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SUMMARY

Macrophage activation is associated with profound
transcriptional reprogramming. Although much pro-
gress has been made in the understanding of macro-
phage activation, polarization, and function, the
transcriptional programs regulating these pro-
cesses remain poorly characterized. We stimulated
human macrophages with diverse activation signals,
acquiring a data set of 299 macrophage trans-
criptomes. Analysis of this data set revealed a spec-
trum of macrophage activation states extending the
current M1 versus M2-polarization model. Network
analyses identified central transcriptional regulators
associated with all macrophage activation comple-
mented by regulators related to stimulus-specific
programs. Applying these transcriptional programs
to human alveolar macrophages from smokers and
patients with chronic obstructive pulmonary disease
(COPD) revealed an unexpected loss of inflammatory
signatures in COPD patients. Finally, by integrating
murine data from the ImmGen project we propose a
refined, activation-independent core signature for
human and murine macrophages. This resource
serves as a framework for future research into
regulation of macrophage activation in health and
disease.

INTRODUCTION

During the last two decades, a conceptual framework for the

description of macrophage activation has been developed.

According to this framework, macrophages can be polarized

into classically (M1) or alternatively (M2) activated cells repre-

senting two polar extremes of signals computed by macro-

phages (Biswas andMantovani, 2010). TheM1 versusM2model

has been very helpful in describing immune responses during
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acute infections, allergies, asthma, and obesity (Chinetti-

Gbaguidi and Staels, 2011). However, observations obtained

from macrophages involved in chronic inflammation, chronic

infection, or cancer strongly suggest that the myeloid compart-

ment has a much broader transcriptional repertoire depending

on the different environmental signals received (Boorsma et al.,

2013; Chow et al., 2011; Edin et al., 2012; Hodge et al., 2011;

Lawrence and Natoli, 2011; Martinez et al., 2009; Mosser and

Edwards, 2008; Murray and Wynn, 2011; Reinartz et al., 2013).

Despite a number of genomic studies analyzing macrophage

activation in response to bacteria, TLR ligands, and M1 or M2

stimuli, to date there have been no attempts to reconcile

these observations by building new and integrative models of

macrophage activation (Martinez et al., 2006; McDermott et al.,

2011; Nau et al., 2002; Ramsey et al., 2008).

Transcriptomics has considerably contributed to a better

understanding of immune cell function and regulation. Large

consortia such as the ImmGen consortium (Best et al., 2013;

Bezman et al., 2012; Cohen et al., 2013; Gautier et al., 2012;

Miller et al., 2012) or the Human Immunology Project Consortium

(Poland et al., 2013) compiled extensive data sets and defined a

core transcriptional program for murine tissuemacrophages and

dendritic cells (DCs) under steady-state conditions (Gautier

et al., 2012; Miller et al., 2012). A complementary approach

has been introduced by InnateDB (Breuer et al., 2013). Data on

molecular interactions between proteins of the innate immune

system derived from smaller data sets have been compiled

and can be used to reveal mechanistic insights into immune

cell function (Hume et al., 2010; Mabbott et al., 2010). Unfortu-

nately, meta-analysis of small data sets has been hampered by

several challenges, including differences in the genetic back-

ground of mice and in stimulation conditions and the combina-

tion of in vitro and in vivo data limit or even biasmodel generation

of incongruous data sets (Mabbott et al., 2010). Moreover,

comparative studies have identified substantial differences in

immune-cell gene expression between mice and humans

(Schroder et al., 2012; Shay et al., 2013). Therefore, it remains

to be fully elucidated, how immune cell activation—particularly

in human macrophages—is transcriptionally controlled and to

which degree these pathways are conserved across species
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(Murray and Wynn, 2011). Standardizing data acquisition and

assembling larger data sets, such as by the ImmGen con-

sortium (Heng and Painter, 2008), is necessary to answer such

questions.

Several elegant studies have demonstrated the value of

analyzing networks based on expression profiling in macro-

phages (Martinez et al., 2006; Nau et al., 2002; Ramsey et al.,

2008) or T helper 17 (Th17) cells (Ciofani et al., 2012; Yosef

et al., 2013). These studies show how technological and

analytical advances can reveal network structures in immune

cells, e.g., by using algorithms that integrate transcriptome

data with database-stored information. Other approaches that

require large data sets, such as reverse network engineering

(RNE), have previously been used to characterize B cell activa-

tion (Basso et al., 2005) and have been further refined during

the last few years (Marbach et al., 2012). However, so far, RNE

has not been applied to other immune cells most likely due to

the lack of large enough data sets.

In this study, we generated a resource data set to assess tran-

scriptional regulation during human macrophage activation by

comparing a diverse set of stimuli on a singlemicroarray platform

under highly standardized conditions. Network modeling of this

data set led us to extend the current M1 versus M2 polarization

model to a ‘‘spectrum model’’ with at least nine distinct

macrophage activation programs. Further characterization of

individual programs identified transcription factors associated

with particular phenotypes, such as STAT4, which was associ-

ated with stimuli linked to chronic inflammation (TNF, prosta-

glandin E2, TLR2-ligand, ‘‘TPP’’) as seen in granulomatous

diseases (Ciofani et al., 2012; Marino et al., 1997; Reiling et al.,

2002; Shay and Celeste Simon, 2012). Furthermore, we applied

this resource data set to define activation states of human

alveolar tissue macrophages in vivo. Finally, we used our

resource data set to refine the previously suggested coremacro-

phage signature to encompass species differences and account

for the spectrum of macrophage activation.

