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Abstract

Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-
associated infections, resulting in differences in risks for hospitals depending on their network
position. These networks are increasingly used to inform strategies to prevent and control
the spread of hospital-associated pathogens. However, many studies only consider patients
that are received directly from the initial hospital, without considering the effect of indirect tra-
jectories through the network. We determine the optimal way to measure the distance
between hospitals within the network, by reconstructing the English hospital network based
on shared patients in 2014-2015, and simulating the spread of a hospital-associated patho-
gen between hospitals, taking into consideration that each intermediate hospital conveys a
delay in the further spread of the pathogen. While the risk of transferring a hospital-
associated pathogen between directly neighbouring hospitals is a direct reflection of the num-
ber of shared patients, the distance between two hospitals far-away in the network is deter-
mined largely by the number of intermediate hospitals in the network. Because the network is
dense, most long distance transmission chains in fact involve only few intermediate steps,
spreading along the many weak links. The dense connectivity of hospital networks, together
with a strong regional structure, causes hospital-associated pathogens to spread from the ini-
tial outbreak in a two-step process: first, the directly surrounding hospitals are affected
through the strong connections, second all other hospitals receive introductions through the
multitude of weaker links. Although the strong connections matter for local spread, weak
links in the network can offer ideal routes for hospital-associated pathogens to travel further
faster. This hold important implications for infection prevention and control efforts: if a local
outbreak is not controlled in time, colonised patients will appear in other regions, irrespective
of the distance to the initial outbreak, making import screening ever more difficult.
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Author summary

Shared patients can spread hospital-associated pathogens between hospitals, together
forming a large network in which all hospitals are connected. We set out to measure the
distance between hospitals in such a network, best reflecting the risk of a hospital-
associated pathogen spreading from one to the other. The central problem is that this risk
may not be a directly reflected by the weight of the direct connections between hospitals,
because the pathogen could arrive through a longer indirect route, first causing a problem
in an intermediate hospital. We determined the optimal balance between connection
weights and path length, by testing different weighting factors between them against simu-
lated spread of a pathogen. We found that while strong connections are important risk
factor for a hospital’s direct neighbours, weak connections offer ideal indirect routes for
hospital-associated pathogens to travel further faster. These routes should not be underes-
timated when designing control strategies.

Introduction

A growing body of literature shows the influence of contact networks on the spread of infec-
tious diseases. This extends from individual hosts [1-5] to entire countries [6-10] or organisa-
tions, such a healthcare institutions for pathogens that are predominantly transmitted through
hospital contacts [11-14]. The focus on contact networks, between various entities, reflects the
importance of social structure on the successful spread of a pathogen, and the fact that the risk
of contracting an infectious disease depends not only on the properties of the host or the path-
ogen [15]. Each contact between an entity may potentially serve as a transmission route, aiding
pathogen spread.

Traditionally, individuals in a person-based network were considered to be connected sim-
ply when there was any contact between them over the study period, resulting in an
unweighted (binary) network; the characteristics of a contact, such as its length or intensity
[16-18], were not taken into account. However, advances in techniques to determine the level
of contact between individuals, such as wearable sensors that measure face-to-face contact [4,
19-25], have resulted in more weighted networks becoming available. Like these recent per-
son-to-person networks, hospital networks comprise weighted connections between institu-
tions, as the number of shared patients (sometimes compensated for their length of stay) can
be used to estimate the extent of contact.

However, some differences between these networks should be considered. Person-to-
person contact is almost by definition symmetrical: if person A was in close contact with per-
son B, the reverse should also be true [22, 23]. In contrast, hospital networks are nearly always
asymmetrical, because the number of patients moving from hospital A to B is not necessarily
the same as the number of patients moving from B to A. Furthermore, the geographical posi-
tion of the hospital nodes is fixed and usually known, making it straightforward to compare
network and geographical distances.

