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ABSTRACr The assumption that developing follicles communicate through circulating
hormones has been used to obtain a class of interaction laws that describe follicle growth. A
specific member of this class has been shown to control ovulation number. Although all
interacting follicles obey the same growth law and are given initial maturities that are chosen
at random from a uniform distribution, ovulatory and atretic follicles emerge. Changing the
parameters in the growth law can alter the most probable ovulation number and the shape of
the frequency distribution of ovulation numbers. For certain parameter values, anovulatory
states are also admitted as possible solutions of the growth law. The behavior of the model is
examined for interacting follicle populations of different size. Methods are suggested for
identifying growth laws in particular mammals. These can be used to test the model from
experimental data.

1. INTRODUCTION

In many forms of plant and animal life, nature has selected reproductive systems which
deliver large numbers of germ cells (often on the order of 105-1o6) to the external
environment at times propitious for fertilization and growth. Most female mammals, in
contrast, release a small (10-101) and relatively characteristic number of eggs at the time of
ovulation. This often results in a litter size that is typical of the species or breed (3).
A large reserve pool of follicles is formed before birth in many mammals. Each follicle in

the reserve pool consists of an oocyte and a few surrounding supporting cells. Follicles
continually initiate growth from this reserve pool so that, at any time, the ovary contains many
follicles in different stages of maturation. During each estrous (menstrual) cycle only a small
number of the growing follicle population reach ovulatory maturity. The remainder atrophy
and die at various times and stages of development. The developing follicles interact through
circulating hormones, including estradiol and the gonadotropins luteinizing hormone and
follicle-stimulating hormone. This paper explores the hypothesis that this interaction regulates
the number of follicles that eventually mature and release ova.

2. FORMULATION OF MODEL

In this section, a model is proposed to describe the interaction between developing follicles by
means of circulating hormones. It should be emphasized that the aim is not to provide a
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FIGURE I Schematic representation of the interaction between two developing follicles. Follicle estradiol
secretory rate is used as a measure of follicle maturity. The circulating concentration of estradiol, {, is
assumed to control the release of the pituitary gonadotropins FSH and LH. These pituitary hormones
regulate the rate of follicle maturation. The response of a follicle to the circulating concentrations of FSH
(h,) and LH (h2) at any particular time is assumed to depend on follicle maturity.

detailed description of follicle development, which is, of course, a very complicated process.
The intent is rather to formulate a simple scheme that correctly represents the qualitative
behavior and at the same time provides a conceptual framework for more detailed models.
The following idealizations will be formalized and explored as a mechanism for the

regulation of ovulation number' (Fig. 1).
I) Follicle estradiol secretion rate is a marker of follicle maturity.
II) The serum concentration of estradiol controls the release of pituitary follicle-stimulating

hormone (FSH) and luteinizing hormone (LH).
III) The serum concentrations of FSH and LH, in turn, regulate the rate of follicle

maturation. At a given instant, the response of each follicle to FSH and LH depends on the
follicle's maturity.
We formalize these assumptions with the following definitions:

hl, h2 serum concentrations of FSH and LH, respectively
serum estradiol concentration

ly serum estradiol clearance constant

'See references 35, 45, 56, 59, and 67 for a critical review of the extensive experimental literature supporting these
assumptions.
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V plasma volume
Si estradiol secretion rate of the ith follicle
4i contribution that the ith follicle makes to the

serum estradiol concentration
N number of interacting follicles
t time

Consider a system of N interacting follicles. Each follicle is characterized by its estradiol
secretion rate si(t), i = 1, . . . , N. Assume that estradiol is distributed in the plasma volume V
at concentration 4(t) and that it is removed at a rate proportional to its concentration, y4
(7, 64). Inasmuch as the rate of change of serum estradiol must be equal to the difference
between its production rate and removal rate, it follows that

N

Vd4/dt = Zs,(t)- (1)
i-l

If estradiol is removed from the plasma at rates that are fast on the time scale of follicle
maturation (7, 48, 64), then 4(t) is always near its equilibrium value. More precisely, if s1(t)
slowly varies on the time scale given by T = V/y, then

N

t()=(1/e) ESi(t). a)
i-l

If hi and h2 represent the serum hormone concentrations of FSH and LH, respectively, then
assumption III can be written as

dsi/dt =f(si, hi, h2), i = 1,... ,N. (2)

The functionfrepresents the intrafollicular mechanism by which FSH and LH regulate the
rate of follicle maturation. Ultimately, this is expressed at the cellular level by the way these
receptor-bound hormones effect cell division, protein synthesis, and the further production of
steroids and receptors (see, for example, references 28, 46, and 54). f, therefore, implicitly
represents a complex, interrelated sequence of events involving many chemical mediators that
act within and between the different cellular compartments that form a follicle.