RESULTS

Extending the Current Model of Macrophage
Polarization
We generated macrophages from human monocytes by differ-

entiation with GM-CSF orM-CSF (Figure 1A) and compared their

transcriptomes with DCs and T, B, and natural killer (NK) cells

(see Figure S1A, Table S1, and Supplemental Information

available online). With coregulation analysis (CRA) to assess

overall sample-to-sample relationships, macrophages were

clearly distinguishable from other cell types including DCs (Fig-
Figure 1. Extending Macrophage Polarization to a Spectrum Model

(A) Schema describing the workflow for Figure 1.

(B–G) Correlation networks of 299 macrophage transcriptomes representing 29 c

time points (G).

(H) Self-Organizing Map (SOM) clustering using samples displayed in (E). Clusters

frame.

(I) Matrix of hierarchically clustered Pearson’s correlation coefficient matrix (CCM

probes.

(J) Spectrum model (3D) based on the ten clusters defined in (I) and sample value

(Mb) are set as origin, activation states are represented by colored arrows, x, y, z a

Table S2.
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ures S1B–S1E), which was confirmed on protein level by flow

cytometry (Figures S1F and S1G). To better understand the

complexity of transcriptional regulation after macrophage acti-

vation, we next analyzed the transcriptional programs of macro-

phages activated with 28 different stimuli including pattern

recognition receptor ligands, cytokines, and metabolic cues

(Figure 1A). To determine the overall relationship of these activa-

tion states within the data set, we first applied CRA (Figures 1B–

1G). In agreement with the existing model, a virtual axis was

formed, where macrophages at baseline (Mb) were placed in

between macrophages stimulated with interferon-g (IFN-g)

(M1) and interleukin-4 (IL-4) (M2) (Figure 1B; Movie S1). Adding

other conditions linked to M1 (sLPS, TNF) or M2 (IL-13) polariza-

tion (Biswas andMantovani, 2010) (Figure 1C) did not change the

overall M1 and M2 axis (Figure 1B). Including further M1- and

M2-associated stimuli (IFN-g+TNF, IL-10) increased the vari-

ance in the correlation matrix but the overall bipolar structure

was maintained (Figure 1D). However, when adding stimuli not

linked to either M1 or M2 polarization, such as free fatty acids,

high-density lipoprotein (HDL), or combinations of stimuli associ-

ated with chronic inflammation (Table S1), a spectrum of macro-

phage-activation signatures beyond the initial bipolar axis

became apparent (Figures 1E and 1F). Furthermore, when sam-

ples generated at earlier time points of stimulation were added,

the spectrum of macrophage activation was shown to consist

of a dense network of individual signatures (Figure 1G). To bio-

informatically validate these findings, we applied Self-

Organizing-Map (SOM) clustering (Figure 1H) and correlation

coefficient matrices (CCM) (Figure 1I). Performing SOM clus-

tering on the conditions shown by CRA in Figure 1E revealed

that every stimulus was characterized by a specific cluster struc-

ture (Figure 1H) further supporting the spectrummodel. Similarly,

we did not identify a bipolar structure within the CCM, but rather

a condition-specific spectrum of correlation coefficients in 10

major clusters (Figure 1I). By using the coordinates of the sam-

ples defined by CRA within the 10 clusters defined by CCM to

build sum vectors in three-dimensional space, we propose a

model of macrophage activation best described by a spectrum

of transcriptional programs (Figure 1J). Taken together, these

data clearly extend the current model of M1 versus M2 polariza-

tion to a spectrum model of macrophage activation.

Identification of Genes Specifically Associated with
Distinct Stimuli
We next determined whether the different stimuli could be distin-

guished on the gene level within the complete spectrum of the

model. From all macrophage samples included in the analysis,

we identified 9,498 genes that were expressed in at least one
onditions from end of activation time points (B–F) also including intermediate

with the top up- or downregulated genes for each stimulus are marked with a

) standardized from �2.78 to 2.78 (blue to red) based on 1,000 most variable

s (coordinates) defined by correlation network from (F). Baseline macrophages

xes are in dashed lines with double arrows. See also Figure S1, Movie S1, and



Figure 2. Genes with Selective Expression Associated with Distinct Stimuli

(A) Schema describing the workflow for Figure 2.

(B) Absolute expression counts (mean ± SD) of genes defined by SOM clustering to be highly expressed for a particular stimulation condition. Shown here are

genes enriched in either Mb (baseline), IFN-b, GC, IL4+uLPS, upLPS+IC, PA, IFN-g, IFN-g +TNF, sLPS+IFN-g, or TPP+IFN-b. All other conditions are shown in

Figure S2.
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condition (Table S1D). We used these genes for SOM clustering,

allowing us to select genes specifically regulated and enriched

for individual stimuli (Figure 2A). In fact, by using this approach

we could identify genes that were selectively elevated in only

one of the stimulation conditions included in our data set. For

example, IFN-b selectively induced ZNF77, while IFN-g selec-

tively induced FEM1C (Figure 2B; Figure S2). However, we also

found stimuli where a single gene was insufficient to distinguish

between closely related conditions, e.g., SERINC2 was induced

by PGE2 but also by PGE2+P3C, suggesting that gene combina-
tions are necessary to distinguish complex input signals at the

transcriptional level. Overall, although some input signals might

be associated with the induction of single genes, future studies

will require the assessment of a substantial number of markers

as surrogates for distinct activation programs of macrophages.

