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Novel subgroups of adult-onset diabetes and their association 
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Dina Mansour Aly, Peter Almgren, Ylva Wessman, Nael Shaat, Peter Spégel, Hindrik Mulder, Eero Lindholm, Olle Melander, Ola Hansson, 
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Summary
Background Diabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in 
particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment 
regimens and identify individuals with increased risk of complications at diagnosis.

Methods We did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed 
diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables 
(glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA1c, and homoeostatic model assessment 2 estimates 
of β-cell function and insulin resistance), and were related to prospective data from patient records on development 
of complications and prescription of medication. Replication was done in three independent cohorts: the Scania 
Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox 
regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and 
risk of diabetic complications and genetic associations.

Findings We identified five replicable clusters of patients with diabetes, which had significantly different patient 
characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had 
significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed 
similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the 
clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes.

Interpretation We stratified patients into five subgroups with differing disease progression and risk of diabetic 
complications. This new substratification might eventually help to tailor and target early treatment to patients who 
would benefit most, thereby representing a first step towards precision medicine in diabetes.
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Foundation, Scania University Hospital, Sigrid Juselius Foundation, Innovative Medicines Initiative 2 Joint 
Undertaking, Vasa Hospital district, Jakobstadsnejden Heart Foundation, Folkhälsan Research Foundation, Ollqvist 
Foundation, and Swedish Foundation for Strategic Research.

Introduction
Diabetes is the fastest increasing disease worldwide and a 
substantial threat to human health.1 Existing treatment 
strategies have been unable to stop the progressive course 
of the disease and prevent development of chronic diabetic 
complications. One explanation for these shortcomings is 
that diagnosis of diabetes is based on measurement of only 
one metabolite, glucose, but the disease is heterogeneous 
with regard to clinical presentation and progression.

Diabetes classification into type 1 and type 2 diabetes 
relies primarily on the presence (type 1 diabetes) or absence 
(type 2 diabetes) of autoantibodies against pancreatic islet 
β-cell antigens and age at diagnosis (younger for type 1 
diabetes). With this approach, 75–85% of patients are 
classified as having type 2 diabetes. A third subgroup, 
latent autoimmune diabetes in adults (LADA; affecting 
<10% of people with diabetes), defined by the presence 
of glutamic acid decarboxylase antibodies (GADA), is 
phenotypically indistinguishable from type 2 diabetes 
at diagnosis, but becomes increasingly similar to 

type 1 diabetes over time.2 With the introduction of gene 
sequencing in clinical diagnostics, several rare monogenic 
forms of diabetes were described, including maturity-
onset diabetes of the young and neonatal diabetes.3,4

Existing treatment guidelines are limited by the fact 
they respond to poor metabolic control when it has 
developed, but do not have means to predict which 
patients will need intensified treatment. Evidence 
suggests that early treatment is crucial for prevention of 
life-shortening complications because target tissues 
seem to remember poor metabolic control decades later 
(so-called metabolic memory).5,6

A refined classification could provide a powerful tool to 
identify at diagnosis those at greatest risk of complications 
and enable individualised treatment regimens in the 
same way as genetic diagnosis of monogenic diabetes 
guides clinicians to optimal treatment.7 With this aim, 
we present a novel diabetes classification based on 
unsupervised, data-driven cluster analysis of six com-
monly measured variables and compare it metabolically, 
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genetically, and clinically to the current classification in 
four separate populations from Sweden and Finland.

Methods
Study populations
We used data from five cohorts: All New Diabetics in 
Scania (ANDIS), the Scania Diabetes Registry (SDR), All 
New Diabetics in Uppsala (ANDIU), Diabetes Registry 
Vaasa (DIREVA), and Malmö Diet and Cancer 
CardioVascular Arm (MDC-CVA).

The ANDIS project aims to recruit all incident cases of 
diabetes within Scania County in Sweden (about 
1 200 000 inhabitants). All health-care providers in Scania 
were invited; the current registration covered the period 
from Jan 1, 2008, to Nov 3, 2016, during which 177 clinics 
registered 14 625 patients (>90% of eligible patients) aged 
0–96 years within a median of 40 days (IQR 12–99) after 
diagnosis. Median follow-up for this cohort was 
4·01 years (IQR 2·02–6·00).

Between 1996 and 2009, SDR recruited more than 
7400 individuals with diabetes of all types from 
Scania County, 1466 of whom were recruited within 
2 years after diagnosis and had all data necessary for 
clustering.8 Median follow-up for this cohort was 
11·05 years (IQR 8·33–14·56).