Eq. 1 a can be rewritten in the form

N

4(t) = E (i(t), (3)
i-I

where 4i(t) = s,(t)/'y is the contribution that each follicle makes to 4(t). Since 4, is
proportional to si, it is an equally valid measure of follicle maturity (assumption I). As above,
we assume that the equilibrium rates for FSH and LH are fast on the time scale of follicle
growth (14, 62, 66). Then assumption II implies h, = h(4,), h2 = h2(4). We can therefore
write Eq. 2 in the form

d4i/dt =f(i,4) i = 1,... , N, (4)

wheref(4,,) = (I /y)f [-y4,, hI (4), h2(4)]
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Our model consists of Eqs. 3 and 4, which we write together as a system for future
reference:

dti/dt =f(, 4), i = 1, . . ., N
N (N)

37z~j.
j_l

System 5 summarizes assumptions 1-111. It is important to recognize that the effects of FSH
and LH are still present in system 5, although their explicit representation has been removed.
System 5, of course, represents a class of models that becomes a particular model when the
functionf is specified, as we shall do.

There are two important symmetries in system 5. First, the form off is the same for all i.
This means that all follicles are assumed to obey the same law of growth. The second
symmetry in system 5 is that interactions between different follicles occur only through 4,
which is a symmetrical function of (,. This expresses the idea that follicles communicate only
by means of circulating hormones and that all follicles are exposed, at any instant, to only one
circulating concentration of each of these hormones. Follicles can, of course, react differently
to the same circulating milieu, sincefdepends on maturity, 4i, and 4.

3. SUPPORT FOR THE ASSUMPTION THAT GLOBAL INTERACTIONS
REGULATE OVULATION NUMBER

We therefore propose a mechanism of interaction between follicles that is independent of the
distance separating them. The assumption that ovulation number is regulated by a spatially
independent mechanism is consistent with the finding in mice that the distribution of eggs
shed from left and right ovaries, conditioned on a given ovulation number, satisfies the
binomial law (25, 44). The hypothesis that ovulation number is regulated by a mechanism
that involves significant follicle-follicle interaction through direct diffusion of locally produced
growth mediators such as estradiol is not, in general, consistent with the absence of significant
deviation from binomial statistics. Results similar to those of references 25 and 44 are
suggested by earlier studies on other species (11-13, 21). A spatially independent mechanism
is also supported by Lipschiutz's law of follicular constancy (40), which expresses a common
observation that, in many mammals studied, removal of one ovary does not change the total
number of ova released per cycle (1, 9, 19, 20, 26, 29, 32, 33, 41, 42, 49, 50, 51, 53, 57, 61).

It is important to note that both Lipschiitz's law and the statistical evidence referred to
above are also consistent with the hypothesis that ovulation number is regulated by
mechanisms that do not involve follicle interaction at all. However, the assumption of
independent follicle growth is rejected because it cannot explain the degree of control that
mammals achieve.2 It is for this reason that follicle-independent factors that influence

2The assumption of independent follicle growth and a large number of developing follicles when compared with the
mean ovulation rate implies that the distribution of ovulation number frequencies should obey Poisson statistics. In
women, for example, this means that the frequency of anovulatory cycles should be close to 40% and that the
frequency of double ovulations should be near 20%. Since the actual estimated frequencies are much lower than those
numbers (23, 47), the assumption that regulation of ovulation number occurs by independent follicle growth has been
rejected.
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gonadotropin release have not been included in the simple formalism. These influences are
believed to modulate the proposed mechanism for regulation of ovulation number, and,
therefore, would be considered in a more detailed scheme. Some of these factors are seasonal
variation, diurnal lighting patterns, vaginal wall stimulation, and steroid production by
sources other than growing follicles, including the corpus luteum (see reference 58 for a
review).

4. QUALITATIVE FEATURES OF A FOLLICLE MATURATION LAW

Can a single developmental scheme in which follicles influence each other only through
circulatory hormones

1) allow a few follicles to emerge from the interacting population with ovulatory maturity
while the remainder atrophy and die at different times and stages of growth;

2) keep the ovulation number nearly independent of the initial distribution of follicle
maturities; and

3) account for the fact that mammalian species and breeds have different characteristic
litter sizes?

In this section, we will begin to study a particular maturation law that exhibits these
features. Although the details of this maturation law are too simple to be realistic, we believe
that it exhibits the qualitative behavior that is needed for control of ovulation number.
Experiments for identifying such maturation laws in mammals and for testing this belief are
suggested in section 9.
The specific example that we will analyze is

d4j/dt = ~(44), 1i= 1,. ., N

T M2E j (6)
j-I

4(4i, 4) = 1 - ( - M ,)(4 -M2 ,

where M1 and M2 are parameters. Note that Ml and M2 do not change for different follicles.
All N follicles obey the same developmental plan. The functionf, developed in section 2, has
been written in the equivalent form f(j,,) = 4ik(4j,1), because 0 can be given a simple
physiologic interpretation. If si is assumed to be proportional to the number of estradiol-
secreting cells within a developing follicle, then k will be proportional to the net growth rate
per cell (see section 9).3 It should be emphasized that this assumption is not necessary for the
validity of the model, because / can be defined more generally as X = (1/'y)(d/dt) ln si.
The particular model represented by the system 6 is motivated by the stability of its

equilibria and the properties of its symmetric solutions. Before discussing these features,
however, a rough idea of how the model works is obtained by considering the behavior of the
function 0 when 4 is fixed and 4, varies. This corresponds to the situation in the ovary at a
particular time, since there is a distribution of follicle maturities but only one concentration of

