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How “easily” can individual s transmit a disease to individual t?
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s tu v

Figure 1. Example graph for Section 1.

to t than to u. However, this measure is also lacking; t is now equally close to both
s and v, which again seems counterintuitive for the application.

A more recent description of distance that bridges the gap between these two
extremes is the resistance distance; see for instance [12]. The resistance distance
between s and t is defined as the effective resistance between the corresponding
nodes in an electrical resistor network wherein the vertices of the graph correspond
to junctions and the edges to resistors of unit resistance. In resistance distance, s
and t are 0.454 units apart, s and u are 1 unit apart, and t and v are 1.918 units
apart.

Although resistance distance does give a more satisfying answer for the contact
network application, a number of interesting questions remain. For example, al-
though the shortest path and min-cut distances have straightforward extensions to
directed graphs, effective resistance does not. So, what is the natural analog of
resistance distance for directed graphs? Or consider the following related type of
question for the graph in Figure 1. It is clear that s plays a crucial role in the
transmission of disease between u and t. But, how might we quantify the role that
t plays in transmission between s and v? In other words, how rich is the set of
pathways connecting s to v through t? And how does this compare to the set of all
pathways connecting s to v? Or for that matter, given any interesting collection of
walks on the graph, how does one quantify the richness of the collection?

A potential answer to these questions comes in the form of the modulus—a
discrete analog of the modulus of curve families dating at least as far back as
Beurling [4] and Ahlfors [1]. Although discrete versions of the modulus have been
introduced before, the goal of the present work is to make explicit the connection
to more traditional graph theoretic concepts:

• We treat the modulus in a general framework, accommodating directed or
undirected graphs, with or without edge weights (Section 2). Although
this is not entirely new (see Section 7 for a description of related work),
we do adopt a particular viewpoint that lends itself well to graph theoretic
interpretations of the modulus.

• After framing the modulus as a convex optimization problem, we derive and
interpret a dual formulation of the modulus (Section 3). This is similar to
the duality of the max-flow and min-cut problems, but much more general
than has been done before.

• Using the primal-dual formulation, we establish three connections to graph
theory, namely that computing the modulus in certain circumstances is
equivalent to computing either the graph distance, min-cut distance, or re-
sistance distance (Section 4). Moreover, we prove that the modulus (which

I Shortest path?

`u,s = 1, `s,t = 1, `t,v = 6

I Number of paths (maximum flow)?

fu,s = 1, fs,t = 3, ft,v = 3

I Resistance distance (resistance in the resistor network)?

Ωu,s = 1, Ωs,t = 0.454, Ωt,v = 1.918



Modulus of a family of curves ← {Domains in C}

↓ ↑

p-Modulus of a family of walks {Graphs}



Example:

D = {z | 0 ≤ Re(z) ≤ `, 0 ≤ Im(z) ≤ k}
Γ = {curves from the left side of D to the right}

D

k

`

Γ

How “constrained” is someone traveling Γ?

Moduli of Families of Curves for Conformal and Quasiconformal Mappings

(Springer–Verlag, 2015)

http://folk.uib.no/ava004/BOOK1.pdf
http://folk.uib.no/ava004/BOOK1.pdf


Let

I D ⊆ C be a domain

I Γ be a family of paths γ ⊂ D

I P ⊂ L2(D) be the integrable real non-negative functions

Define

I the ρ-length `ρ(γ) :=
∫
γ ρ(z)|dz |

I admissible functions A(Γ) = {ρ ∈ P | ∀ γ ∈ Γ, `ρ(γ) ≥ 1}
I the ρ-area Aρ(D) :=

∫∫

D
ρ(z)2dxdy

I the modulus of Γ in D

Mod(D, Γ) := inf
ρ∈A(Γ)

Aρ(D)



D

k

`

Γ

Exercise: Mod(D, Γ) =
k

`
.

≤: Use ρ∗(z) ≡ 1

`
and check that ρ∗ ∈ A(Γ).

≥: Verify Aρ(D) ≥ k in order to get

∫∫

D
(

1

`
− ρ(z))2dxdy ≥ 0.