Of the remaining three cohorts, ANDIU is a project 
similar to ANDIS in the Uppsala region (about 
300 000 inhabitants) in Sweden and provided complete 
data on all clustering variables for 844 patients; DIREVA 
is from western Finland (roughly 170 000 inhabitants) and 
includes 5107 individuals with diabetes recruited from 
2009 to 2014; and MDC-CVA includes 3300 individuals 
randomly selected from the larger Malmö Diet and 
Cancer study, to which all men and women born between 
1923 and 1950 from the city of Malmö, southern Sweden, 
were invited to participate.9

The ANDIS and SDR study protocols were approved by 
the regional ethics review committee in Lund (ANDIS: 
584/2006 and 2012/676; SDR: LU 35-99), DIREVA was 

approved by the ethics committee in Vasa (6/2007), and 
ANDIU was approved by the regional ethics review 
committee in Uppsala (2011/155). All participants gave 
written informed consent.

Measurements
In ANDIS, blood samples were drawn at registration, and 
fasting plasma glucose was analysed after overnight fasting 
with the HemoCue Glucose System (HemoCue AB, 
Ängelholm, Sweden). C-peptide concentrations were 
measured with an electro-chemiluminescence immuno-
assay on Cobas e411 (Roche Diagnostics, Mannheim, 
Germany) or a radio immunoassay (Human C-peptide 
RIA; Linco, St Charles, MO, USA; or Peninsula 
Laboratories, Belmont, CA, USA). In ANDIS and SDR, 
GADA was measured with an ELISA (reference 
<11 U/mL10) or with radiobinding assays using ³⁵S-labelled 
protein11 (positive cutoff: 5 relative units or 32 IU/mL). The 
radiobinding assays had 62–88% sensitivity and 91–99% 
specificity, and the ELISA assay had 72% sensitivity and 
99% specificity (Combinatorial Autoantibody or Diabetes/
Islet Auto antibody Standardization Programs 1998–2013). 
In ANDIU, GADA was measured at Laboratory Medicine 
in Uppsala (ref <5 U/mL). In DIREVA, GADA was 
measured with an ELISA (RSR, Cardiff, UK; positive 
cutoff 10 IU/mL). Zinc transporter 8 autoantibodies 
(ZnT8A) were measured with a radiobinding assay, as 
previously described.12 HbA1c was measured at diagnosis 
with the Variant II Turbo HbA1c Kit 2.0 (Bio-Rad 
Laboratories, Copenhagen, Denmark). Measurements of 
HbA1c, alanine amino transferase, ketones, and serum 
creatinine over time were obtained from the Clinical 
Chemistry database.

Genotyping
Genotyping of ANDIS participants was done on frozen 
DNA samples prepared from blood with Gentra 
Puregene Blood Kits (Qiagen, Hilden, Germany) using 
iPlex (Sequenom, San Diego, CA, USA) or TaqMan 

For more on the ANDIS project 
see http://andis.ludc.med.lu.se

For more on the ANDIU project 
see http://www.andiu.se

Research in context

Evidence before this study
National guidelines maintain information about diabetes 
classification, but this classification has not been much updated 
during the past 20 years, and very few attempts have been made 
to explore heterogeneity of type 2 diabetes. We searched PubMed 
up to Jan 1, 2017,  using the Medical Subject Heading terms 
“diabetes mellitus”, “type 2”, and “classification”. We identified 
several calls from expert groups for a revised classification, but 
few efforts to subgroup type 2 diabetes, none of which have been 
implemented in the clinic.

Added value of this study
In this study, a data-driven cluster analysis of six simple variables 
measured at diagnosis in adult patients with newly diagnosed 

diabetes (n=14 755) identified five replicable clusters of patients 
with significantly different characteristics and risk of diabetic 
complications. These included a cluster of very insulin-resistant 
individuals with significantly higher risk of diabetic kidney disease 
than the other clusters, a cluster of relatively young insulin-
deficient individuals with poor metabolic control (high HbA1c), 
and a large group of elderly patients with the most benign disease 
course. 