3For any given follicle, the net growth rate is defined as the net difference between the rate of cell division and the rate
of cell death.
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each circulating gonadotropin. As a function of the maturity {, the growth rate 4 has a
parabolic form with a maximum at a particular value of maturity. This value is proportional
to the instantaneous value of t. That is,

1(1 I
2 ~Ml M2; (7)

When (i varies too much in either direction from this optimal value, the growth rate is
negative. Thus, the model promotes the growth of follicles whose individual maturities lie in a
certain range. Since the optimal maturity is proportional to #, which increases with time, a
group of follicles is selected for growth. It should be emphasized, however, that it is difficult to
predict the outcome of the interaction without further analysis (see section 5). At any instant,
every developing follicle exerts both stimulatory and inhibitory effects on all other developing
follicles, and the net result of these simultaneous interactions determines the serum estradiol
concentration t.
A representative numerical solution of system 6 is illustrated in Fig. 2. Although all five

follicles satisfy the same growth law, two follicles emerge with ovulatory maturity at nearly
the same time. The remaining follicles atrophy and die after reaching different peak
maturities at various times.

Ovulatory maturation curves are assumed to increase in slope near the time of ovulation for
the following reason: in women and primates, the serum estradiol concentration during the

4,

1.90

iEE 1.27

063

0 :-- 0*5.. 1.28 .T 1.70
TIME--

FIGURE 2 Ovulatory and atretic solutions for five follicles with slightly different initial maturities. All
follicles obey Eq. 6, with M, - 1.95 and M2 - 6.5. Two follicles emerge with ovulatory maturity, &,, at
nearly the same time. All other follicles atrophy and die, although they reach different peak maturities at
different times.
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midfollicular to late follicular phase of the cycle is almost entirely due to a single ovulatory
follicle (4-7). During this time, the serum estradiol curve does not approach an equilibrium
but continues to increase in slope (6, 62). High, fast-rising serum estradiol levels appear to be
important in triggering the preovulatory gonadotropin surge (38). On the time scale of follicle
development, the surge is essentially an instantaneous event that causes egg release from those
follicles that have emerged with ovulatory maturity.
On the basis of the very steep slope of the ovulatory curve and the assumption of converging

ovulatory solutions near the midcycle surge, the following natural idealization is made. We
consider the curves (, (t) and 42(t) of Fig. 2 to arise from solutions to system 6 that "blow up"
in finite time T with ratio 1. In this idealized model, ovulation is interpreted as a simultaneous
event, where M follicles reach the same (infinite) maturity in finite time T. In this way, the
proposed interaction mechanism will not only control ovulation number but also ovulation
time. It should be emphasized, however, that factors independent of the proposed interaction
mechanism are also important in the timing of ovulation in many species (58). For example, in
the rat, diurnal surges in gonadotropin appear to drive the estrous cycle at higher frequencies
than the period of follicle maturation.

5. SYMMETRIC SOLUTIONS AND STABILITY OF SYMMETRIC
EQUILIBRIA

We begin to understand how the dynamical system 6 regulates ovulation number by studying
the special case in which M follicles are identical and the rest are dormant. Since t is the sum
of the contributions made by M identical follicles, it follows that

Il ...- M (8)
, i=M+ 1 ...9N.

Substituting Eq. 8 into system 6 leads to

d{/dt = + 3, (9)

where ,u = -(1 - M1/M)(I - M2/M). Without loss of generality, we will assume that
M2 > Ml.
When the number of identical follicles M is between M, and M2, the stimulatory

interaction term dominates (,u > 0), and the maturation trajectories (i(t) are ovulatory (Fig.
3 b). The idealized ovulation time T is given by

T= In [(1 + ,t2)/gf]l/2 (10)

where t0 is the initial serum estradiol concentration. If the number of follicles M lies outside
the interval (M1,M2), then A < 0. The cubic term in Eq. 9 will now inhibit growth, and an
equilibrium maturity, (M = 1/ V(M - Ml)(M - M2), and equilibrium serum estradiol
concentration, M{M, will be approached (Fig. 3 a). This will be true for arbitrary initial
values of t. Thus, ovulation numbers are restricted to the interval (M,,M2).