Idea: Mod(D, Γ) measures

I the “richness” per “distance” of Γ

I the “ease” or absence of “constraint” along Γ

Note: the extremal length of Γ in D

1

Mod(D, Γ)
= sup

ρ

(infγ∈Γ `ρ(γ))2

Aρ(D)

then measures the constraint or difficulty of Γ

Acta Mathematica (1950) 83(1): 101–129

http://link.springer.com/article/10.1007%2FBF02392634


Let

I G = (V ,E , σ) be a (directed, weighted) graph

I Γ be a family of walks γ = e1e2 · · · er on G

I P ⊆ RE be the real non-negative edge densities

I 1 ≤ p <∞
Define

I the ρ-length `ρ(γ) :=
∑r

i=1 ρ(ei )

I admissible densities A(Γ) := {ρ ∈ P | ∀γ ∈ Γ, `ρ(γ) ≥ 1}
I the p-energy E(p)

ρ (G ) :=
∑

e∈E
σ(e)|ρ(e)|p

I the p-modulus of Γ on G

Modp(G , Γ) := inf
ρ∈A(Γ)

E(p)
ρ (G )
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Figure 2. A graph consisting of k simple paths with ℓ hops each,
connecting s to t.

Proof. Existence and uniqueness (for 1 < p < ∞) of a minimizer for the infimum
in Equation (2) are proved as in Lemma 2.1.

Now, suppose ρ ∈ A′(Γ) takes a negative value on some edge e′ ∈ E, and define
ρ+ as ρ+(e) = max{ρ(e), 0}. Since ℓρ+(γ) ≥ ℓρ(γ) ≥ 1 for any γ ∈ Γ, ρ+ is also
admissible. Moreover, on every edge e ∈ E, |ρ+(e)| ≤ |ρ(e)|, and |ρ+(e′)| = 0 <
|ρ(e′)|. For 1 ≤ p < ∞, this implies Ep(ρ

+) < Ep(ρ), showing that any minimizing
ρ∗ is in A(Γ). For the p = ∞ case, the inequality E∞(ρ+) ≤ E∞(ρ) holds, but need
not be strict. However, a minimizing ρ∗ can always be found in A(Γ).

Next, suppose ρ ∈ A(Γ) and that ρ(e′) > 1 on some edge e′ ∈ E. Define
ρ′(e) = min{ρ(e), 1}. For any γ ∈ Γ, either ℓρ′(γ) = ℓρ(γ) ≥ 1, or γ traverses an
edge where ρ′ takes the value 1. In the latter case, the inequality ℓρ′(γ) ≥ 1 is
trivial, so ρ′ ∈ A(Γ). Since ρ′(e) ≤ ρ(e) on all edges, and since the inequality is
strict on at least one edge, we have Ep(ρ

′) < Ep(ρ) (for 1 ≤ p ≤ ∞). This proves
that ρ∗ ≤ 1. !

Remark 2.1. A consequence of Lemma 2.2 is that the admissibility set A(Γ) in the
definition of modulus can be replaced with either a more relaxed set, A′(Γ), or a
more restricted set, A∗(Γ), without changing the outcome. That is,

Modp(Γ) := inf
ρ∈A(Γ)

Ep(ρ) = inf
ρ∈A′(Γ)

Ep(ρ) = inf
ρ∈A∗(Γ)

Ep(ρ) for all 1 ≤ p ≤ ∞.

A convenient choice of admissibility set can simplify proofs in certain circumstances.
For example, when deriving the Lagrange dual problem in the case 1 < p < ∞
(Section 3) it is better to use the most relaxed set A′(Γ). The proof of Theorem 3.1
utilizes the lower bound in A(Γ), while the bounds of Section 5 make use of both
upper and lower bounds in A∗(Γ).

2.5. An instructive example. As described in the introduction, the p-modulus
is a generalization of three fundamental quantities in graph theory: shortest path
length, effective conductance, and min-cut. Before proving these facts, it is useful
to explore an example. Consider the (unweighted and undirected) graph shown in
Figure 2—comprising k parallel simple paths of ℓ hops connecting node s to node
t—with Γ = Γ(s, t), the connecting family of walks defined at the end of Section 2.1.