Network Analysis Defines Stimulus-Associated
Programs of Macrophage Activation
To investigate stimulus-specific gene sets associated with

the respective macrophage activation programs, we applied
Immunity 40, 274–288, February 20, 2014 ª2014 Elsevier Inc. 277



Figure 3. Activation-Specific Genes Revealed by Weighted Correlation Network Analysis

(A) Schema describing the workflow for Figure 3.

(B) Heatmap showing the correlation of the module eigengene (first principal component; ME) to the traits (stimulation conditions). Blue means negative

correlation; orange means positive correlation.

(legend continued on next page)
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weighted gene coexpression network analysis (WGCNA) (Fig-

ure 3A), which defines transcriptional modules based on

Pearson correlation and determines specific gene-expression

patterns for each of the stimulation conditions (Langfelder and

Horvath, 2008). We identified 49 distinct coexpression modules

containing 27 to 884 genes per module. The expression data

from different genes within each calculated module were used

to determine the module eigengenes (ME, the first principle

component of the respective module), which were correlated

to the 29 experimental conditions. As examples, we visualized

the expression of the eigengenes of modules 8, 15, and 30 (Fig-

ure S3A). The resulting ME-to-condition correlation was then

visualized as a heatmap (Figure 3B, summarized in Tables S2A

and S2B). Whereas the classical M1 and M2 stimuli showed

prominent ME patterns (modules 8 and 15, respectively), other

stimuli clearly displayed divergent patterns further supporting a

spectrum model of macrophage activation. For instance, stimu-

lation with TNF, PGE2, and P3C (TPP, MTPP) induced a strong

signal in modules 30, 32, and 33, which were not present in

IFN-g or IL-4 stimulated cells. TNF, PGE2, and TLR activation

have been linked to chronic granulomatous inflammation such

as in tuberculosis or granulomatous listeriosis (Marino et al.,

1997; Popov et al., 2006; Shay and Celeste Simon, 2012). Genes

including CD25, COX-2, IL10, and indoleamine 2,3-dioxygenase

(IDO) are expressed in macrophages in human granulomatous

structures and are induced in human macrophages after stimu-

lation with the combination of the aforementioned factors (TNF,

PGE2, TLR2 ligand P3C [TPP, MTTP]) (Popov et al., 2006; Popov

et al., 2008). This suggests that these host factors shape the

transcriptional program during chronic inflammation.

As a next step, we used the modules correlated with the

specific stimulation conditions IFN-g, IL-4, and TPP to link

respective module genes to biological information. We com-

bined Gene Ontology Enrichment Analysis (GOEA) based on

the module genes followed by network visualization of enriched

GO-terms using BiNGO and EnrichmentMap (Figure 3C; Fig-

ure S3B). This analysis confirmed the major functional differ-

ences between IFN-g and IL-4 differentiated macrophages,

e.g., that an M1 response was associated with induction of

inflammatory response genes, while these genes were depleted

in the M2 response (Figure S3B). More importantly, TPP

signaling induced a gene-expression pattern associated with

chronic inflammation, including GO terms such as ‘‘chronic

inflammatory response.’’ We confirmed our approaches by inter-

rogating these gene sets with the GO analysis, pathway analysis,

and transcription factor (TF) binding prediction tools provided by

InnateDB, with the same outcome (Tables S2C–S2K). As a next

step, we determined TFs within the IFN-g, IL-4, and TPP-associ-

ated modules by using Genomatix and visualized them as corre-

lation networks (Figure 3D). This analysis revealed STAT1 as a

central hub in the IFN-g-condition and STAT6 as a hub in the

IL-4-condition. We also identified additional TFs that are linked

to these activation programs, e.g., STAT2, IRF7, and IRF9s for
(C) Network visualization of GOEA of modules 30, 32–33 (positively correlated),

BiNGO and EnrichmentMap. Red nodes represent enriched GO-terms, whereas n

Edge thickness shows overlap of genes between neighbor nodes.

(D) Correlation network ofmodule-specific transcription factors (TFs) (IFN-g: modu

correlation between each TF pair. See also Figure S3 and Table S2.
IFN-g activation and IRF4 and the forkhead box proteins

FOXQ1 and FOXD2, which were not previously associated with

the IL-4 activation network. For macrophages stimulated with

TPP, the TF network also included STAT4, as well as TFs asso-

ciated with negative regulation of TLR signaling (HEY1; Hu et al.,

2008), macrophage activation (TGIF1; Ramsey et al., 2008), or

TFs at the interface between inflammation and metabolism

(HIF1A; Shay and Celeste Simon, 2012). Other TFs identified in

this network have not yet been linked to macrophage activation

as determined by pubatlas.org-based literature mining (data not

shown). WGCNA revealed activation-associated gene sets

responsible for important biological functions of different macro-

phage populations. These gene sets harbor specific TF networks

including well-established TFs associated with major activation

programs but also TFs not previously associated with macro-

phage activation programs. Taken together, this large data set

of macrophage activation forms the basis for the establishment

of transcriptional networks that are linked to specific activation

signals in human macrophages.