These special solutions can be represented in a different way, which will be helpful in
understanding the more general case in which N follicles with different maturities interact. If
we assign to each follicle a coordinate axis in N-dimensional space, then the special solutions
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FIGURE 3 Qualitative behavior of the symmetric solutions of Eq. 6. These correspond to the special case
in which M developing follicles are imagined to interact with exactly the same maturity and all other
follicles are assumed dormant. If the number of follicles, M, is between Ml and M2 (g > 0), then an
ovulatory solution develops (b). However, if M lies outside the interval (M1,M2) then the M follicles
approach an equilibrium (M = 1/ V(M-Ml)(M - M2) maturity (a). Note that the idealized ovulation
time, T, (b) depends on M and initial maturity (see Eq. 10).

represented by Eq. 8 will lie along the lines of symmetry IM of the M-dimensional coordinate
hyperplanes (see Fig. 4 a). When the number of identical follicles M is outside (M1,M2), IM
will contain an equilibrium point PM that blocks ovulation. However, if M is in the interval
(M,,M2), then there will be no blocks along /M, and the trajectories will escape to Xc in a finite
time Tgiven by Eq. 10.
Any arrangement of maturities of the N follicles can be represented by a point P in N-space

with coordinates (Ql,t2 ... N). Given an initial arrangement P(to), Eq. 6 will determine a
unique phase-space trajectory P(t). The projection of P(t) onto the ith coordinate axis will
represent the development of the ith follicle {i(t).
We can get an idea of how these trajectories will behave by examining the stability of the

equilibria PM to small perturbations in any direction. Let P = (Q1, . . ., 4N) be an arbitrarily
small perturbation from PM (defined by M of its coordinates equal to (M = 1 /
( -M, )(M -M2) and the remainder zero). Substituting PM + P into Eq. 6 leads to the

linear system,

dP/dt = AP, (11)
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FIGURE 4 N space trajectories for a system of three interacting follicles. The dashed lines in (a) are out of
the plane of the paper. The coordinates of each point represent the maturities of the three follicles. All
three follicles obey Eq. 6, with M, = 1.9 and M2 = 2.9. These parameters are chosen so that the number of
follicles that ovulate will be regulated at 2. (a) Symmetric solutions. Since 1 and 3 are outside (M1,M2),
equilibrium states P, and P3 occur on the lines of symmetry 1, and 13, respectively. PI prevents one follicle
from ovulating when the other two are dormant (solutions along 1l), and P3 prevents all three follicles from
ovulating when they start with identical maturities (solutions along 13). In contrast, 2 is in the interval
(M1,M2), and therefore there is no equilibrium on 12 to prevent two identical follicles from ovulating when
the third is dormant. (Trajectories on 12 escape to oo in finite time given by Eq. 10). PI and P3 are unstable
saddle point equilibria that direct solutions toward 12. This is demonstrated in b for solutions in the
coordinate planes and in c for trajectories in which all three follicles are nondormant. Since the trajectories
along 1, and 13 are unstable, two follicles will ovulate and one will die independent of the initial maturities
of the follicles.
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SUMMARY OF
TABLE I

THE STABILITY ANALYSIS FOR EQUILIBRIA PM

Eigenvalues of . Perturbation Geometric
.eivaruesiof Eigenvalue Perturbation interpreation

matrixaA multiplicity eigenvet in N-dimensional phasematrix A Z=(~~~~~~I,...b~~~N)~ spaceof2=(6tl, ..6- N)

X, = a, + Mb, = -2 1 Z, = (1, 1,0... 0) A perturbation from the
stationary point PM along
gM

M - I zI,. . . ZmI, independent Any perturbation from the

a, vectors which satisfy stationary point PM per-M
(Ml + M2)M - 2MIM2 E 6t, = 0 pendicular to QM but
(M - M) (M - M2) within the M-dimensional

1 0,N M + coordinate hyperplane

N-M ZM+I . - --.ZN satisfy bt, Perturbations out of the M-
= O, i = I,...,M and dimensional coordinate

N 6t, =
0

hyperplaneX,t = a2 = I - E-M+2__________________ ZN satisfys sot,
(M-MI) (M-M2) (M-N)b,, i = 1,

. . ., M and bt, =
(a, - a2) + Mb1, i =M
+ 1,...,N

where
M

(a, + b b,

a, + b,

0

b,

0a2

0 a2)

M.

a, = iM | ; a2= O(O,M(M); bi = (M |
oki (t.MwMM at (kM,jwkM)

The eigenvalues and eigenvectors of A are summarized in Table I and Figs. 5 and 6. (A more
complete stability analysis of the model can be found in Lacker and Peskin [ 1981 ] ).4

Consider the case illustrated in Fig. 4. The number of interacting follicles, N, is 3. The
parameters Ml and M2 in the maturation law have been chosen so that the lines of symmetry

4Lacker, H. M., and C. S. Peskin. 1981. Control of ovulation number in a model of ovarian follicular maturation.
Lect. Math. Life Sci. Vol. 14. In press.
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FIGURE 5 Sketch of the eigenvalues of A as a function ofM (see Table I). X,U is associated with those
eigenvectors that are orthogonal to the M-dimensional coordinate hyperplane. Xin is associated with
perturbations that are orthogonal to IM but within the M-dimensional coordinate hyperplane. The
eigenvalue As associated with the eigenvector along the line of symmetry IM is always stable and is not
indicated in the diagram. Only integer values ofM have physical meaning.