Previous studies have shown how infection prevention and control (IPC) efforts against
hospital-associated pathogens in general, and bacteria showing antimicrobial resistance
(AMR) in particular, should be coordinated according to the structure of the hospital network
[26]. Correct estimates of the network distance between hospitals are therefore important for
risk assessments during outbreaks of hospital-associated pathogens. However, this is compli-
cated by the properties of these hospital networks. While the distance between two individuals
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in an unweighted network is simply the minimum number of steps needed to reach one from
the other [27], the distance through a dense weighted network is less straightforward, because
of the interplay between the number of intermediate steps and the weight of the contact [28].
A direct weak link may, for instance, constitute a longer distance than a route through many
intermediate nodes, but with stronger links.

We here estimate the distances between hospitals in the English hospital network, while
considering the spread of AMR as an example. AMR poses a significant risk to hospitalised
patients, and effective IPC is paramount [29]. We simulate the spread of hospital-associated
antibiotic-resistant pathogens with various transmission characteristics, to determine the opti-
mal balance between the number of intermediate steps and the weight of the connections to
measure the connectivity between hospitals in England. We compare the network distance to
geographical distances to determine the potential differences between them. The resulting dis-
tance metric can inform IPC strategies after observed outbreaks.

Materials and methods
Hospital network

We used data from the English National Health Service (NHS) Hospital Episode Statistics
(HES) for financial years 2013/14 and 2014/15 to construct a network of hospital organisations
(trusts) in England based on patient movements. The NHS-HES includes all inpatient admis-
sions to hospital trusts in England, based on provider episodes. We included all acute care hos-
pital trusts, including specialist hospitals (such as oncological), and joined all consultant
episodes per admission (called a ‘spell’ in NHS-HES, the time between admission and dis-
charge in the same hospital).

We sorted the spells per patient by admission date, and for each admission during 2014/15
determined if the previous discharge (if any) happened within the 365 days prior to the admis-
sion. For each pair of discharge and subsequent admission event we tallied the two hospitals
involved in this single patient movement (#1;;). Information from all spells during 2014/15
taken together thus form a contact matrix, M;;,
This contact matrix therefore included both direct (i.e. patient transfers between hospitals)
and indirect (i.e. with a stay at home in between) patient movements.

Each node in the network represented a single hospital trust and the edges represented the
number of patients who moved from one hospital trust to the other. The network was
weighted (number of patients moving) and directional (in any pair of hospital trusts, the num-

of patient movements between hospitals 7 and j.

bers of patients moving from and to each hospital could differ). Based on the community
structure of the measured hospital network, we divided hospitals into referral regions. The
community assignment with maximum modularity was determined using a standard commu-
nity structure detection algorithm [30].

Simulations

We simulated the spread of a hospital-associated pathogen through the hospital network using
a stochastic, discrete-time model with time steps (AT) of 7 day, much in the same way as used
by Ciccolini et al. [31] and Van Bunnik et al [32]. In the simplest version of the model, we
assume that each hospital is either “susceptible” (pathogen not present) or “infected” (patho-
gen present), and infected hospitals have a fixed prevalence, which determines the proportion
of discharged patients that are colonised with a hospital-associated pathogen. The probability
of a hospital getting infected depends on the state of the other hospitals, the assumed preva-
lence, and the patient movements between them. The probability of getting infected in the
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Table 1. Model paramters.

Parameter | Description Value (sensitivity analysis) Results
sensitivity
analysis

Y Chance of successful introduction (per 5x107°(10%,107%,2x1075,107°) S2 Fig

colonised patients), using no within-hospital
delay

y Chance of successful introduction (per 10°2(1072,2x1073,5x 107, 2x 1074 S3 Fig

colonised patients), using SIS within-hospital
model

B Within-hospital transmission parameter 0.1(1.0) S4 Fig

o Within-hospital removal rate of colonised 0.08 with 8=0.1 (0.01, 0.05, 0.09) and 0.8 with =1.0 (0.1, 0.5, 0.9) Fig 4 and S4 Fig

individuals

Ro Basic reproduction number 1.25[8=0.1,6=0.08](1.11[8=0.1,6=0.09],2.0[8=0.1, 5 =0.05], Fig 4 and S4 Fig

10.0[8=0.1,0=0.01]and 1.11[8=1.0,6=0.9], 1.25[8=1.0, 6 = 0.5],
2.0[8=1.0,6=0.5],10.0[8=1.0,56=0.1])

1(0) Starting prevalence (% colonised) 0.1% -

https://doi.org/10.1371/journal.pchi.1005622.t001

initial model can be described as:

Ny

prt=t1- [ -y (1)

jH;ET

where H; denotes each hospital, whose introductions to hospital j are summed if they are part
of the set of infected hospitals, I. y is the between-hospital transmission parameter equal, to the
probability that an imported colonised individual successfully spreads the pathogen. C; is the
attained prevalence after infection of the hospital. M;; denotes the patient movements between
hospitals i and j, as measured in the NHS-HES data. We chose parameter values such that
about half of the hospitals were affected after one year, using an equilibrium prevalence (C;) of
20%. Table 1 lists the parameters used for the main analysis, as well the parameters values used
to test the sensitivity of parameter choices.

Because the assumed binary infection state of the hospitals is a fairly crude approximation
of the within-hospital dynamics of hospital-associated pathogens (since the infectivity of a hos-
pital is likely to increase after the initial successful introduction), we expanded the model to
include the increasing prevalence within the hospital. We modelled this using a standard SIS
model; with transmission rate  and removal rate 6, the infected class is described as

% _ BST— ol 2)

As the susceptible class is simply the rest of the total population, using S = 1 — I, the within-
hospital epidemic curve can be derived as follows:

I(o0)

I<OO) —(p—o)t (3)
(1r-Q _W))e o

I(t) =

where I(c0) denotes the equilibrium prevalence given by I(c0) = 1 — ¢, with R; = £ and I1(0)

b
the starting prevalence at introduction, set at 0.001 (i.e. one patient among a thousand admit-
ted). This function can then be used to calculate the within-hospital prevalence at each time
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point,

Ny

PfHI(O)(t) —1— H (1 _ y)[(t)iM,-}-AT (4)

jHEl

The parameter values were chosen again such that approximately half the hospitals became
affected after one year, together with a within-hospital R, = 1.25, reflecting R, values often
used for studying the spread of AMR in hospital settings [33], resulting in an equilibrium prev-
alence of 20%.

We used each hospital in turn as the initial starting point of the outbreak, and repeated the
simulation 100 times per starting hospital, resulting in 15200 iterations of the model, which
delivers stable estimates (see S1 Fig). We tracked the time of infection per hospital, and esti-
mated the mean time to infection for each pair of starting and receiving hospitals.

Network distance, shortest path

In order to determine the shortest paths between hospitals, we applied a metric proposed by
Opsahl et al [28], that allows weighting between the number of steps and edge weight (Fig 1).
The shortest path through the weighted network, d"* between node i and j is

1
M;, M},

d"* = min(

) (5)

If o is set to 0, the shortest path is completely determined by the number of steps, as each
existing connection has value 1, irrespective of the weight of the connection. Conversely, if a is
set to 1, the shortest path is fully determined by the weight of the connections (i.e. the number
of shared patients). Technically, & can be set to above one, where the shortest path is skewed
towards the strongest links, but we considered only values within the range of 0 to 1.

Centrality

To determine the risk posed by an outbreak in any of the other hospitals, we calculated the
centrality of each hospital. We considered three centrality metrics: degree, closeness, and
betweenness centrality. Closeness centrality is given by the inverse of the distances to all hospi-
tals, as defined by the shortest paths

W =2 dwji,ﬁ ©

while the betweenness centrality is defined as the proportion of all of these shortest paths that
pass through node i,
i ()
cr(y =20 )
B g;;c/a
» where gi”(i) is the number of shortest paths passing through hospital i, and g;” is the total
number of shortest paths between all hospitals (excluding hospital i: (N — 1)(N - 2)). We used
the degree centrality defined as the sum over all connection weights, adjusted for the impor-
tance of steps by o

Nu
Cy (i)=Y M (8)
j
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©,

_ o 1 2 3
= (1/1) (1/1)+(1/1) (1/1)+(1/1)+(1/1)
_os5 | 025 0.153 0.175
a="u. (1/4) (1/8 + 1/35) (1/33 + 1/9 + 1/30)
_, | 0.0625 0.016 0.014
o= (1/16) | (1/64 + 1/1225) | (1/1089 + 1/81 + 1/900)