Exercise: Modp(G , Γ) =
k

`p−1
.

≤: Use ρ∗(e) ≡ 1

`
and check that ρ∗ ∈ A(Γ).

≥: Check that ρ∗ is extremal, i.e. that

∀ρ′ ∈ A(Γ), E(p)
ρ′ (G ) ≥ E(p)

ρ∗ (G ).



Connecting Family Theorem (2/3): Let

I G = (V ,E , σ) be undirected

I Γ(s, t) be the family of walks from s to t

Then

I Mod1(G , Γ(s, t)) = the maximum flow from s to t.

I Mod2(G , Γ(s, t)) = the effective conductance btw s and t.

Example:

a

b c

de f



Lemma: Let

A′(Γ) := {ρ : E → R | `ρ(Γ) ≥ 1}
⊃ A(Γ) := {ρ : E → R≥0 | `ρ(Γ) ≥ 1}
⊃ A∗(Γ) := {ρ : E → [0, 1] | `ρ(Γ) ≥ 1}

For all p ≥ 0,

inf
ρ∈A′(Γ)

E(p)
ρ (G ) = inf

ρ∈A(Γ)
E(p)
ρ (G ) = inf

ρ∈A∗(Γ)
E(p)
ρ (G )

Lemma:

I There exists an extremal density ρ∗ : E → R.

I If 1 < p <∞, then ρ∗ is unique.



Theorem (Albin, Poggi–Corradini, Sahneh, Goering): There exists
an essential subfamily Γ∗ ⊆ Γ for which

I Γ∗ is finite

I A(Γ∗) = A(Γ)

Theorem (Albin, Poggi–Corradini): There exists a minimal
subfamily Γ̃ ⊆ Γ for which

I Modp(G , Γ̃) = Modp(G , Γ)

I For all γ ∈ Γ̃, Modp(G , Γ̃ r {γ}) < Modp(G , Γ)

http://arxiv.org/abs/1401.7640
http://arxiv.org/abs/1605.08462


Algorithm 1 Approx. Modp(Γ) with error tolerance 0 < εtol < 1.

ρ← 0
Γ′ ← ∅
loop

γ ← shortest(ρ) . e.g. Dijkstra’s algorithm
if `ρ(γ)p ≥ 1− εtol then

stop

end if
Γ′ ← Γ′ ∪ {γ}
ρ← argmin{Ep(ρ) | ρ ∈ A(Γ′)} . Convex optimization

end loop

Theorem: The output Γ′ and ρ satisfy

Modp(G , Γ)−Modp(G , Γ′)
Modp(G , Γ)

≤ εtol,
||ρ∗ − ρ||p
||ρ∗||p

≤
{

21−1/pεtol
1/p p ≥ 2(

2
p−1εtol

)1−1/p
p < 2



Let

I Γ a family of curves on G = (V ,E , σ)

I ρ ∈ A(Γ)

Define

I the ∞-energy E(∞)
ρ (G ) := lim

p→∞
E(p)
ρ (G )1/p = max

e∈E
|ρ(e)|

I the ∞-modulus Mod∞(G , Γ) := inf
ρ∈A(Γ)

E(∞)
ρ (G )

Theorem: Mod∞(G , Γ) =
1

`(Γ)
, where

I `(γ) is the (unweighted) length of a walk γ

I `(Γ) = infγ∈Γ `(γ)



Connecting Family Theorem (3/3): Let

I G = (V ,E , σ) be undirected

I Γ(s, t) be the family of walks from s to t

Then

I Mod1(G , Γ(s, t)) = maximum flow from s to t.

I Mod2(G , Γ(s, t)) = effective conductance between s and t.

I Mod∞(G , Γ(s, t)) =
1

unweighted distance from s to t.