Distinct Phenotype and Function of Macrophages
Activated by TNF, PGE2, and TLR2 Ligand
We used the stimulation condition TPP (MTPP), which is associ-

ated with chronic inflammation, to demonstrate phenotypic

and functional differences to macrophages stimulated with

IFN-g or IL-4. As demonstrated by CCM (Figure 1I) and WGCNA

(Figure 3), MTPP differed considerably in their genomic signature

from M1 or M2 macrophages. By using differentially expressed

genes (FC > 2, FDR adjusted p value < 0.05) between MTPP

(TPP), M1 (IFN-g), M2 (IL-4), and Mb we identified cell surface

markers expressed selectively on MTPP. A total of 51 cell surface

markers were elevated in MTPP but not M1, M2, or Mb. By using

flow cytometry, we confirmed significantly elevated expression

for CD14, CD23, CD25, CXCR7, and CD197 on MTPP (p value <

0.05), while CD86was elevated on bothM1 andMTPP (Figure 4A).

We also identified a set of TFs induced in MTPP but not in M1 or

M2, among them STAT4. Analysis of STAT4 protein expression

clearly confirmed that STAT4 is only induced in MTPP (Figure 4B).

Further differences between MTPP and macrophages stimulated

with IFN-g (M1) or IL-4 (M2) were observed for soluble effector

molecules where, e.g., CXCL5 secretion was significantly

induced by MTPP and to a lesser extent by M1 (p value < 0.05),

but not M2, and IL-1a was only secreted by MTPP (Figure 4C).

No difference in CD3- and CD28-stimulated T cell proliferation

was observed in the presence of M1- or M2-activated macro-

phages, whereas Mb reduced T cell proliferation although not

statistically significantly (p value < 0.05) (Figure 4D). However,

MTPP showed a strong inhibitory effect, clearly demonstrating

that macrophage activation by TPP induced an effector program

distinct from M1 and M2 macrophages. Because transcriptional

programs are further modulated on posttranscriptional level we

assessed the global spectrum of miRNA expression by

miRNA-Seq (Figure 4E). Again, MTPP clearly differed from M1
respectively, 12, 13, and 20 (negatively correlated) for TPP-stimulation using

ode size represents corresponding FDR-adjusted enrichment p value (q value).

les 7-9; IL-4: modules 13-15; TPP: 30, 32–33). Edgewidth shows the Pearson’s

Immunity 40, 274–288, February 20, 2014 ª2014 Elsevier Inc. 279

http://pubatlas.org


Figure 4. Phenotypic and Functional Characterization of Macrophages Stimulated with TNF, PGE2, and P3C

(A) Flow cytometry of CD14, CD23, CD25, CD86, CXCR7, CD197, in Mb (dark gray), IFN-g (light blue), IL-4 (red), and TPP (light gray) activated macrophages.

Mean fluorescence intensities (MFI) of at least three independent experiments are shown (mean and SEM; p* < 0.05 Student’s t test).

(B) Immunoblot analysis of STAT4 and b-actin. STAT4 expression was normalized to b-actin expression and set to 100% in MTPP (TPP).

(C) CXCL5 and IL1a in supernatants of macrophage cultures.

(D) T cell activation by CD3 and CD28 beads in presence or absence of macrophages assessed by CFSE dilution.

(E) Heatmap showing fold changes of highly abundant miRNAs up- or downregulated (FC > 2, FDR adjusted p value < 0.05) in M1 (IFN-g) or M2 (IL-4), or MTPP

(TPP) compared to Mb (baseline). Fold changes colored from blue to red.

For Figures 4A–4D, mean ± SEM (p* < 0.05, Student’s t-test) are shown.
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Figure 5. Enrichment of Activation Modules in Human Alveolar Macrophages

(A) Schema describing the workflow for Figure 5.

(B) Correlation network of human alveolar macrophages (n = 100) from two studies (Shaykhiev et al., 2009; Woodruff et al., 2005) using 374 genes differentially

expressed between nonsmokers (n = 39) and smokers (n = 49) or COPD (n = 12) patients (FC > 2.0, FDR adjusted p value < 0.05).

(C) Volcano plots of normalized enrichment scores (NES) and enrichment p values based onGSEA usingWGCNAmodules defined in Figure 3. Shown are data for

the stimuli IFN-g, IL-4, TPP, and palmitic acid (PA). Red circles show gene sets positively significantly enriched (NES > 1, p value < 0.05); blue circles show gene

sets significantly depleted (NES < �1, p value < 0.05).

(legend continued on next page)
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and M2 activation at the miRNA level: MTPP had elevated hsa-

miR-125a-5p expression and a lack of M1- (hsa-miR-23b-3p)

or M2-associated microRNAs (miRNAs) (e.g., hsa-miR-125b-

5p, hsa-miR-99a-5p). Similarly, a set of miRNAswas significantly

reduced inMTPP compared toM1 orM2 activation (FDR adjusted

p value < 0.05). Therefore, macrophages differing in their global

transcriptional program from M1 or M2, such as MTPP macro-

phages, are also phenotypically and functionally distinct, further

supporting the spectrum model of macrophage activation.