Fig 1. Schematic representation of measuring the network distance depending on the scaling
parameter a. Dots represent hospitals, red numbers show the number of patients shared between them.
Route 1 is a direct route between the left and right hospital through a weak connection, while the other routes
are indirect, through a mixture of strong and weak connections. The table shows the calculated distances for
each route for three values of a (0.0, 0.5, and 1.0); Each route in this example can be the shortest (in yellow)
depending on the exact value of a.

https://doi.org/10.1371/journal.pcbi.1005622.9001

To determine the optimal balance between the number of intermediate hospitals and the
strength of the connections to accurately reflect the spread of infectious pathogens through the
hospital network, we calculated the shortest paths and centralities for various values of o and
determined their correlation with the simulation results. We used Kendall’s tau (7) to measure
the correlation between the mean simulated time to infection and the distances and centrality
metrics, as it gives the most intuitive interpretation compared to other measures of rank corre-
lation (7 gives the proportion of randomly chosen pairs that are concordant) [34].

Removing weak links

To investigate the influence of weak links (i.e. connections between hospitals exchanging few
patients) that could theoretically be removed most easily, we repeated the analysis with altered
hospital networks. For each alteration, we removed the links with a weight under a certain
threshold, calculated the shortest paths between hospitals for various values of ¢, and repeated
the simulations for the scenario using a binary hospital infection state (Eq 1) and the scenario
using the SIS within-hospital model (Eqs 2 and 4).
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Fig 2. The patient movement network in England. A) Strong connections (darker lines) between hospitals (circles) are regionally bound, and form a
strong community structure (circle colours). B) The distribution of connection weights shows that most connections between hospitals are weak (i.e. few
shared patient between hospitals). C) The degree of a hospital (the number of hospitals it is connected to by shared patients) is related to the total number
of patients it exchanges with other hospitals (hospital strength).

https://doi.org/10.1371/journal.pcbi.1005622.g002

Results

Network properties

The hospital network consisted of 152 acute hospital trusts (Fig 2A) that admitted 4,091,977
patients with a total of 16,643,460 admissions in financial year 2014/2015. On average each
hospital exchanged 7,481 (IQR: 4583-9244) patients with 124 (IQR: 114-137) other hospitals,
resulting in 18,847 unique hospital to hospital connections made by individual patients, com-
prising 82% of all possible links. The weight of the connections was highly skewed (Fig 2B),
with 90% of the connections based on movements of 50 patients or fewer, comprising 10% of
the total number of patient exchanges. Although highly connected hospitals (i.e. those sharing
patients with many other hospitals) shared more patients (Fig 2C), the mean number of
patients exchanged per connection was not higher for the well-connected hospitals.
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Simulations

The simulated spread of a pathogen through the hospital network showed a fast increase in the
proportion of hospitals within the referral region of the initially affected hospital where the
pathogen was present, followed by the other regions after some time (Fig 3). The order in
which the pathogen reached hospitals in other regions depended on the position (region) of
the initially infected hospital. For some, the hospitals in one of the neighbouring regions were
clearly the next ones to be affected (e.g. Liverpool after Manchester and vice versa), while for
others (e.g. Newcastle) there was no discernible order of regions, and they were all affected at
more or less the same time. The difference in time for the pathogen to reach the other hospitals
in the starting region and hospitals in the other regions was shortest when London hospitals
were the first affected.

When including a delay between the time a hospital became infected and the time it starts
to spread the pathogen to its neighbouring hospitals, the difference in time to infection
between regions became slightly bigger. In particular, the time from the initial region becom-
ing infected to the other regions becoming infected increased, indicating that spread within
the regions depended mostly on the direct connections with the initial hospital, while other
regions were more often reached by indirect routes.

Network distance

The shortest path distance based purely on the connections weights (o = 1) correlated with the
simulated time it took the infection to spread between any two hospitals (Fig 4A). However,
incorporating the number of intermediate hospitals in the distance metric, by scaling factor a,
increased the association with time to infection (Fig 4A). This association was maximal around
o = 0.25, in particular for simulations with higher within-hospital R, values. The shortest route
between two hospitals therefore tended to have fewer steps (intermediate hospitals) instead of
more exchanged patients. This implies that the route of transmission between two hospitals
does not necessarily follow the connections between hospitals sharing many patients. The opti-
mal value for o did not depend on the parameter choices in our model (S2-54 Figs), and
although some parameter combinations did show weaker or stronger correlations, the position
of the maximal correlation only slightly altered.