Example:

a

b c

de f



Application: Vaccination strategies based on 2-modulus centrality
versus out-degree in random modular networks

H. Shakeri et al. / Journal of Computational and Applied Mathematics 307 (2016) 307–318 317

Fig. 9. (A) Random modular network, (B) Out-degree centrality and 2-Modulus centrality measured for each node in network (A), (C) Node transition
graph for SIR model, (D) Comparison of vaccination strategies based on 2-Modulus centrality and out-degree centrality for an SIR epidemic in network
(A). The fraction of susceptible population (S) at the end of the outbreak for 2-Modulus centrality vaccinated people is larger than the fraction obtained by
vaccinating using out-degree centrality.

infection process, a recovery process also occurs. An infected node recovers and becomes immune with an exponentially
distributed recovery rate �. The main characteristics of the model and a node transition graph are shown in Fig. 9(C). Yi is
the number of infected neighbors of node i.

After vaccinating the first 50 nodes with the highest centrality in both measures, we ran several simulated epidemics
(hundreds) with the parameters specified above and computed the average fraction of susceptible (not yet infected)
individuals for each day of the outbreak [25]. As shown in Fig. 9(D), 2-Modulus centrality pinpointed the most effective
nodes better and allowed a more successful mitigation of the outbreak.

5. Conclusion

In this paper we introduced general centrality measures based on modulus of families of walks. These measures provide
information about nodes using knowledge from the entire network, while keeping computational costs low and without
requiring acquisition of data from the entire network. These methods can be applied to very general networks, whether
weighted, directed, multi-edged, or disconnected. We also presented several applications of our proposed measure to

J. Comput. Appl. Math. (2016), 307: 307–318

http://www.sciencedirect.com/science/article/pii/S0377042716300061


Prospect: Transfer network constructed from claims data

structured at multiple levels: first, patients have a higher
probability of meeting patients on the same ward, then in the
same hospital, followed by patients in hospitals in the same
hospital cluster. This structure mitigates dispersal of hospital-
acquired infections. Any differences in the health-care system
affecting this modular structure of the hospital referral network
will therefore inevitably have a bearing on the speed with which
infections will spread.

Compared to the Dutch hospital referral network, the hospitals
in the English network are more connected by the larger number
of patients shared between them. This stronger connectivity makes
the English network more permeable for hospital-acquired
pathogens. An average English hospital shares on a yearly basis
4300 patients with other hospitals, whereas a Dutch hospital only
shares about 1300 patients with other hospitals. At the same
MRSA prevalence, an average English hospital will on a daily
basis refer over three times more MRSA positive patients to other
hospitals than a Dutch hospital. Although not all introductions will
result in successful dispersal, the likelihood that this occurs is
higher in English hospitals. This difference in permeability has
important implications for infection control in hospitals. In
England more stringent measures are required, whereas control-
ling the spread of hospital-acquired pathogens in the Netherlands
is easier. The success of the Dutch ‘search and destroy’ policy may

be assisted by a higher probability of stochastic extinction aborting
nationwide outbreaks at an early stage.

Some imperfections in the data analysis need to be addressed. A
relevant residual confounder which this study was unable to
include is the medical condition of the patients. Acute conditions
that require complex interventions are often the reason for
referring patients to other hospitals while at the same time these
patients may be more susceptible to hospital-acquired infections
and have more exposure to antibiotics. To accurately correct for
these effects, patient details that could not be extracted from the
existing datasets need to be taken into account. The medical
condition of the patients is the conventional explanation for the
observed difference in HAIs rates between hospital categories. It
can however not account for the observed correlation between size
of the hospital regional cluster and MRSA bacteraemia rates and
the observed regional heterogeneity in MRSA incidence in
England. The burden of chronic disease as well as social
deprivation scores in England have a known north-south gradient
[18,19] which did not coincide with average MRSA incidence
rates ascertained for the different health-care collectives. Further-
more, the geographical clustering of MRSA clones in Europe [20]
is a clear indication that hospital-acquired pathogens spread
through regional hospital referral networks, rather than through
the community. Likewise, patient referrals between regionally
collaborating hospitals represents an analogy to patient transfers