1, and 13 have equilibria PI and P3, respectively, but so that 12 does not (Fig. 4 a). This is
accomplished by selecting Ml and M2 so that 2 is the only integer in the interval (M1,M2). The
stability analysis of Eq. 11 shows that the equilibria PI and P3 are saddle points (unstable).5
The eigenvectors direct solutions toward the ovulatory line of symmetry 12 (Fig. 4 b and c).
This results in two follicles ovulating independent of the initial maturity distribution of the
three follicles.6

In most cases, the stability analysis shows that the equilibria of Eq. 6 are saddle points that
direct solutions toward the coordinate hyperplanes that contain ovulatory solutions, that is,
toward coordinate hyperplanes in the interval (M1,M2). Figs. 5 and 6, however, show that this
need not always be the case. If M, and M2 are chosen so that there are integers in the interval
(M* = MI M2/(MI + M2), M1), then the equilibria PM associated with these integers are
stable (all eigenvalues are negative). Unlike the saddle point equilibria, these states have a
finite probability of occurring that will be related to the size of their capturing regions in
N-space. Physiologically, these equilibria are interpreted as anovulatory states because a
certain number of follicles become "stuck" at an equilibrium maturity (Fig. 10). The integers

'The complete stability analysis of Eq. 6 shows that when additional equilibria exist off the lines of symmetry, then
they are also unstable.
'Of course any solution which starts exactly on 1l or 13 does not result in two ovulations, since these end at the
stationary points P, or P3, respectively. These solutions are, however, unstable. Any perturbation, no matter how
slight, will result in the solution approaching 12 in finite time.
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FIGURE 6 Stability of equilibria PM located on lines of symmetry lM.

M in the interval (M*,M,) determine the number of stuck follicles and their equilibrium
maturity (M

In summary, the stability analysis suggests that all solutions will be directed by saddle point
equilibria toward coordinate hyperplanes in the interval (M*,M2). This interval includes the
hyperplanes between (M,,M2) in which there are symmetric ovulatory solutions. Further-
more, if there are integers in the interval (M*,M,), then the possibility of anovulation also
exists.

6. NUMERICAL SOLUTIONS

In this section, numerical solutions of the system 6 are obtained for N follicles whose initial
maturities are chosen independently from a given probability distribution. This gives the

1.50

0.75

0010
0.75~
_O.Ww

0.00 .0.66 1.30 0.0 0X65 1.30

TIME

FIGURE 7 Follicle maturation curves in four cycles. Each curve represents the development of a follicle
whose initial maturity is chosen at random from a uniform distribution of maturities between 0 and 0.1.
Although every follicle obeys the same law of growth, some follicles are selected for continued
development while others become atretic. The growth law parameters M, and M2 of Eq. 6 are the same for
each follicle (M, - 3.85, M2 = 15.15). In cycles A and D five ovulatory follicles emerge. In B and C the
ovulation number is four. In each cycle 10 follicles interact. Note that it is possible for an ovulatory follicle
and an atretic follicle to have almost the same maturation curve for most of the length of the cycle (see
cycle D). On the other hand, a significantly smaller follicle can occasionally "catch up" and ovulate (see
cycle B). The ovulation time is slightly different in each cycle. The distribution of ovulation times and
numbers for 1,000 cycles is illustrated in Fig. 8 A.
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model a probabilistic aspect, as suggested by the observation that the reserve pool decays
exponentially with age (34, 36, 52). A different way to model entry of follicles into the
growing population from the reserve pool would be to assume that these events occur at
random times given by a Poisson process.

Fig. 7 illustrates the numerical solutions of four representative cycles in which 10 follicles
interact, starting with maturities that are chosen independently from a uniform distribution in
the interval (0, 0.10). Ovulatory and atretic follicles emerge even though all follicles obey the
same maturation law and influence each other only through the circulation. Atretic follicles
are characterized by initial growth followed by regression at different times and stages of
maturation. In contrast, ovulatory follicles undergo continuous and accelerating growth. The
ratio of maturities of any two ovulatory follicles equals 1 as the idealized ovulation time T is
approached.

For each trial in Fig. 7, there appears to be a certain threshold of initial maturity that
separates ovulatory and atretic follicles. The results of many cycles (Fig. 8 A), however,
strongly suggest that the interaction law, in effect, automatically adjusts the threshold so that
the number of emerging ovulatory follicles is relatively insensitive to the initial arrangement
of maturities.