If we consider the mean time to infection from all other hospitals, which translates to
the general risk these hospitals pose to the focal hospital, this correlated well with closeness
centrality (Fig 4B) at values of @ around 0.2-0.3, again preferentially incorporating the
direct weak connections over indirect strong routes. The —local- degree centrality (Fig 4C)
shows similar results, with a peak around a = 0.4 — 0.5; although marginally weaker, the peak
correlation for simulations including within-hospital delays was still over Kendall 7= 0.7.
This indicates that a hospital’s direct connections to its neighbouring hospitals are a
good enough predictor of its risk of admitting patients colonised with antibiotic-resistant
bacteria from anywhere in the country. However, betweenness centrality (Fig 4D) showed far
weaker correlation with the mean time to infection. This is probably a result of the dense
structure of the hospital network: there exist many alternative routes next to the shortest
paths through the hospitals with high betweenness that are just marginally longer and
therefore — epidemiologically speaking — just as important. None of the tested centrality
metrics showed clear geographical correlation (Fig 5A, 5B & 5C), while hospitals with high
degree or closeness centrality were the same (mainly the large tertiary care) institutions
(Fig 5D & 5E).
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Fig 3. Results of the stochastic simulations, showing the mean proportion of affected hospitals over time, per referral region. A) shows the results
for the model without delay, B) the results for the model with the SIS within-hospital model. The region of the initially affected hospital (Blue, each column
corresponding to a different initial outbreak hospital as labelled) was always the first to be affected, while the timing of the other regions becoming infected
depended on the starting point, with often a close by region (Red) affected next. C) The resulting distribution of time to infection from 1000 simulations
starting at two randomly selected hospitals; hospitals are ordered along the vertical axis according the mean time to infection.

https://doi.org/10.1371/journal.pcbi.1005622.g003
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modelled Ry, or other model parameters (see S2—S4 Figs for further sensitivity analyses), with longer delays and higher
introduction probabilities only slightly shifting the optimum to lower a. The mean time to infection, reflecting the risk

of a hospital getting infected, relates to the hospital’s centrality. B) Although closeness showed the best correlation

(at a=0.30), C) degree centrality performs only marginally less well (at a = 0.50 — 0.60), while D) betweenness showed a
poor correlation, with no clear optimal value for a. E) The time to infection as a function of shortest path length between all
hospitals using a = 0.25, is strongly correlated with network distance. F) The correlation between the mean time to
infection and closeness for each hospital.

https://doi.org/10.1371/journal.pcbi.1005622.9004

Relation between network and geographical distance

Using a = 0.25, we observed that for hospitals in close proximity, network and geographical
distance were strongly related, with hospitals sharing many patients also being geographically
close to one another. However, hospitals that were geographically further away than about
200km all showed more or less the same network distance (Fig 6A). The network distance to
these distant hospitals depended fairly strongly on the initial hospital they were measured
from (Fig 6B, 6C and 6D).

Removing weak links

As all network metrics favoured the number of connections or steps instead of the weight of
the connections, to test their influence we removed the all weak links below thresholds of 10,
50, 100, 200, or 300 patients from the network. Using the hospital in Oxford as the initial out-
break hospital, the time to infection of other regions increased as the threshold used to remove
links increased (Fig 7A & 7C), in particular for a subset of regions, where hospitals became
completely disconnected from the rest of the network after removing all connections with
fewer than 308 exchanged patients. Removing weak links had no effect on the dynamics within
the initial region, in contrast to the spread between regions. Furthermore, the optimal estimate
of o increased as the threshold increased, focussing the metric more on connection weight
than on number of steps (Fig 7B & 7D).