Implications of all the available evidence
This new substratification could change the way we think about 
type 2 diabetes and help to tailor and target early treatment to 
patients who would benefit most, thereby representing a first 
step towards precision medicine in diabetes.

http://andis.ludc.med.lu.se
http://www.andiu.se
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assays (Thermo Fisher Scientific, Carlsbad, CA, USA) at 
the Clinical Research Center in Malmö, Sweden. In 
ANDIS, 5625 of the clustered individuals were geno-
typed, of whom 1714 were excluded because of non-
Swedish origin and 164 were excluded because they had 
a call rate of less than 90%. MDC-CVA samples (controls) 
were genotyped at the Broad genotyping facility with the 
Infinium OmniExpressExome-8 version 1.0 BeadChip 
array (Illumina, San Diego, CA, USA). Quality control 
was done as previously described.13 All single-nucleotide 
polymorphisms (SNPs) were in Hardy–Weinberg equili-
brium in the controls.

Definitions of diabetes and diabetic complications
Type 1 diabetes was defined as GADA positive and 
C-peptide concentrations of less than 0·3 nmol/L. LADA 
was defined as GADA positive and C-peptide concen-
trations of 0·3 nmol/L or higher.

Estimated glomerular filtration rate (eGFR) was 
calculated with the Modification of Diet in Renal Disease 
formula.14 Chronic kidney disease was defined as an eGFR 
of less than 60 (stage 3A) or less than 45 (stage 3B) for 
more than 90 days (onset of chronic kidney disease 
was set as the start of this period). End-stage renal disease 
was defined as at least one eGFR below 15 mL/min per 
1·73 m².

Macroalbuminuria was defined as at least two of 
three consecutive visits with an albumin excretion rate of 
200 µg/min or higher, an albumin excretion rate 
of 300 mg per day or higher, or an albumin to creatinine 
ratio of 25 mg/mmol or higher for men and 35 mg/mmol 
or higher for women.

Diabetic retinopathy was diagnosed by an ophthalmologist 
on the basis of fundus photographs.15 Coronary events were 
defined by International Classification of Diseases (ICD)-10 
codes I20-21, I24, I251, and I253-I259. Stroke was defined 
by ICD-10 codes I60-I61 and I63-I64. Individuals with 
known previous events were excluded.

Cluster analysis
Model variables were selected on the premise that 
patients develop diabetes when they can no longer 
increase their insulin secretion (whatever the reason) to 
meet the increased demands imposed by obesity and 
insulin resistance, and because they were easily 
obtainable from different clinical settings without 
interpretation and included the minimum number of 
laboratory tests. We chose BMI, age at onset of diabetes, 
and homoeostasis model assessment (HOMA) 
2 estimates of β-cell function (HOMA2-B) and insulin 
resistance (HOMA2-IR) based on C-peptide 
concentrations (which performs better than insulin in 
patients with diabetes) calculated with the HOMA 
calculator (University of Oxford, Oxford, UK).16 Presence 
or absence of GADA was included as a binary variable. 
Cluster analysis was done on values centred to a mean 
value of 0 and an SD of 1. In ANDIS, men and women 

were clustered separately to avoid stratification due to 
sex-dependent differences in the cluster variables and to 
provide separate cohorts for validation of results. Patients 
with secondary diabetes (n=162) and extreme outliers 
(>5 SDs from the mean; n=42) were excluded. TwoStep 
clustering, in which the first step estimates the optimal 
number of clusters on the basis of silhouette width and 

Figure 1: Patient distribution according to method of classification
(A) Distribution of ANDIS patients (n=8980) according to traditional 
classification. (B) Distribution of ANDIS patients (n=8980) according to 
k-means clustering. (C) Distribution of patients in the Scania Diabetes Registry 
(n=1466) according to k-means clustering. (D) Distribution of patients in the 
All New Diabetics in Uppsala cohort (n=844) according to k-means clustering. 
(E) Distribution of DIREVA patients with newly diagnosed diabetes (n=878) 
according to k-means clustering. (F) Distribution of DIREVA patients with 
longer-term diabetes (n=2607) according to k-means clustering. LADA=latent 
autoimmune diabetes in adults. SAID=severe autoimmune diabetes. 
SIDD=severe insulin-deficient diabetes. SIRD=severe insulin-resistant diabetes. 
MOD=mild obesity-related diabetes. MARD=mild age-related diabetes. 
ANDIS=All New Diabetics in Scania. DIREVA=Diabetes Registry Vaasa.
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the second step does hierarchical clustering, was done in 
SPSS version 23 for two to 15 clusters using log-likelihood 
as a distance measure and Schwarz’s Bayesian criterion 
for clustering. k-means clustering was done with a 
k value of 4 using the kmeansruns function (runs=100) 
in the fpc package in R version 3.3.1. Only individuals 
negative for GADA were included because the k-means 
method does not accommodate binary variables and all 
individuals who were GADA positive were clustered 
together with the TwoStep method. Cluster-centre 
coordinates in ANDIS are shown in the appendix.