Although all ovulation numbers fall within the predicted interval (M,,M2), these numbers
do not occur with equal probability. In fact, Fig. 8 shows that many ovulation numbers in the
interval (M,,M2) are not observed at all, even though symmetric solutions corresponding to
these numbers have been shown to exist! (This surprising result will be explained in the
following section.) The most probable ovulation number and range of possible ovulation
numbers and times can be adjusted by changing the growth law parameters Ml and M2. In
general, these distributions appear to be unimodal and asymmetric. (Figs. 8 and 9)

72 - 28s

0
1i;4578234 s 'S' 66 1b2
72 > N ;: ;

w I~~~~~~~~~~~~~~IE

35]-. B ..,...b..

2~87~L0~Q1. . o1.2

FIGURE 8 Distribution of ovulation numbers and ovulation times. Each graph is the result of 1,000
cycles. The number of interacting follicles in each cycle is 10. The initial maturity of a follicle is chosen
independently from a uniform distribution of maturities in the interval (0,0.05). In A the growth law
parameters are the same as for Fig. 7 (MI = 3.85, M2 = 15.15). In B the parameters have been changed to
M= 5.5, M2 = 61.7. Statistics (mean ± SD): (A) ovulation number = 4.63 ± 0.48, ovulation time =
1.98 + 0.25; (B) ovulation number = 7.38 ± 0.58, ovulation time = 1.25 ± 0.26.
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FIGURE 9 The distribution of ovulation times conditioned on ovulation number. The initial maturity of
each follicle is chosen independently from a uniform distribution in the interval (0,0.05). The growth law
parameters (M, = 5.5, M2 - 61.7) and number of interacting follicles per cycle (N - 10) are the same as
for Fig. 8 B. A represents the ovulation time frequencies for those cycles in which seven follicles ovulate
(mean ± SD = 1.31 ± 0.25). B represents the distribution of ovulation times for those cycles in which eight
follicles ovulate (mean ± SD - 1.13 ± 0.20). The area under each graph is equal to the probability of
achieving that ovulation number. The results are obtained from a total of 1,500 cycles. The distribution of
ovulation times for all cycles is represented in C (mean ± SD = 1.25 ± 0.25).

The distribution of ovulation numbers is insensitive to the maximum allowed initial
maturity t%ax. The shape of the distribution of ovulation times is also unaffected by 4°ax as
long as the initial phase of development is still dominated by the uncoupled exponential
growth term. The ovulation time distribution does, however, translate along the time axis
when tax is changed within this range. The qualitative shape of the distribution of ovulation
times is observed in several species including humans (37).
The stability analysis of the previous section predicts that anovulatory states should exist

for special choices of M, and M2 that admit integers in the interval (M*,M,). This is verified
numerically in Fig. 10, where the growth law parameters have been chosen to allow five or six
follicles to become stuck. Fig. 11 shows that, for this case, a significant number of trials are
captured by stable equilibria. Most stable equilibria correspond to M = 6, although five
follicles become stuck in 2 of 1,000 trials. Thus, the model predicts the existence of
(pathological) anovulatory states.
Such states actually occur. In some women, anovulatory states have been observed in which

the serum estradiol concentration remains nearly constant for long periods (63). Long periods
of exposure to steady levels of estradiol may result in important pathology in estrogen-
sensitive tissues. The duration of these states and their frequency of occurrence in a given
individual varies over a wide spectrum (69). In some cases, these steady states are associated
with the presence of persistent functioning follicles or follicular cysts within the ovary (63).
We postulate that these follicles are stuck at an equilibrium distribution of maturity.
Spontaneous escape from these anovulatory states does occur and may be the result of random
perturbations. Such perturbations could occur naturally, for example, by the continual entry
of follicles into the interacting population from the reserve pool at random times. In the model
examined in this paper, escape from anovulation is not possible, because follicle activation
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FIGURE 10 Follicle maturation curves for parameters that admit both ovulatory solutions and anovula-
tory states. Every follicle satisfies Eq. 6, with the same parameter values M, - 6.5, l2 - 15.5. The initial
maturity of each follicle is chosen at random from a uniform distribution in the interval (0,0.05). In A and
C, seven follicles ovulate. In B, an anovulatory state occurs in which six follicles approach an equilibrium
maturity of 0.46. In D, five follicles approach a maturity of 0.25. Note that the approach to equilibrium
need not be monotonic (B). The statistics of 1,000 trials are illustrated in Fig. 11.
FIGURE 11 The statistics of 1,000 trials similar to the four illustrated in Fig. 10. The growth law
parameters M, and M2 are 6.5 and 15.5, respectively. 10 follicles interact in each trial, and their starting
maturities are chosen independently from a uniform distribution in the interval (0,0.05). Anovulatory
states occurred in a significant proportion of trials. These correspond to either five or six "stuck" follicles.
Five stuck follicles occurred in only two of 1,000 trials.

occurs only at t = 0. However, in another paper,4 we will begin to explore the behavior of the
interaction law under an alternative hypothesis in which follicles are activated from the
reserve pool at random times throughout the cycle. It is emphasized that only special choices
for M1 and M2 admit the existence of both anovulatory and ovulatory solutions. Therefore, the
model is consistent with the observation that some species (and individuals within species) do
not exhibit anovulatory states.