Discussion

We have shown that a hospital’s risk of importation of hospital-associated pathogens can be
estimated using the hospital network, by taking both the number of patient movements and
the number of intermediate hospitals in possible routes between them into account. The num-
ber of shared patients seems an appropriate distance metric for strongly connected hospitals.
However, when estimating the distance between hospitals further apart in the patient referral
network, it is insufficient to measure the shortest path using just the number of shared patient,
as each extra step in the route confers a delay in the spread of a pathogen, and needs to be
taken into account. We found that the existence of a connection between hospitals, i.e. whether
or not any patients were shared between hospitals within a year, was more important than the
strength of these connections. Strictly looking at directly shared patients between hospitals
may underestimate the risk posed by hospitals outside the referral region.

An accurate measure of distance between hospitals is important to enable effective adjust-
ment of IPC efforts to the current AMR situation, because these need to take the risk posed by
resistance problems in other hospitals into account. An accurate risk assessment depends not
only on reliable reports of the prevalence of AMR in all hospitals, but also on a correct estima-
tion of the ‘distance’ to each hospital in terms of infection risk, because smaller problems in
hospitals nearby can pose larger risks than large problems in hospitals far away. Measuring dis-
tance between hospitals through a hospital network provides one method of estimating the
risk of direct or indirect transmission of a pathogen between them; however, exactly how this
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distance should be measured has not been investigated to date. This paper contributes to find-
ing the best metric for measuring this distance.

The risk for individual hospitals in the absence of knowledge about the current situation in
other hospitals can be estimated using their degree centrality, as well as their closeness central-
ity, mirroring observations made in human host-to-host networks [2, 35, 36]. Degree central-
ity has the advantage of being a local metric, which can be estimated by an individual hospital
organisation without knowledge of the entire hospital network. It is therefore easier to apply
than closeness centrality, whose use of all shortest path lengths across the network is more
exact, yet would require an individual hospital to know the complete network structure.
Because degree centrality can be estimated by hospitals themselves, they can either use it as an
operational indicator to be lowered (by breaking away weak connections) to reduce risk of
introduction, or use it to compare their position with other hospitals willing to report their
centrality, with the goal of adjusting IPC efforts to their own level of risk.

The speed of spread to far-away hospitals seems to strongly depend on the presence of the
many weak links in the hospital network. The removal of these weak links resulted in longer
time to infection of some hospitals, in particular those further away in the network, while lead-
ing to a higher estimate of the scaling parameter ¢, i.e. incorporates more of the connections’
weight in the distance metric. This indicates that the weak links in the network can be ideal
routes for hospital-associated-pathogens to travel further faster. The combined weight of all
weak links, together with enough waiting time, increases the probability that one of them will
result in a successful introduction far away. This means that preventing introductions along
the weak links, for instance by preferentially screening and isolating patients coming from
‘unusual’ hospitals, could potentially slow the spread of hospital-associated pathogens over
longer distances.

However, despite the influence of the weak links, closely neighbouring hospitals that
exchange many patients are still at greatest risk of transmitting between each other [37], and
are the first ones to be affected after the initial outbreak. These closely connected health care
institutions, which include long-term care facilities and nursing homes, also affect each other’s
prevalence of hospital-associated pathogens, depending on the length of stay of patients, the
size of the institutions, the hospitals they exchange patients with, and the total number of
patients they exchange [11, 38, 39]. This reiterates the need for regional coordination of infec-
tion prevention and control [26]. Focussing control efforts on the weak links may therefore be
advantageous on a global level, affecting the entire network, while focussing on the stronger
links makes more sense on a local level.

It is only once a pathogen has spread to the hospitals in the same region that the exact num-
ber of patients shared with the affected hospitals becomes a less important predictor of the risk
of introduction, because the cumulative weight of routes involving weak links increases dra-
matically and the number of possible routes between affected and unaffected regions expand
rapidly. In this respect, hospital networks behave as small-world networks, with the weak con-
nections offering shorter routes for the pathogen to spread to otherwise distant hospitals. This
also means that the marked difference between geographical and network distance between
hospitals (which are far apart geographically) has important implications for control efforts,
because a regional outbreak in, for instance, the South-West of England just as easily forms a
threat to hospitals in the North-East as it would in the Midlands.