Figure 1. The structure of the hospital referral network in England, based on the NHS Hospital Episode Statistics for the year 2006–
07. In this period, 7,420,219 patients were admitted to 146 acute NHS hospital trusts, for a total of 12,929,171 health-care episodes (corresponding to
143 inpatients and 249 admissions per 1000 inhabitants). Markers indicate hospitals; squares, diamonds, large dots and small dots denote respectively
the acute teaching, large, medium and small acute hospitals. The thickness of the lines between nodes indicates the number of patients that are
referred between hospitals. Different colours indicate regional hospital clusters as identified by community detection algorithm and defined as
hospitals that share more patients among themselves than with other hospitals. Typically, regional hospital clusters are centred around acute
teaching hospitals, and have a total number of hospitals ranging from 5 (in Sheffield) to 25 hospitals (London South & West). Hospital clusters are
numbered according to size.
doi:10.1371/journal.pone.0035002.g001

Hospital Pathogen Dispersal by Patient Transfer

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e35002

PLoS ONE (2012) 7(4): e35002

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035002


Interpretation: Expected usage under energy minimization

Theorem (Albin, Poggi–Corradini): Let

I N = N (γ, e) ∈ N|Γ|×|E | be the number of steps of γ along e

I µ : Γ→ [0, 1] range over the probability mass functions on Γ

Then

I Mod2(G , Γ) =
1

minµ µ′NN ′µ
=

1

minµ
∑

e E[N (γ, e)]2

I For all e ∈ E ,
ρ∗(e)

Mod2(G , Γ)
= (N ′µ∗)(e) = Eµ∗ [N (γ, e)]

http://arxiv.org/abs/1605.08462


Example: Edges e weighted by
ρ∗(e)

Mod2(G , Γ)

MINIMAL SUBFAMILIES 17

FIGURE 2. Expected edge usage, Eµ⇤
⇥
N (�, e)

⇤
, with respect to the optimal pmf

µ⇤ for Example 7.2.

paths, shown in Figure 3 by thick black lines. The values of µ⇤ on these paths are shown above
each picture.

Example 7.3 (A spanning tree example). Figure 4 shows an example of spanning tree modulus on
the same graph as in Example 7.2. The modulus approximation, with tolerance ✏tol = 10�15, is
Mod(�) ⇡ 0.11734. The values

⇢⇤(e)/ Mod(�) = Eµ⇤
⇥
N (�, e)

⇤

are shown on each edge. Notice that the expected usage is nearly identical on all edges, taking
only two distinct values, 0.6 and 0.611.

The expected overlap, Eµ

⇥
C(�, �0)

⇤
, for this example is approximately 1/0.11734 = 8.5222.

The dual problem (5.1) yields an optimal pmf µ⇤ supported on 22 trees. In Figure 6, the thick
black lines indicate the 10 most likely spanning trees, sampled according to µ⇤. The values of µ⇤

on these trees are shown above each picture.
For comparison, Figure 5 shows the expected usage and expected overlap when the uniform

pmf, µ0, is used. Since there are 72,650 spanning trees for this graph (as computed by Kirchhoff’s
Matrix Tree Theorem, see [9, Theorem 1.19]), it is not easy to compute the usage matrix N .
However, by Theorem 5.6, the expected usage Eµ0

⇥
N (�, e)

⇤
with respect to the uniform pmf is

equal to the effective resistance of the edge e. Thus, the expected usages can be computed from
the pseudoinverse of the graph Laplacian, and the expected overlap is then found by summing the
squares of the effective resistances, see (5.4).

arXiv: 1605.08462

http://arxiv.org/abs/1605.08462


Prospect: Comorbidity network constructed from EHR data

Fig.3. The local network that contains all paths from obesity to colorectal cancer in the comorbidity network.

TABLE I. TOP FIVE DISEASE NODES IN THE LOCAL NETWORK THAT 
CONTAINS ALL PATHS FROM OBESITY TO COLORECTAL CANCER. THE 
DISEASES WERE RANKED BY DEGREE AND BETWEENNESS, RESPECTIVELY. 