7. STABILITY ANALYSIS OF N-SPACE TRAJECTORIES

The numerical results presented in the previous section agree with the theoretical predictions
based on the stability analysis of section 5. However, some ovulation numbers have not been
observed numerically (see Fig. 8), even though the symmetric analysis showed that there were
solutions for these ovulation numbers (see Fig. 3). One might think that the unobserved
ovulation numbers simply have a low probability of occurring. In fact, however, their
probability is zero, as we now show.
The first step is to rewrite system 6 with the following change of variables.7 Let z =

where , is the most mature of N interacting follicles. Since solutions {,(t) do not cross, the

7This change of variables was suggested by J. Moser (personal communication).
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most mature follicle will remain the largest as the system develops in time. After rescaling the
time r = f' t2(t')dt', system 6 can be written in the new variables as

d'yi/dr = yi,/('yi, r), i = 1,... , N
N

r = E ej (12)8
j l

i,t(yi, r) = (1 - yi)[Am, M2(yi + 1) -r(M + M2]

In the transformed phase space all ovulatory (and anovulatory) solutions approach the
equilibria specified by

Yi=O ,i=M+1, ..,N. (13)

There are only two distinct eigenvalues associated with these equilibria:

A = (Ml + M2)M - 2M1M2 (14)

2 -(M, + M2)M + MIM2.
Fig. 12 shows that there is a region of stability in the interval (M*,2M*). Since 2M* is the
harmonic mean of Ml and M2, it breaks the interval (M1,M2) into a stable (M,,2M*) and an
unstable range (2M*,M2). Ovulation numbers in the interval (2MBD77*,M2) have zero
probability of being achieved because they correspond to unstable solutions. Any perturba-
tion, however slight, from these solutions will result in the trajectory moving further away
toward lower dimensional coordinate hyperplanes. Eventually, these solutions will converge
toward the line of symmetry associated with a coordinate hyperplane in the stable interval
(M,,2M*). The dimension of the coordinate hyperplane corresponds to the number of follicles
that will ovulate. Another possibility is that solutions will end at stable, anovulatory,
stationary points located in coordinate hyperplanes between M* and Ml (if integers exist in
this interval).

These predictions are consistent with the numerical results reported in the previous section.
For example, consider the case represented by Fig. 8 A, where Ml = 3.85 and M2 = 15.15.
Although there are symmetric solutions corresponding to ovulation numbers between 4 and
15, the stable ovulation number range, (Ml,2M*) = (3.85,6.14), indicates that ovulation
numbers >6 should not occur. Ovulation numbers <4 or >6 were never observed numerically,
even when the number of interacting follicles per cycle was increased to 1,000.

8. EFFECTS OF INTERACTING POPULATION SIZE ON MODEL
BEHAVIOR

The distribution of ovulation numbers and times is not only effected by the growth law
parameters M, and M2 but also by the number of follicles N in the nondormant interacting

gGrossberg (27) has studied some of the properties of a class of systems that includes Eq. 12 and has shown that
lim,_,, -y,(t) exists for all yi(O) 2 0, i = 1, . . ., N.
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FIGURE 12 Stability analysis of the equilibria represented by Eq. 13. Each equilibrium is characterized
by M, the number of follicles with relative maturity y, = 1. X, and A2 are the distinct eigenvalues'associated
with each equilibrium. These eigenvalues are linear in M (see Eq. 14) and divide the range of ovulation
numbers in the interval (M,,M2) into a stable range (M,,2M*) and an unstable range (2M*,M2). This
explains why larger ovulation numbers in the interval (M,,M2) are not observed, even though solutions for
these ovulation numbers have been shown to exist (see section 4). The figure also shows a stable region
between M* and M,. If integers exist in this interval they correspond to the presence of stable anovulatory
states. (See text for a more complete explanation.)

population. This is illustrated in Fig. 13, which shows both striking improvement in the control
of ovulation time and a shift favoring lower ovulations as the number of interacting follicles
increases. Inasmuch as N decreases as women age, perhaps these effects contribute to the
increased dizygotic twinning rate in older women (23, 43, 47) and the increased variance in
the follicular phase of the cycle during the perimenopausal period (39, 65, 68).