Clusterwise stability was assessed through resampling 
the dataset 2000 times and computing the Jaccard 
similarities to the original cluster.17 Generally, stable 
clusters should yield a Jaccard similarity of greater than 
0·75.17 Cluster labels were assigned by examining cluster 
variable means. 

Statistical analysis
We calculated the risk of complications using Cox 
regression in SPSS version 23, including covariates. 
Post-hoc comparisons of effects across clusters were 
tested in Stata version 13.1.

Associations between clusters and genotypes were 
calculated with the maximum likelihood estimation 
method in SNPtest2 version 2.5.2.18 A p value of less 
than 0·010 was considered significant in the genetic-
association analyses. The equality of odds ratios (ORs) 
across strata was tested with seemingly unrelated 
estimation in Stata version 13.1. Bonferroni correction 
was used to determine significance for multiple tests. 
Genetic risk scores were calculated on the basis of the 
number of risk alleles weighed by their effect sizes 
reported in previous genome-wide association studies. 
Logistic regression was done for each cluster against the 
controls in SPSS version 23.

Role of the funding source
The funding sources had no part in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. EA and LG had full access to all data and were 
responsible for the decision to submit for publication.

Results
We first analysed the ANDIS cohort, consisting of 
14 652 patients with newly diagnosed diabetes from 
Sweden, 932 (6·4%) of whom were registered before age 
18 years and were not included in our analysis of adult 
diabetes. Of the 13 720 adult patients, 204 (1·5%) had 
type 1 diabetes, 723 (5·3%) had LADA, 162 (1·2%) had 
secondary diabetes (coexisting pancreatic disease), and 
519 (3·8%) were unclassifiable because of missing data. 
The remaining 12 112 (88·3%) patients were considered 
to have type 2 diabetes (appendix).

To classify patients into novel diabetes subgroups, first 
we used the TwoStep clustering method in 8980 patients 
in the ANDIS cohort with complete data available for the 
clustering variables. The minimum silhouette width was 
found for five clusters in both men (n=5334) and women 
(n=3646) in the ANDIS cohort, and patient distributions 
and characteristics were similar in men and women 
(appendix). We verified the results using k-means 
clustering in GADA-negative patients, resulting in 
similar cluster distributions to TwoStep, with the same 
overall cluster characteristics in both sexes (figures 1, 2; 
appendix). Cluster stability was estimated as Jaccard 
means,17 which were greater than 0·8 for all clusters, 
regardless of sex.

Cluster 1, including 577 (6·4%) of the 8980 clustered 
patients, was characterised by early-onset disease, relatively 
low BMI, poor metabolic control, insulin deficiency, and 
presence of GADA (appendix), and was labelled as severe 
autoimmune diabetes (SAID). Cluster 2, including 1575 

Figure 2: Cluster characteristics in the ANDIS cohort
Distributions of HbA1c and age at diagnosis, and BMI, HOMA2-B, and HOMA2-IR at registration, in the ANDIS cohort for each cluster. k-means clustering was done separately for men and women; 
pooled data are shown here for clusters 2–5. SAID=severe autoimmune diabetes. SIDD=severe insulin-deficient diabetes. SIRD=severe insulin-resistant diabetes. MOD=mild obesity-related diabetes. 
MARD=mild age-related diabetes. HOMA2-B=homoeostatic model assessment 2 estimates of β-cell function. HOMA2-IR=homoeostatic model assessment 2 estimates of insulin resistance. ANDIS=All 
New Diabetics in Scania.
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(17·5%) patients and labelled as severe insulin-deficient 
diabetes (SIDD), was GADA negative but otherwise 
similar to cluster 1: low age at onset, relatively low BMI, 
low insulin secretion (low HOMA2-B index), and poor 
metabolic control. Cluster 3, labelled as severe insulin-
resistant diabetes (SIRD) and including 1373 (15·3%) 
patients, was characterised by insulin resistance (high 
HOMA2-IR index) and high BMI. Cluster 4, including 
1942 (21·6%) patients, was also characterised by obesity 
but not by insulin resistance, and was labelled as mild 
obesity-related diabetes (MOD). The 3513 (39·1%) patients 
in cluster 5 (labelled as mild age-related diabetes [MARD]) 
were older than patients in other clusters, but showed, 
similar to cluster 4, only modest metabolic derangements.