Rank
Ranked by degree Ranked by betweenness
Nodes Degree Nodes Betweenness

1 Hypertension 26 Hypertension 60.2

2 Diabetes mellitus 24 Diabetes 
mellitus

55.9

3 Hyperlipaemia 22 Hyperlipaemia 35.2

4 Osteoporosis 14 Osteoporosis 12.3

5 Hypothyroid 14 Hypothyroid 9.5

We investigated the top ranked diseases based on both ranking 
methods, and used the unexpected ones to guide the detection 
of genetic associations between obesity and CRC. 

C. Identify Gene Overlaps Through Gene Expression Meta-
analysis 
We chose a top ranked disease on the path between obesity 

and CRC, and then conducted gene expression meta-analysis 
for the prioritized disease, obesity and CRC, respectively, to 
detect new genetic explanations for the relationship between 
obesity and CRC. Gene expression normalized data (SOFT
files) were downloaded from NCBI GEO omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) using the R package 
GEOquery [28]. Then, we performed microarray meta-analyses 
for each disease independently using the R package MetaDE 
[29]. MetaDE implements meta-analysis methods for 
differential expression analysis, and we used the Fisher’s 
method. Significant differentially expressed genes (DEGs) 
were selected as those displaying a FDR corrected p-value 
<0.05. Last, we extracted the common significant genes for the 
three diseases.

III. RESULTS

A. Local Disease Comorbidity Network Models the 
Connection Between Obesity and CRC
We extracted 7006 comorbidity association rules with the 

confidence larger than 50% from the patient records across ten 
years. The comorbidity network based on these  rules contains 
771 nodes and 15,667 edges. Fig.3 shows the local network 
consisting of all the 119 paths (no longer than four steps) from 
obesity to CRC. A total of 24 nodes in the local network are the 

candidate diseases, which have associations with both obesity 
and CRC, and may indicate different aspects of the relationship
between the two diseases. 

B. Osteoporosis Shows High Comorbidity Associations with 
Both CRC and Obesity
Table 1 shows the top five nodes sorted by degree and 

betweenness in the local network. In either way of ranking, 
hypertension, diabetes and hyperlipaemia were in top three and 
closely related with both obesity and CRC. Substantial 
literature evidences support that the metabolic syndrome 
components, hypertension and hyperlipaemia, as well as 
diabetes have association with obesity and CRC through 
insulin resistance in substantial literature [6-9, 18]. These three 
disorders also independently increase the risk of CRC and 
colorectal adenoma [6, 17, 18]. The top ranked comorbidities
demonstrated the validity of our network analysis approach.

Significantly, osteoporosis was ranked highly by both 

203

AMIA Jt Summits Transl Sci Proc. (2015): 201–206

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525229/


Example: Minimal family with energy-minimizing probabilities

18 ALBIN AND POGGI-CORRADINI

FIGURE 3. Optimal pmf µ⇤ for Example 7.2.
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Prospect: Clinical pathways recovered from administrative logs

which is what our algorithm is capable of finding. Another advan-
tage of our algorithm is its depiction of pathways with realistic
complexity and associations. Fig. 12 presents an overly simplified
process, which is rare in healthcare settings. On the other hand,
our algorithm ensures that each visit in the clinical pathway is
dependent on previous 2 visits by using super pairs and Markov
chains, to reflect the actual decision making process in disease
management. For example, we can elicit sub-pathways, such as
Fig. 8, from the complete clinical pathway in Fig. 7, that present
a comprehensive association between visits.

4. Discussion

4.1. Implications

The implications of learning clinical pathways from data can be
two-fold. Healthcare providers can utilize them to compare local
practice against consensus guidelines, and to identify common
practice patterns, promising care delivery pathways, and
unwanted care variations. The data representation method pre-
sented in this paper allows efficient comparison among patients’

Fig. 9. Clinical pathway mined for subgroup 4.

Fig. 10. Visualization of a sub-pathway for patients in subgroup 4. Yellow node: office visit, green node: hospitalization, red: deceased, C2/3: CKD stage 2/3, DH: diabetes and
hypertension, DS: diuretics and statins. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

194 Y. Zhang et al. / Journal of Biomedical Informatics 58 (2015) 186–197

J. Biomed. Inform. (2015): 58: 186–197

http://www.sciencedirect.com/science/article/pii/S1532046415002026
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