Macrophage Activation Model Can Be Used to Predict
Macrophage Programs In Vivo
To address whether specific activation programs such as those

described in Figure 3 can be found in human tissue macro-

phages, we compiled two data sets of human alveolar macro-

phages obtained by bronchoalveolar lavage (Shaykhiev et al.,

2009; Woodruff et al., 2005) consisting of samples from non-

smokers, smokers, and COPD patients. Following filtering

steps, data structure analysis, and data visualization, gene-set

enrichment analysis (GSEA) was performed (Figure 5A). Three

major clusters reflecting the three patient groups were revealed

by CRA (Figure 5B) supporting distinct transcriptional programs

in macrophages from the three groups. Next, stimulus-specific

gene modules identified by WGCNA (Figure 3) were utilized as

49 gene sets from in vitro conditions for enrichment analysis.

As positive controls, we applied GSEA to the comparison of

IFN-g-, IL-4-, TPP-, and palmitic acid (PA)-stimulated macro-

phages with unstimulated macrophages. We calculated normal-

ized enrichment scores (NES), which were plotted against

enrichment p values in a Volcano plot (Figure 5C). As expected,

the highest positive NES and lowest p values were observed for

those gene sets (gene modules) that were most significantly en-

riched (NES > 1, p value < 0.05) in the WGCNA analysis for the

respective stimuli (IFN-g, IL-4, TPP, and PA). We then applied

GSEA to the patient sample groups (smoker, COPD) in compar-

ison to nonsmokers (Figure 5D). Unexpectedly, in smokers a

glucocorticoide (GC)-associated gene module (41, WGCNA)

was most significantly enriched (p value < 0.05) followed by

several gene modules associated with free fatty acid but also

IL-4 and TPP stimulation, suggesting a complex network of

stimuli acting on alveolar macrophages in smokers. In contrast

to previous literature (Shaykhiev et al., 2009), we did not see

an enrichment of IL-4-IL-13-associated signatures in COPD

patients with our data-driven approach (Figure 5D). Rather we

found a complete loss of the profound signature of enriched

modules observed in smokers. Concurrently, the most signifi-

cantly depleted (NES < �1, p value < 0.05) WGCNA module in

COPD patients wasmodule 8 (linked to IFN-g stimulation), which

was also significantly depleted in smokers (Figure 5D). Network

visualization of GOEA further supported complex and profound

transcriptional changes in alveolar macrophages from smokers

while cells from COPD patients were rather characterized by

loss of antigen processing, inflammatory response, and regula-
(D) Volcano plots of normalized enrichment scores (NES) and enrichment p values

smokers and COPD patients. Representative results of several permutation runs

(E) Network visualization of GOEA of positively enriched modules (p value < 0.01)

modules (p value < 0.01) for COPD patients (modules 8, 29) using BiNGO and En

represent corresponding FDR-adjusted enrichment p values (q values).
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tion of immune response, consistent with a depletion in the

IFN-g linked module (Figure 5E). Applying the WGCNA- and

GSEA-defined macrophage differentiation programs to human

ex vivo tissue macrophages, we have uncovered a hitherto

unexplored biology in alveolar macrophages from smokers

and COPD patients.

Common Denominators of Macrophage Activation
While we clearly extended the concept of macrophage polariza-

tion (M1 versus M2) to a spectrum model, our large data set also

allowed us to define common denominators of macrophage

activation. To define these common macrophage activators,

we used reverse network engineering (RNE) utilizing ARACNe

(Algorithm for the Reconstruction of Accurate Cellular Networks,

Figure 6A) (Margolin et al., 2006). We used the 9498 genes pre-

sent in at least one stimulation condition (Table S1D) to generate

a so-called all-versus-all network (Bonferroni corrected p value

10�7) by predicting interactions based on mutual information

between each gene pair computed from the expression profiles

(Figure S4A; Table S3A; for further technical details see Supple-

mental Information). We identified 66,744 interactions resulting

in an average degree of connectivity of 14.7, meaning one

gene is involved in 15 transcriptional interactions on average

(Figure 6B; Table S3B; Figure S4B). We confirmed these findings

with a second RNE approach (TINGe, Tool for Inferring Network

of Genes) (Aluru et al., 2013), which demonstrated high similarity

in the number of interactions, the average degree of connectivity

and the rank of hubs based on degrees of connectivity as deter-

mined by ARACNe (Table S3C; Figure S4C). We summarized the

network statistical properties (Figures S4D–S4F), since the entire

network is too complex to be displayed. The top 10% of hub

genes inferred in the network (n = 869 most interconnected

genes) collectively participated in 30,431 interactions (Figure 6B).

In the ten most highly interconnected genes, we identified

FABP5, which has recently been implicated in lipid metabolism

and inflammation crosstalk (Furuhashi et al., 2011), and

TNFAIP6, a negative feedback regulator of myeloid cell activa-

tion (Choi et al., 2011). However, according to a pubatlas.org

search (Table S3D), little is known about the role of the other

most highly interconnected genes during macrophage activa-

tion, suggesting that RNE approaches reveal unknown aspects

of macrophage activation. To further understand the biological

processes of the top 10% of hub genes, we performed GOEA

with visualization of GO enrichment networks by using BiNGO

(Figure 6C; Table S3E). This GO-term network subdivided into

five major clusters, one of which was related to immune

response processes (especially terms associated with ‘‘regula-

tion of activation’’). However, other clusters were associated

with cell death, biosynthetic processes of small molecules, and

metabolic and catabolic processes, which also constitute major

but underappreciated aspects of macrophage activation.