We used three independent cohorts to replicate the 
clustering: SDR (n=1466), ANDIU (n=844), and DIREVA 
(n=3485). In SDR, the optimal number of clusters was 
also estimated to be five, and k-means (k=4) and TwoStep 
clustering yielded similar results (92·4% clustered 
identically). Patient distributions and cluster charac-
teristics were similar to ANDIS (figure 1; appendix). 
Jaccard bootstrap means were greater than 0·8 for all 
clusters. k-means clustering in ANDIU also replicated 
the results from ANDIS (figure 1; appendix). In the 
DIREVA cohort, we found that clustering gave similar 
results in 2607 patients with longer diabetes duration 
(mean 10·15 years [SD 10·34]) as in 878 patients with 
newly-diagnosed diabetes (diabetes duration <2 years; 
figure 1; appendix).

To be clinically useful, patients would need to be 
assigned to clusters without de-novo clustering of a full 
cohort. Therefore, we assigned patients in replication 
cohorts to clusters on the basis of which cluster they 
were most similar to, calculated as their Euclidian 

distance from the nearest cluster centre derived from 
ANDIS coordinates, and found similar distributions 
(appendix). Sensitivity and specificity were highest in 
ANDIU and DIREVA patients recruited soon after 
diagnosis (appendix), probably reflecting how and when 
clustering variables were obtained.

We then compared disease progression, treatment, and 
development of diabetic complications between clusters in 
ANDIS. Clusters 1 and 2 had substantially higher HbA1c at 
diagnosis than the other clusters, a difference persisting 
throughout follow-up (figure 3). Ketoacidosis at diagnosis 
was most frequent in cluster 1 (31% [124/406]) and cluster 2 
(25% [259/1033]; vs <5% in other clusters; appendix). HbA1c 
was the strongest predictor of ketoacidosis at diagnosis 
(OR 2·73, 95% CI 2·47–3·03; p<0·0001, per 1 SD change; 
appendix). Cluster 3 had the highest prevalence of non-
alcoholic fatty liver disease (appendix). ZnT8A auto-
antibodies were primarily seen in patients with SAID 
(27% [79/289] vs <2% in other clusters; appendix).
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Figure 4: Antidiabetic therapy in All New Diabetics in Scania cohort during follow-up
(A) Time to sustained insulin use. (B) Time to metformin treatment. (C) Time to treatment with oral medication 
other than metformin. (D) Time to reach treatment goal (HbA1c<6·9% [52 mmol/mol]). 
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At registration, insulin had been prescribed to 
212 (42%) of 506 patients in cluster 1 and 389 (29%) of 
1339 patients in cluster 2, but to less than 4% of patients 
in clusters 3–5 (appendix). Time to sustained insulin use 
was shortest in cluster 1 (hazard ratio [HR] 26·87, 95% CI 
21·17–34·11, vs cluster 5; figure 4; appendix), followed by 
cluster 2 (10·97, 8·73–13·77, vs cluster 5). The proportion 
of patients on metformin was highest in cluster 2 and 
lowest in cluster 1 (figure 4; appendix), but was also low 
in cluster 3, which would be expected to benefit the most 
from metformin, showing that traditional classification 
is unable to tailor treatment to the underlying pathogenic 

defects. Kidney function and adverse reactions had no 
major effect on the proportions of patients taking 
metformin at this early stage of disease (appendix). 
Patients in cluster 2 had the shortest time to second oral 
diabetes treatment (figure 4; appendix) and the longest 
time to reach the treatment goal (HbA1c<6·9% 
[52 mmol/mol]; figure 4).

In ANDIS, patients in cluster 3 had the highest risk of 
developing chronic kidney disease during mean 
follow-up of 3·9 years (SD 2·3; appendix). For stage 3A 
chronic kidney disease (eGFR <60 mL/min), the age-
adjusted and sex-adjusted risk was more than two times 

