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Introduction
Motivation: Abnormalities in emotional regulation (ER),
the ability to adjust emotional responses to external stimuli,
are implicated in numerous psychiatric disorders, including
Major Depressive Disorder (MDD) [1]. Functional
Magnetic Resonance Imaging (fMRI) measures blood oxygen
consumption, serving as an indirect measure of brain
activity. Neuroimaging with fMRI has been used in to define
the activity of discrete brain regions in the context of
neurocognitive tasks [2]. Efforts in functional neuroimaging
to characterize the neural presentation of ER deficits have
largely focused on static connectivity in functional brain
networks [3]. Dynamic neural connectivity, as opposed to the
constancy of static connectivity, describes how causal
relationships between brain regions change over time.
Dynamic connectivity has never been characterized for
functional brain networks engaged in ER tasks.

Results: fMRI data from patients• Binarizing fMRI data with TEDIE

• PBNs & Dynamic Signatures

• Reverse engineering static networks

• By the TEDIE analysis, the best binarization for simTB
(in silico) data is the mean method, with the uniformity of
the in silico data making the results conclusive. If PBNs are
to be generated from in vivo data by concatenating all 4
scans, then the TEDIE analysis indicates that with the
median binarization is optimal, although customized
binarization methods for each patient may be necessary.

• The mean of BCorrU and BCorrD consensus network
perfectly matched our gold standard for all 100 in silico
patients. This is likely because the gold standard for
simTB data is derived from a correlation, not a
connectivity, matrix. This reveals a potential limitation of
the ability of simTB to validate our pipeline.

• Preliminary dynamic signatures were calculated for the
simTB in silico data including partial static structures. This
was done successfully, but more work will need to be
done to meet computational challenges in BoolNet for the
number of nodes in the patient data and including all
prior network information.
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Discussion

Conclusion and Future Work
The study of functional brain networks engaged for
emotional regulation can benefit from a validated pipeline
that models dynamic connectivity in fMRI data using PBNs,
and our work with in silico data has made progress towards
classifying real patients based on dynamic connectivity in
fMRI scans. Future work will focus on entering real patient
data (typically developed, acute MDD, and remitted MDD)
into the pipeline. Once dynamic signatures are extracted
from real patients, they will be classified into clinically
relevant subgroups. The dynamic signatures may also be
merged with phenotypic data (age, sex, disease status) to
identify clinically relevant dynamic signature phenotypes.
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• Generating consensus networks

MULAN is a MATLAB toolbox [6] that contains 42 reverse
engineering methods widely known in the neuroscience
community. MULAN can reverse engineer 42 inferred
networks for each time series. First MULAN plots the
receiver operating characteristic (ROC) curve. If a gold
standard network is provided, MULAN can then calculate
the area under the curve (AUC) of the ROC curve.

Six binarization methods from GEDTools were used to
binarize in silico and in vivo data [4]. The methods were
evaluated with the Two-sEep DIscretization Evaluation
(TEDIE) [5], which includes:

• Binarizing fMRI data

• AUC of  ROC curve from MULAN

• Dynamic Signatures

1) Statistical test (sign test) to
eliminate binarizations that
introduce new patterns.
2) Mean area between curves
(ABC) calculation to test for
goodness of binarization fit. ABC example

Dynamic signatures – representative examples from simTB 003 (left)
and simTB 096 (right)

simTB fMRI TEDIE results (n = 100) 

Representative Examples from simTB 003 (left) and simTB 096
(right) – Threshold = 0.8

Probabilistic Boolean networks (PBNs) are defined as
G(V, F, 𝛼), where 𝑉 = {𝑣1 , … , 𝑣𝑛} represents a set of n
brain regions, F = 𝐹1 , … 𝐹𝑛 represents a set of n families
of Boolean functions, and 𝛼 = {𝑎1 , … 𝑎𝑛} represents a set
of function selection probability vectors corresponding to
each family of Boolean functions. Binarized fMRI data and
prior knowledge from consensus networks are put into
BoolNet, an R package designed to work with Boolean
networks and PBNs [7]. A dynamic signature from the
resulting PBN is computed.

Methods
• fMRI data collection
Individuals did 4 ER task-runs in a
Siemens 3T SKYRA MRI machine. In
two tasks they increased emotional
response to IAPS images by cognitive
reappraisal, and decreased emotional
response in the other two. Participants
rated the arousal of the images and their ER ability.
Pupillometry and electrodermal activity were measured as
physiological proxies of emotional response.

fMRI ER task

Approach: fMRI data from typically-developed
adolescents (n = 94) and in silico fMRI data (n = 100) from
simTB (a MATLAB toolbox) were obtained. The data was
used to construct probabilistic Boolean networks, from
which dynamic signatures were extracted. Later, data from
adolescents diagnosed with acute MDD or in remission
from MDD will go through the same pipeline.

Project pipeline

Results: fMRI data from simTB

• Binarizing fMRI data

Patient fMRI TEDIE results (n = 94)

• Reverse engineering static networks
Representative Examples from real patients S0433NYC (left) and
S0022MVK (right) – Threshold = 0.8

• Reverse engineering static networks

Methods BCorrU BCorrD BCohF COH1 BH2D BH2U BMITD2 BMITU BMITD1 PCohF

Mean AUC 0.9900 0.9900 0.9899 0.9897 0.9891 0.9890 0.9889 0.9888 0.9888 0.9734

Number of  times in top ten 100 100 100 100 99 100 100 100 100 94

Top Ten Best Performing Methods by AUC

Consensus networks were generated by taking the mean of
the top two methods as determined by the AUC analysis. A
graphical summary of the process of reverse engineering
static networks and generating consensus networks is below.
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42 network inference 

“Best by TEDIE” indicates
that the method had the lowest
Area Between Curves value of
methods that pass the sign test.

Values of these matrices are
1 (green) if brain region
corresponding to row i was
found to affect the brain
region corresponding to
column j, and 0 (red)
otherwise.

Values of these matrices are
1 (green) if brain region
corresponding to row i was
found to affect the brain
region corresponding to
column j, and 0 (red)
otherwise.

“Best by TEDIE” indicates that the
method had the lowest ABC value of
methods that pass the sign test. Mean
is highlighted in green because it was
the method selected for simTB data.

A greener value in Mij
in these matrices
indicates a stronger
dynamic connectivity
between brain regions
i and j.