By using the TFCat database (Fulton et al., 2009), we identified

27 TFs in the top 10% hub genes (TFs, Figure 6B). We reasoned
of the same gene sets applied to data from alveolar macrophages derived from

of GSEA.

for smokers (modules 41, 6, 21, 16, 39, 5, 19, and 42) and negatively enriched

richmentMap. Red nodes represent enriched GO-terms, node size, and color

http://pubatlas.org


Figure 6. Macrophage Activation Network Calculated by ARACNe

(A) Schema describing the workflow for Figure 6.

(B) Visualization of the 10% largest hub genes of the ARACNe predicted macrophage regulatory network (n = 299 transcriptomes). For the top ten genes (highest

degree of connectivity, blue) and TFs, mean expression values (log2, derived from the ten clusters in Figure 1I) are highlighted in red colors. Node size reflects

degree of connectivity.

(C) Network visualization of GOEA using BiNGO and EnrichmentMap on hubs shown in (B). Red nodes represent enriched GO-terms, and node size represent

FDR-adjusted enrichment p value (q value). Edge thickness represents overlap of genes between neighbor nodes.

(legend continued on next page)
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that the most highly expressed TFs are the most relevant for

macrophage activation and therefore ranked them by average

expression and generated a network of the top five TFs (JUNB,

NFKB1, HIVEP1, CREB1, and HBP1) (Figure 6D; Table S3F).

Roles in macrophage activation have been established for all

of these TFs, except for the zinc finger protein HIVEP1: JUNB

(part of the AP1 complex), NF-kB (global activator), and

CREB1 (inducing survival signals) (Wen et al., 2010). HBP1 has

been linked to differentiation of malignant myeloid cells and to

the regulation of other important TFs including PU.1, RUNX1,

JUNB, or CEBP (Yao et al., 2005). By using position-weight

matrices, we predicted binding of the 27 TFs to the gene loci

of the top 10% hub genes (Table S3G). Twenty-six out of 27 of

these TFs showed significantly enriched binding prediction

(p value < 0.05).

As a complementary approach, we also applied two gene pri-

oritization tools, ToppGene (Chen et al., 2009) and Endeavour

(Tranchevent et al., 2008) to rank the potential association and

closeness of the top 10% hub genes with macrophage cellular

programs using the macrophage lineage TFs RUNX1 and SPI1

(PU.1) as test genes. Of note, the top 11 ranked genes were

TFs and in total, 20 of the 30 top ranked genes are associated

with transcriptional regulation (Figure 6E). In addition to

NFKB1, JUNB, and CREB1, we identified additional TFs already

associated with macrophage activation (STAT3), as well as other

TFs not yet associated with macrophage activation (HMGA1,

NFE2, ZNF148, SMARCA2, DDX21, MNDA, TBLX1). Several

macrophage-activation markers (e.g., MMP9 and CSF1

[M-CSF]) were also strongly linked to macrophage activation in

this analysis. Furthermore, a strong enrichment of PU.1 binding

and permissive histone marks H3K4me3 at the loci of the 869

major hub genes indicate that these genes are likely to be highly

transcribed during macrophage activation (Figure S5; Supple-

mental Information). Together, this RNE analysis identified five

distinct clusters of biological processes as part of the macro-

phage activation process, confirmed the involvement of known

transcriptional regulators such as NFKB1, and identified unex-

pected yet unexplored candidate regulators.

Refinement of Core Genes of Murine Tissue
Macrophages using Human Macrophage Activation
Signatures
Comparative transcriptomics of immune cells between human

and mouse provides a framework for the use of model systems

in the context of human biology and disease (Shay et al.,

2013). We therefore propose a general strategy for how our

resource of human macrophage transcriptomes can be linked

to murine data (Figure 7A). First, we visualized the expression

of the human orthologs of the ImmGen defined coremacrophage

(Figure 7B) and DC (Figure 7C) genes in human macrophages

and monocyte-derived DCs under the different stimulation con-

ditions. We visualized the expression values as heatmaps of

genes ranked by overall differential expression between human

macrophages and DCs (Figures 7A–7C; Table S4). Within the
(D) Subnetworks of the five most highly expressed TFs from all hubs shown in (B).

according to its mean expression (log2) in ten clusters (from Figure 1I).

(E) Top 30 putative candidates after Gene Prioritization (GP) of 869 hubs. Mean e

according to cellular functions. See also Figures S4 and S5 and Table S3.
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core signature genes defining murine macrophages, we identi-

fied three groups of genes (Figure 7B). The first group of genes

(1) had high conservation of differential expression between hu-

man macrophages and DCs irrespective of macrophage activa-

tion, whereas the second group of genes (2) was characterized

by loss of differential expression after activation with certain

stimuli. The third group of genes (3) was either not differentially

expressed between human macrophages and DCs or showed

even opposite regulation (Figure 7B). A similar grouping was

found for the core signature genes of DCs (Figure 7C). This

approach identified cell surface markers (CD14, FCGR2A

[CD32], MERTK, FCGR1A [CD64], CD13 [ANPEP]) that distin-

guish human macrophages from both DCs and CD14+ blood

monocytes by flow cytometric analysis (Figure 7D). We propose

that this set of cell surface markers should be used for the

discrimination between macrophages and DCs in both species.

