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