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Introduction Methods Discussion

The axon terminal of neuronal cells has complex signaling and metabolic

. . . . . . . . To test competitiveness of the bucket-brigade mechanism of kinesin
Flemands. Transmitting  signals to n.elghbo'r ing neurons  through - synapses Partial leferentlal EquathnS (PDES) recycling, we compared active steady-state fluxes of the bucket-brigade model
involves macromolecules, presynaptic vesicles, and organelles (such as ’

mitochondria), many of which are synthesized in or near the cell body [1] and the model with no barriers with the same model parameter values. In doing
e ’ . . v L _ Variables m Boundary Cond. R is the rate of change of Parameters this, we confirmed that the unrestricted kinesin diffusion is inefficient for long
Diffusion of large molecular complexes over long distances 1s slow, and d bindi D ¢ ¢ effective kinesin dif rate . . L .
: : Free kinesin P(z,t) - concentrations due to binding eff axons (Fig. 9), but the bucket brigade maintains a virtually constant flux, even
neuronal axons can be meters long, so supplying the synapse with cargo — = | Dess- + R zero flux J. Foctive assoc. T L . C e .
] . : . . : (diffusion) ()t d:r- 01: and unbinding of kinesin and ongff € ective assoc. rate though it 1s mitially low. This, preliminarily, confirms our hypothesis that the
synthesized in the soma through diffusion would be inefficient. There are motor /. . . T . .
. . ‘ ‘ cargo: L . dissociation rate bucket brigade 1s more efficient in longer neurons (Fig. 9). For a definitive
proteins that actively transport cargo. Kinesin bound to | Q) 0 of f . . .
. Qz, 1) . (Q-ves) — R sero flux Re ky . P-Cik ip-O | segment length answer, we must run long-length simulations. But reaching a steady state by
One motor protein is kinesin, which consumes energy to walk down the cargo (advection) " ‘ el ol . nu_mber of qégmen to solving the time-dependent PDEs becomes computationally expensive, because
microtubule (MT) tracks of the axon, pulling cargo along and thus supplying the | 9O 920 O _C We used VCell [4], a biological . Z 1\ o 1;11_T 1; e for all lengths, we must use a small spatial step to avoid errors. Since these
needed proteins to the terminus [1]. But what happens to kinesin after transport Free cargo Cl(z, ) 3¢ = Peargo 5 + e=0=Co modelling software, to compute ™ ,( L 5 : B simulations are computationally expensive, our current numerical solver has yet
1s completed? Recent experimental work and mathematical modeling have (diffusion) | . right: zero flux and run simulations. Vef f elfective adv. velocity to complete the simulations needed to confirm our hypothesis.

pointed away from degradation or recycling via dynein, a retrograde motor, and

. > . e . . . . The bucket brigade model takes longer time to reach a steady state (Fig. 7).
instead suggest that kinesin may be recycled via a diffusion-based mechanism, Mathematical Interp retations of Assumptlﬂns This is because the flux in this model is limited by the rate with which the cargo

Spatial Inhomogeneities

at least 1n cells with short neurites/axons [2]. But will such a mechanism be

viable in long axons, given the slowness of diffusion over long distances? is passed over the cargo jam; the latter relies on cargo diffusion which 1s slow.

This rate can be increased by increasing the diffusion of cargo within the jam,

It has been shown that ® MAPs, e.g. tau, can

Excluded Volume Effect

Continuing this line of exploration, we propose a “bucket-brigade” 038 o5 particles in the presence of cause slowdowns in % '8 but this will lower the diffusion barriers for kinesin, and the model becomes
mechanism, in which cargoes ‘“change hands” during active transport and @ W | oo .. ) obstacles have a slower kinesin advection and 40 1 e more like the no-barrier model. We can also reconsider the definition of “steady
diffusion of unbound kinesin motors 1s restricted by cargo jams and therefore no c » \‘u‘ ,." s — diffusion rate. This 1s the decrease binding 3] 35 5 g state” for the bucket-brigade model. After an initial peak, the flux stays steady,
longer a limiting step in kinesin recycling. The cargo jams occur when active 3 025 Ry , | excluded volume effect. ® MTs are discontinuous 30 AT 1'2 - but later decreases to a true, mathematical steady state (Fig.7). The initial steady
transport 1s disrupted by spatial inhomogeneities due to MT discontinuities or g 0.2 * 25 é s This decrease is given by | This is modeled by periodic §25 T | - % value corresponds to fluctuating concentrations in the cargo jams, which 1s
occlusion of MTs by other microtubule associated proteins (MAPS). S 015 - 2 %é the power law below (see, decreases in the velocity and f: T : 06 % similar to the environment in real neurons. Considering this to be an actual

_ _ % . \\ ‘," 15 2 o e.g., [5,6] and references | binding rate. o | z: g steady-state flux would make the comparison of the models less challenging.
Ob jective ° ¥ ' 8§ | therein): | h defines the width of the | s ; & : :
. . . . ' J i\ | D= D (1 Gt) | v I T A Future Directions

Investigate, by formulating and solving a mathematical 0 0 “JJ T hmesin Cp step = | 71 L5 | e Distance . . — .

. . . ' ' We would like to complete the currently-running long-length simulations to see if our

model of axonal transport in the presence of spatlal Figure | HISANce where Cyor = C +Q B\ [ I o L hypothesis holds. This computational problem might be solved more efficiently by a time-

inhomogeneities, whether the bucket-brigade mechanism of and C, is the percolation limit: as total cargo approaches this limit, D, goes T (x =P T3 ) (L =S ) o o (I = 7) (r = ) independent P?E ?01"6{1’ llllowev,er impl;‘,nerﬁaﬁon of a stable and fast-converging time-
kinesin recycling results in cargo transport that is efficient to 0, and o is a constant related to the shape of the obstructions. Vet = v(length — gaps,)) kon, s = kong(length — gapsy,, ) independent solver is a challenge in and of itself.

As described above, emergence of cargo jams and movements of cargo in the vicinity of

Res u Its the cargo jams 1s a limiting factor. To model these processes more realistically, one could
construct a multi-scale hybrid deterministic-stochastic model, in which the kinesin advection

and diffusion over areas with no barriers are described continuously, as we do now, but the

over long distances.

|
Bucket Brigade Model e e . .
we o 06 0,008 c processes 1n the vicinity of the cargo piles, and the piles themselves, are modeled
9-90“.1 e 8" 0.008 8" stochastically. Resolving the piles stochastically on a small spatial scale would more
Mass-action kinetics: e S0k - - - _ o7 2 accurately depict the collisions of molecules and excluded volume effect. By allowing the
o kinesin q the leneth of th B Figure 3b Distance Egggi w V & & 5 08 piles to stochastically appear, dissipate, and reappear in different places, the model would
600.0 : c . . .
1nesin 1s conscerved over the Iengin ol the axon i 3, 004 J J J J Sos better describe the dynamics of the axon and the cellular environment. We hope to use the
. . . . . . . - 0.8 — .
e kinesin exists in two states, active and 1nactive [3] i o5 | 0.003 204 results of our model to make testable hypotheses for our experimental collaborators.
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