Overall, this comparative transcriptomics approach has refined

the core signatures for macrophages and DCs determined in

mice to make them also applicable to human macrophages.

This will further improve the interpretation of data obtained in

species other than human and will guide animal model design

to better reflect relevant human biology.

DISCUSSION

The generation of this large and unique transcriptomic data set of

human macrophage activation represents an important step

forward in understanding how macrophages integrate and

compute signals from their local microenvironment under inflam-

matory conditions. The extension of macrophage activation from

M1 versus M2 polarization to a spectrum model opens new

avenues to studymacrophage activation in the context of human

diseases. For example, network-based description of global but

also input signal-specific transcriptional programming could

form the basis for further studies linking defined activation pro-

grams with in vivo human macrophage biology. In fact, the

lack of any major inflammatory signals in human alveolar macro-

phages derived from COPD patients was an unexpected—but

from a clinical perspective, highly important—result. This result

might actually reflect clinical observations demonstrating ineffi-

ciency of anti-inflammatory treatment regimens in COPD

patients making it necessary to search for alternative strategies

(Barnes, 2013). A better understanding of the transcriptional

regulation of human macrophages could help to selectively

target specific macrophage subsets therapeutically and thereby

could spare other cell types.

Integratinghumanandmurine transcriptomedatasetswill aid to

prioritize and focus future work in animal models. In this respect,

overlaying our human data onto the ImmGen-derived core signa-

tures of DCs and macrophages classified several genes to be

conserved in expression regulation, whereas others clearly are

not conserved. In the future, these studies have to be extended

comparing macrophages from the same tissues in both

species in homeostasis and pathophysiology. Alternatively, the
First neighbors are surrounding corresponding TFs. Each gene is multicolored

xpression (log2) from each cluster is displayed as a heatmap. Categorization is
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identification of human-specific regulation of gene expression will

require newmethodologies to study gene regulation in an entirely

human context, and without the respective animal models.

Beyond aspects comparing murine and humanmacrophages,

this resource data set can help to answer open questions con-

cerning differential activation of human macrophages with

closely related stimuli, e.g., ultrapure and standard LPS, which

have been often used synonymously in prior studies. Similarly,

while free fatty acids seem to induce closely related transcrip-

tional programs when compared to the remaining stimulation

conditions, we have clear evidence that saturated and unsatu-

rated fatty acids induce distinct transcriptional responses in

human macrophages (S.V.S., data not shown).

We anticipate this data set of humanmacrophage activation to

serve as a starting point for future studies into human macro-

phage biology. In addition to expanding our understanding of

human macrophage biology, this resource will contribute to a

better understanding of general mechanisms of transcriptional

control, as well as the development of newmathematical models

for signal integration and new therapeutic strategies in human

disease.

EXPERIMENTAL PROCEDURES

Detailed description of all experimental procedures and links to analytical tools

and databases used are provided in Supplemental Information. Abbreviations

and description of bioinformatics tools are summarized in Table S5.

Isolation, In Vitro Culture, and Functional Assessment of Cells under

Study

Buffy coats from healthy donors were obtained according to protocols

accepted by the institutional review board at the University of Bonn (local

ethics votes no. 288/13). Human monocytes, B cells, T cells, and NK cells

(Table S1) were purified from peripheral blood mononuclear cells by MACS

in accordance with the manufacturer’s instructions. Macrophages (Mb, base-

line) were generated from monocytes by stimulation with GM-CSF or M-CSF

for 72 hr and further activated with 28 stimulation conditions (Table S1). DCs

were generated by GM-CSF in presence of IL-4 for 72 hr followed by further

stimulation with uLPS, TNF+PGE2, or aCD40 mAbs+TNF. Cells were pheno-

typically assessed by flow cytometry using cell lineage and activationmarkers.

Expression of STAT4 was measured by immunoblotting. CXCL5 and IL-1a in

cell culture supernatants were assessed by ELISA following the manufac-

turer’s instructions. The influence of macrophages on T cell activation was

measured in an allogeneic mixed lymphocyte reaction where CD3+ T cells

were stimulated with CD3+CD28mAbs in presence or absence of differentially

activated macrophages. T cell proliferation was assessed 72 hr later using the

carboxyfluorescein succinimidyl ester dilution method.

RNA Isolation, Gene Expression Profiling, and Basic Bioinformatical

Analysis

Biotin-labeled cRNA was generated with the TargetAmp Nano-g Biotin-aRNA

Labeling Kit for the Illumina System (Epicenter) and then hybridized to Human

HT-12V3 and Human WG-6V3 Beadchips (Illumina) and scanned on an Illu-

mina iScan or HiScanSQ system. Exported from Genome Studio (Illumina),
Figure 7. Expression of murine macrophage and dendritic cell signatu

(A) Schema describing the workflow for Figure 7. M, macrophage.

(B and C) Heatmap (standardized and scaled log2 expression) of human ortholog

signature genes (Miller et al., 2012) in monocytes, 29 macrophage stimulation

TNF+PGE2+P3C.