Figure 5: Progression of disease over time by cluster 
(A) Time to chronic kidney disease (at least stage 3B) in the ANDIS cohort. (B) Time to macroalbuminuria in the ANDIS cohort. (C) Time to end-stage renal disease in the SDR cohort (data presented for 
SDR rather than ANDIS because of availability of longer-term follow-up). (D) Time to at least mild non-proliferative or proliferative diabetic retinopathy in the SDR cohort (insufficient data for 
retinopathy available in ANDIS). (E) Time to coronary events in the ANDIS cohort. Kidney function was not tested at diagnosis and, therefore, onset was set to the first screening date; it is not known how 
many patients were already affected at diagnosis. ANDIS=All New Diabetics in Scania. SDR=Scania Diabetes Registry. 
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higher than for patients in cluster 5 (HR 2·41, 95% CI 
2·08–2·79; p<0·0001; appendix); for stage 3B chronic 
kidney disease (eGFR <45 mL/min), the adjusted risk 
was more than three times higher than for cluster 5 (3·34, 
2·59–4·30; p<0·0001; figure 5A). Patients in cluster 3 
also had higher risk of diabetic kidney disease, defined 
as persistent macroalbuminuria (2·89, 1·92–4·35; 
p<0·0001; figure 5B). Similarly, in the SDR cohort 
(follow-up 11·0 years [SD 4·4]), patients in cluster 3 had 
the highest risk of chronic kidney disease (appendix) 
and macro albuminuria (2·18, 1·31–3·63; p=0·0026; 
appendix). Patients in cluster 3 in SDR had almost five 
times higher risk of end-stage renal disease than did 
patients in cluster 5 (4·89, 2·68–8·93; p<0·0001; 
figure 5C). The increased prevalence of kidney disease 
in cluster 3 was also confirmed in the DIREVA cohort 
(appendix).

Early signs of diabetic retinopathy (mean duration 
135 days [SD 299]) were more common in cluster 2 than 
in the other clusters in ANDIS (OR 1·6, 95% CI 
1·3–1·9; p<0·0001 vs cluster 5; appendix). The higher 
prevalence of retinopathy in cluster 2 than in other 

clusters was replicated in ANDIU (appendix) and SDR 
(HR 1·33, 95% CI 1·15–1·54; p=0·0001; figure 5D; 
appendix).

Although unadjusted risk of coronary events and 
stroke was lowest in clusters 1, 2, and 4, no significant 
difference was seen between the clusters in age-adjusted 
and sex-adjusted risk in ANDIS and SDR (figure 5E; 
appendix).

Finally, we analysed genetic loci previously associated 
with diabetes and related traits19 (table). Each cluster in 
ANDIS was compared with a non-diabetic cohort 
(MDC-CVA) from the same geographical region.9 No 
genetic variant was associated with all clusters (appendix). 
A variant in the TCF7L2 gene (rs7903146), previously 
associated with type 2 diabetes,20 was also associated with 
SIDD, MOD, and MARD, but not with SIRD (only 
difference significant after correction for multiple testing; 
table). The rs10401969 variant in the TM6SF2 gene, 
previously associated with non-alcoholic fatty liver 
disease,21 was associated with SIRD but not with MOD, 
suggesting that SIRD is characterised by more unhealthy 
(metabolic syndrome) obesity than MOD. The rs2854275 

EA/NEA MAF Cluster 1 
(SAID; n=313)

Cluster 2 
(SIDD; n=676)

Cluster 3 
(SIRD; n=603)

Cluster 4 
(MOD; n=727)

Cluster 5 
(MARD; n=1646)

p value of 
difference 
among 
clusters 2–5

TCF7L2 
(rs7903146)

T/C 0·26 1·17 (0·97–1·40); 
p=0·077

1·51 (1·33–1·71); 
p<0·0001

1·00 (0·87–1·15); 
p=0·86

1·38 (1·21–1·56); 
p<0·0001

1·41 (1·28–1·55); 
p<0·0001

<0·0001*

KCNQ1 
(rs2237895)

C/T 0·41 1·08 (0·91–1·28); 
p=0·31

1·13 (1·00–1·28); 
p=0·052

0·85 (0·74–0·97); 
p=0·0272

0·98 (0·86–1·10); 
p=0·88

1·13 (1·03–1·23); 
p=0·0196

0·0008

HHEX/IDE 
(rs1111875)

G/A 0·41 1·16 (0·98–1·38); 
p=0·10

1·21 (1·07–1·37); 
p=0·0045

1·05 (0·92–1·19); 
p=0·51

0·94 (0·84–1·06); 
p=0·31

1·11 (1·02–1·22); 
p=0·0228

0·0106

IGF2BP2 
(rs4402960)

T/G 0·29 1·04 (0·87–1·24); 
p=0·50

1·23 (1·08–1·40); 
p=0·0002

1·01 (0·88–1·16); 
p=0·53

1·04 (0·92–1·18); 
p=0·31

1·22 (1·11–1·33); 
p<0·0001

0·0117

CDKN2B 
(rs10811661)