Preventing the transition from a regional outbreak to a national problem forms a formida-
ble challenge for IPC efforts, as the possible routes between affected and unaffected regions
rapidly expands. At this stage, preventing introductions through screening patients moving
from other hospitals becomes very difficult, as well as costly, because many more patients have
to be screened and isolated. The many different routes colonised patients are coming from
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makes it harder to define clear risk groups based on previous hospital admissions. Moreover,
as the number of hospitals experiencing considerable infection pressure increases, the chances
of more hospitals failing control also increase, creating a chain reaction culminating in all hos-
pitals being affected. This shows the importance of controlling any AMR or healthcare-associ-
ated infection problem as soon as it is detected, before it can cause wider problems that are
harder to control.

Limitations

We considered three exemplar network metrics, capturing different structures, while more are
available. It would also possible to evaluate a larger number of metrics in a meta-modelling
approach to determine the full effect of the network structure on the risk of a hospital receiving
hospital-associated pathogens; in particular, as effects that are not captured by one network
metric may be captured by another. This could result in a combined metric, with different
metrics adding to the hospital’s risk, which we deem beyond the scope of this single paper.

It should be noted that the epidemiological distance used in our simulation is purely based
on the simulations using the observed hospital network. The simulation model is an approxi-
mation, and results may be influenced by specific assumptions. For example, we assume that
all patients within a single hospital trust have an equal opportunity to transmit the pathogen to
each other. However, the physical and organisational structure of a hospital affects these prob-
abilities, resulting in preferential transmission between patients admitted to the same ward,
often with similar conditions. Apart from clustering in the network, medical conditions may
also alter the susceptibility of patients, causing different rates and different connectivity
depending on the particular condition. Differences in rates may be exacerbated in wards with
larger proportions of frail patients, resulting higher mortality. This could imply that the condi-
tion- or ward-specific sub-networks might even have to be weighted differently depending on
the question at hand.

Sub-networks may also exist on the level of the institutions, as the network is based on hospi-
tal organisations that could comprise multiple hospital sites. However, these hospital sites
within one organisation can be expected to share even more patients than hospital organisations
within a single region, thus creating an extra layer within the network. Although these assump-
tions may alter the absolute distance between hospitals in the network, the relative difference is
unlikely to change dramatically as we can expect the within-trust networks to be much more
tightly connected, thus forming a single entity, compared to the between-trust network.

Conclusion

The network distance between hospitals is not merely a reflection of the number of shared
patients between them, but also the number of intermediate hospitals that need to be passed
en-route from one to the other. Because the network of hospitals consists of many weak links,
formed by hospitals sharing very few patients, the distance between far away hospitals may
therefore easily be underestimated. This particularly applies when a pathogen has spread to
other hospitals in the initial region and many more weak links become available for its onward
spread to different regions. Our observations hold important implications for IPC efforts: if a
local outbreak is not controlled in time, colonised patients will appear in other regions from
unexpected hospitals, making import screening ever more difficult.

Supporting information

S1 Fig. Determining the best number of model iterations. After generating 1000 simulations
of the model, we randomly selected a fixed number of simulations, calculated the mean times
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to infections, and their correlation with (A) network distance (B) closeness centrality, (C)
degree centrality, and (D) betweenness centrality using & = 0.25. This process was repeated 25
times for each number of simulations between 10 and 250. Increasing the number of simula-
tions increases the correlation with network distance (A) and decreases the variability in the
estimated correlation with network characteristics (B) (C) (D). After 100 simulations,
improvements in the estimates and variability are marginal. The correlations between (E) net-
work distance and mean time to infection as a function of & for 10, 50, 100, and 200 simula-
tions per initial, as well as (F) the correlation between closeness and mean time to infection,
show no shift in the optimal value of & depended on the number of simulations.

(EPS)

S2 Fig. Sensitivity analysis using different introduction probabilities for the model without
within-hospital delay.
(EPS)

S3 Fig. Sensitivity analysis using different introduction probabilities for the model using
the SIS within-hospital model with beta = 0.1 and delta = 0.08.
(EPS)

S4 Fig. Sensitivity analysis using different equilibrium prevalences (adjusting delta) for the
model using the SIS within-hospital model with faster within-hospital spread, using

beta = 1.0.

(EPS)

S1 Table. The contact matrix between all hospital trust in England, showing the number of
patients received from other hospitals during financial year 2014-2015.
(XLS)
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