(D) Flow cytometric analysis for surface markers CD14, CD32, MERTK, CD64, CD

macrophages (Mb, red). Mean fluorescence intensities (MFI) of at least three ind

Table S4.
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all array data (n = 384) were imported into Partek Genomics Suite (PGS) prior

to quantile normalization. For all analyses with macrophages only (n = 299),

background signals were calculated resulting in 9,498 unique genes to be

present in at least one macrophage stimulation condition. miRNA- and chro-

matin immunoprecipitation sequencing (ChIP-seq) procedures are described

in detail in Supplemental Information.

Coregulation Networks and Comparative Bioinformatics

To describe the structure within the data set, we primarily performed coregu-

lation analysis (CRA) based on Pearson’s correlation coefficients by using

BioLayout Express3D (Theocharidis et al., 2009) (Figures 1B–G; Table S1B).

We determined ANOVA model-defined variable or differentially expressed

genes. To corroborate a stimulus-specific structure in the data set (Figure 1H)

or to determine genes that are elevated only in one of the tested conditions

(Figure 2), we determined self-organizing maps (SOM) and visualized them

after hierarchical clustering (HC) (SOM-clustering). On the basis of the 1,000

most variable genes within the data set, we calculated Pearson’s correlation

coefficient for all stimulation conditions and visualized the resulting correlation

coefficient matrices (CCM) after HC as a heatmap (Figure 1I). The spectrum

model of macrophage activation was established by grouping the samples

according to the clusters obtained by the CCM analysis, utilizing the 3D coor-

dinates of the individual macrophage samples determined by CRA, calculating

mean vectors for the clusters and plotting the information in a 3D graph using

the coordinates of the baseline macrophages (Mb) as the origin (Figure 1J).

Biological Processes Based on Weighted Gene Coexpression

Network Analysis

To determine biological processes either enriched or depleted in the 28

macrophage stimulation conditions, we first dissected the data set (n = 160

macrophage samples, 72 hr time point) into 49 gene modules by applying

WGCNA (Langfelder and Horvath, 2008) (Table S1B; Table S2). The module

eigengene (ME) corresponding to the first principal component was calculated

for eachmodule and aME-to-condition correlation visualized as heatmap (Fig-

ure 3). For the stimulation conditions IFN-g, IL-4, and TPP (TNF+PGE2+P3C),

the gene modules with highest respective lowest correlation scores were used

to generate and visualize networks based on GO-enrichment analysis (GOEA)

by using BiNGO, EnrichmentMap, andWord Clouding in Cytoscape. Visualiza-

tion of coregulation of TFs of the same modules was performed by BioLayout

Express3D.

Combining WGCNA and Gene Set Enrichment Analysis

To utilize the information from the macrophage activation data set to assess

in vivo biology of macrophages, we developed an approach utilizing the

WGCNA-based gene modules as gene sets for gene-set enrichment analysis

(GSEA, see schema in Figure 5). Two data sets of human alveolar macro-

phages (GSE13896 [Shaykhiev et al., 2009] and GSE2125 [Woodruff et al.,

2005]) comprising samples from 39 nonsmokers, 49 smokers, and 12 COPD

patients were combined. GSEA was performed on 49 WGCNA modules (Fig-

ure 3) in 10,000 permutations by using PGS. Normalized enrichment scores

(NES) together with p values of GSEAwere plotted by Volcano plots comparing

the stimulation conditions IFN-g, IL-4, TPP, and PAwithMb (as positive control

analyses of the overall approach). Similarly, the comparison of nonsmokers

with smokers or COPD patients was visualized by Volcano plots. Enriched

modules (p value < 0.01) were selected to perform GOEA.

Reverse Engineering of the Core Macrophage Activation Network

To determine the central hubs of all stimulation conditions reflecting the

core macrophage-activation network, we applied two information-theoretic
re genes in humans

s of murine (B) macrophage signature genes (Gautier et al., 2012) and (C) DCs

conditions, and monocyte-derived DCs (baseline = GM-CSF+IL4). TPP =

13 on humanmonocytes (Mono, blue), baseline DCs (DCb, green), and baseline

ependent experiments (mean and SEM; p* < 0.05 Student’s t test). See also
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methods, ARACNe and TINGe. Networks were visualized in a force-directed

layout in Cytoscape, followed with statistical analysis utilizing the plug-in

Network Analysis (Cline et al., 2007). With the cytoscape plug-in

MultiColoredNodes (Warsow et al., 2010) mean expression values of the

most highly interconnected genes and TFs were visualized.

Linking Human Macrophage Activation to ImmGen Core Signatures

Human macrophage samples (n = 166), DCs (n = 33), and monocytes (n = 22)

were compiled and expression values of the human orthologs of the previously

describedmurinemacrophage (Gautier et al., 2012), andDC (Miller et al., 2012)

core signatures were plotted as a heatmap of standardized and scaled log2
values (Figure 7; Table S4).

ACCESSION NUMBERS

Macrophage microarray data, ChIP-Seq data, miRNA-Seq data, and alveolar

macrophage microarray data are accessible via super series GSE47189.

Preprocessed data are also available at an online resource portal (www.

macrophages.uni-bonn.de).
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