T/C 0·16 0·87 (0·70–1·08); 
p=0·24

1·33 (1·11–1·59); 
p=0·0014

0·98 (0·83–1·17); 
p=0·85

0·99 (0·84–1·16); 
p=0·92

1·18 (1·04–1·33); 
p=0·0054

0·0149

MTNR1B 
(rs10830963)

G/C 0·29 0·84 (0·70–1·01); 
p=0·05

0·93 (0·82–1·07); 
p=0·26

0·89 (0·77–1·02); 
p=0·056

1·13 (1·00–1·28); 
p=0·067

1·05 (0·96–1·15); 
p=0·29

0·0151

SLC30A8 
(rs13266634)

T/C 0·31 0·98 (0·82–1·17); 
p=0·78

0·93 (0·82–1·06); 
p=0·23

1·11 (0·97–1·27); 
p=0·11

1·07 (0·94–1·21); 
p=0·30

0·92 (0·83–1·01); 
p=0·0457

0·0160

MC4R 
(rs12970134)

G/A 0·27 0·95 (0·79–1·14); 
p=0·52

0·97 (0·85–1·11); 
p=0·55

0·99 (0·86–1·13); 
p=0·59

0·87 (0·77–0·99); 
p=0·0229

1·07 (0·97–1·18); 
p=0·18

0·0230

TM6SF2 
(rs10401969)

T/C 0·10 0·75 (0·58–0·97); 
p=0·038

0·69 (0·58–0·83); 
p=0·0002

0·62 (0·52–0·75); 
p<0·0001

0·89 (0·73–1·07); 
p=0·26

0·77 (0·67–0·89); 
p=0·0005

0·0233

ADAMTS9–AS2 
(rs4607103)

T/C 0·24 1·05 (0·87–1·27); 
p=0·54

0·89 (0·77–1·03); 
p=0·15

0·93 (0·80–1·08); 
p=0·42

1·12 (0·98–1·27); 
p=0·064

0·92 (0·83–1·01); 
p=0·13

0·0278

VPS13C 
(rs17271305)

G/A 0·40 1·00 (0·84–1·19); 
p=0·93

0·97 (0·86–1·10); 
p=0·84

1·11 (0·98–1·26); 
p=0·092

0·88 (0·78–0·99); 
p=0·0491

0·93 (0·85–1·02); 
p=0·17

0·0281

SLC2A2 
(rs11920090)

T/A 0·13 0·94 (0·74–1·20); 
p=0·54

0·83 (0·70–0·99); 
p=0·0162

0·91 (0·76–1·09); 
p=0·23

0·97 (0·82–1·16); 
p=0·63

1·08 (0·95–1·24); 
p=0·44

0·0368

KCNJ11 
(rs5219)

T/C 0·38 1·05 (0·88–1·25); 
p=0·61

1·18 (1·04–1·34); 
p=0·0121

1·03 (0·90–1·18); 
p=0·67

1·28 (1·13–1·44); 
p=0·0001

1·10 (1·01–1·21); 
p=0·0324

0·0453

TSPAN8 
(rs7961581)

T/C 0·26 0·97 (0·80–1·17); 
p=0·69

1·05 (0·92–1·21); 
p=0·55

1·13 (0·98–1·31); 
p=0·11

0·99 (0·87–1·13); 
p=0·80

0·92 (0·84–1·02); 
p=0·11

0·0464

Maximum likelihood estimation using geographically matched individuals without diabetes as controls (n=2754). EA=effect allele. NEA=non-effect allele. MAF=minor allele 
frequency. SAID=severe autoimmune diabetes. SIDD=severe insulin-deficient diabetes. SIRD=severe insulin-resistant diabetes. MOD=mild obesity-related diabetes. 
MARD=mild age-related diabetes. ANDIS=All New Diabetics in Scania. *Significant after correction for multiple testing (77 tests). 

Table: Genetic associations with specific ANDIS clusters reaching at least nominal significance for difference among clusters 2–5
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(appendix), suggests that the clusters are stable and at 
least partially mechanistically distinct rather than 
representing different stages of the same disease. The 
differences in genetic associations also support this view. 
In particular, the absence of associations between the 
genetic risk scores for type 2 diabetes and insulin secretion 
and SIRD indicate that this group might have a different 
aetiology to the other clusters. Hepatic insulin resistance 
seems to be a feature of non-alcoholic fatty liver disease, 
because the SNP in the TM6SF2 gene usually associated 
with non-alcoholic fatty liver disease was associated with 
SIRD in this study, but not with MOD.