In mammals, most follicles undergo atresia. Only a few of the follicles that initiate growth
reach ovulatory maturity. In contrast, many simpler forms of life have reproductive systems
that deliver large numbers of germ cells to the external environment. Presumably, the
developmental constraint of intrauterine growth has led to the selection of reproductive
systems that prevent the majority of activated follicles from completing maturation. The
results presented in this section suggest that a superimposed regulatory scheme has evolved
that does not discard the older mechanism, but, instead, uses it to improve control.

Fig. 13 shows that the ovulation time distribution approaches a singular limit with
increasing N. This does not seem to be true for the distribution of ovulation numbers. It should
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FIGURE 13 The effect of interacting follicle population size on the distribution of ovulation times and
numbers. Larger numbers of interacting follicles improve control of ovulation time and favor smaller
ovulation numbers. In A, 1,000 follicles interact in each cycle; in B, 100 follicles interact per cycle; and, in
C, 30 follicles interact. Each graph represents the results of 80 cycles. Every follicle obeys Eq. 6, with M, =

6.1, M2 = 5,000.0. Initial maturities are chosen at random to be a number from a uniform distribution
between 0 and 10-. Statistics (mean ± SD): A ovulation number = 7.79 ± 0.65, ovulation time = 4.37 ±

0.01; B ovulation number = 8.28 ± 0.67, ovulation time = 5.55 ± 0.04; C ovulation number = 9.04 ± 0.65,
ovulation time = 6.33 ± 0.10.

be noted that the range of stable ovulation numbers (MI,2M*) is not effected by the number
of interacting follicles, since the eigenvalues XI and X2 in Eq. 14 are independent of N.
Changing N, however, alters the dimension of the phase space and the geometry of the
capturing region associated with a given stable ovulation number.

9. EXPERIMENTAL SUGGESTIONS FOR IDENTIFYING FOLLICLE
MATURATION LAWS IN MAMMALS

Although the particular follicle maturation law examined in this paper exhibits many
interesting physiologic features, it is, of course, unlikely to be found in nature. Nevertheless,
its qualitative behavior is probably similar to many models that regulate ovulation number
and satisfy assumptions I-III. These physiological assumptions were used to develop the
general form 5. The properties of the particularly simple example studied in this paper suggest
that other members of 5 may closely approximate ovarian follicle development in some
mammals. In this section, experiments for identifying such maturation laws and for testing
the theory are proposed.
One approach would be to construct the function f(si,h 1,h2) = dsi/dt directly by perfusing

isolated follicles with constant concentrations of FSH (hl) and LH (h2) (60) and measuring
the follicle estradiol secretory rate, si(t). This technique has the advantage that the explicit
LH and FSH dependence in the maturation law is not lost. It also does not depend on any
explicit assumptions regarding the intrafollicular and cellular mechanisms that control
estradiol production. Transformation off (si,h 1,h2) tofQi.O is obtained by determining the
functions h,Q() and h2(Q) and noting that si = y4,. Experimental methods for finding these
functions have appeared in the literature (10).
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The in vitro disadvantage of this technique might be avoided if an appropriate quantitative,
microscopic label for si could be found. Measuring the number of follicles which secrete near
rate si for different times of the cycle, p(si,t), could be used to reconstructf(Qi,).
The following idealizations lead to a simple physiologic interpretation of 0 in Eq. 6 and, in

addition, suggest an experimental method for identifying f( i,(). Let TD represent the
doubling time of an exponentially growing cell population. If Xi is the number of estradiol-
secreting cells in the ith follicle and if TD for these cells is assumed to depend on FSH, LH,
and follicle maturity (48), then

dXi/dt = Xi [In 2/TD(si,hl,h2)I. (15)

Assume, as has been observed for other steroid secreting cells, that constant saturating rates
of estradiol production per cell, a, are reached at gonadotropin concentrations that are at the
lower limit of the physiological range and at times that are fast when compared with cell
doubling (8, 15-17, 22, 55). Eq. 15 can now be written in the form

dti t4>(t t) (15a)

where o(Qi,) = In 2/TD[yji,h (I),h2(N)] and Xi = si/r = yt,/o-. Since this is in the same form
as Eq. 6, X is, under these additional assumptions, inversely proportional to the cell doubling
time of the estradiol-producing cell population [TD = In 2/o(Qi,,)]. X, of course, need not have
the simple explicit form given by Eq. 6.
A strict interpretation of the two cell hypotheses (2, 24) would identify Xi as the number of

granulosa cells in the ith follicle. According to this hypothesis, FSH-stimulated granulosa
cells convert androgens, produced by LH-stimulated theca cells, to estradiol. Determining TD
for the granulosa cell population in different follicles at different times in the cycle (48) or
measuring the distribution p(Xi,t) (30, 31) can be used to obtain f j,(). However, a more
careful interpretation of Xi is required for species in which both granulosa and theca cells
secrete estradiol in significant amounts (see reference 18 for a critical review). Oncef Qi,)
has been obtained from experimental data, the methods developed in this paper can be used to
make detailed predictions about the statistics of ovulation number and time.
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