We cannot at this stage claim that the new clusters 
represent different aetiologies of diabetes, nor that this 
clustering is the optimal classification of diabetes 
subtypes. Additionally, whether patients (particularly 
from the periphery of clusters) can move between 
clusters needs to be shown in future prospective studies, 
and the exact overlap of weaker association signals will 
need to be investigated in larger cohorts. It might be 
possible to refine the stratification further through 
inclusion of additional cluster variables, such as 
biomarkers, genotypes, or genetic risk scores. Future 
genome-wide association studies might also be able to 
better describe the genetic architecture of the different 
clusters and establish the inherited proportion of each 
cluster with heritability partitioning models.27 This 
classification was derived primarily with patients from 
northern Europe, with limited non-Scandinavian 
representation, and the applicability of this strategy to 
patients of other ethnicities needs to be assessed. Only 
two types of autoantibodies were measured, and the 
effects of other antibodies on clustering performance are 
unknown. Moreover, we did not have data on some 
known risk factors for diabetic complications, such as 
blood pressure and blood lipids, and could therefore not 
include these in the analysis.

In conclusion, our data suggest that the combined 
information from a few variables central to the 
development of diabetes is superior to measurement of 
only one metabolite, glucose. Through combining this 
information from diagnosis with information in the 
health-care system, this study provides a first step 
towards a more precise, clinically useful stratification, 
representing an important step towards precision 
medicine in diabetes. This clustering also paves the way 
for randomised trials targeting insulin secretion in SIDD 
and insulin resistance in SIRD.
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variant in the HLA locus (previously associated with type 
1 diabetes22) was strongly associated with SAID (OR 2·05, 
95% CI 1·69–2·56; p<0·0001), but not with SIDD (0·82, 
0·66–1·00; p=0·078), reflecting the non-autoimmune 
nature of the SIDD cluster. A genetic risk score for 
type 2 diabetes (appendix) was significantly associated 
with all clusters (p<0·0008), except for cluster 3 (p=0·16). 
An insulin secretion risk score was significantly asso-
ciated with MOD (p=0·0002) and MARD (p<0·0001), and 
nominally with SIDD (p=0·0143), but showed no evidence 
of association with SAID (p=0·59) or SIRD (p=0·65). We 
did not analyse genetic associations in cohorts other than 
ANDIS because of insufficient data.

Discussion
Taken together, the results of our study suggest that this 
new clustering of patients with adult-onset diabetes is 
superior to the classic diabetes classification because 
it identifies patients at high risk of diabetic complications 
at diagnosis and provides information about underlying 
disease mechanisms, thereby guiding choice of therapy. 
By contrast with previous attempts to dissect the hetero-
geneity of diabetes,23 we used variables reflective of key 
aspects of diabetes that are monitored in patients. Thus, 
this clustering can easily be applied to both existing 
diabetes cohorts (eg, from drug trials) and patients in 
diabetes clinics. A web-based tool to assign patients to 
specific clusters, provided the appropriate variables have 
been measured, is under development.

Whereas SAID overlapped with type 1 diabetes and 
LADA, SIDD and SIRD represent two new, severe forms 
of diabetes previously masked within type 2 diabetes. 
It would be reasonable to target individuals in these 
clusters with intensified treatment to prevent diabetic 
compli cations. The risk of kidney complications was 
substantially increased in patients with SIRD, reinforcing 
the association between insulin resistance and kidney 
disease.24 Insulin resistance has been associated with 
increased salt sensitivity, glomerular hypertension, hyper-
filtration, and reduced renal function, all hallmarks of 
diabetic kidney disease.25 The increased incidence of 
diabetic kidney disease in this study was in spite of 
reasonably low HbA1c, suggesting that glucose-lowering 
therapy is not the optimum way of preventing this 
complication. In support of this hypothesis, mice with 
podocyte-specific knockout of the insulin receptor, 
mimicking the reduced insulin signaling seen in patients 
who are insulin resistant, developed diabetic kidney 
disease, even during normoglycaemic conditions.26 

Although differences in retinopathy were not as pro-
nounced as for diabetic kidney disease, insulin deficiency 
or hyperglycaemia appeared to be important triggers of 
retinopathy, with the highest prevalence observed in 
cluster 2 (SIDD).

The fact that clustering led to similar results in newly 
diagnosed patients and patients with longer-term diabetes, 
and that C-peptide remained relatively stable over time 
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