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Foreword 

The Control of Flux by Kacser and Burns [ I ] ,  
originally published in 1973, together with the 
work independently developed by Heinrich and 
Rapoport [2,3], started the development of the 
field now called Metabolic Control Analysis. It is 
st i l l  considered today the most readable account 
of the subject. The article is reprinted here (with 
the permission of the Society for Experimental 
Biology) with two types of alteration. The first is 
that certain of the terms and symbols originally 
used have been replaced by those adopted by 
international agreement in 1985 [4] and now in 
common use in the literature of Metabolic 
Control Analysis. The intention behind this is t o  
make this important paper more accessible to  
those who have been drawn into the field 
through more recent articles. The changes are 
indicated where they f irst occur and a Glossary 

$To whom correspondence should be addressed. 

of them all is given at the end. The second type 
of alteration is the insertion of comments to  
indicate where subsequent work has led to 
support and development of the original ideas. 
These additions can be recognized by the 
different typeface in which they are laid out, as 
in this section. The references to  the additional 
work are given in a second reference l is t  follow- 
ing the original. 

D. A. Fell and H. Kacser 

Introduction 
The literature on Control is distinguished by a vast 
quantity of detailed information on particular 
systems and very little discussion on general prob- 
lems. There also appears to be confusion, or at least, 
disagreement - disagreement on definitions, on 
concepts, on criteria and on methodology. There 
are probably several reasons for this. Firstly, we are 
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concerned with the properties of very complex 
systems, complex in the sense that there are many 
different types of component which interact in a 
variety of ways and hence can display many modes 
of behaviour. Secondly, there is no established 
general theory of control of biochemical systems. 
There are bits of theory but no comprehensive 
theory. 

One bit of theory is usually represented as 
metabolic maps. These maps give information on 
the structure of the system: they tell us about trans- 
formations, syntheses and degradations and they 
represent the molecular anatomy. They tell us ‘what 
goes’ but not ‘how much‘. Another bit of theory is 
called enzymology. We have many data on indi- 
vidual enzymes, their kinetics, inhibition charac- 
teristics, molecular structures and some theory of 
catalysis. All these give us elementary functional 
information. 

It is an obvious step to combine the two parts. 
And here we immediately come to a stop since, as 
anybody who has tried this realises, we end up with 
a large set of simultaneous non-linear equations for 
which there is no explicit solution (Appendix A). 
We can, of course, use computers to solve particu- 
lar cases. In the hands of an expert such simulation 
can lead to insight (e.g. see Garfinkel, 1971). More 
often it will simply confirm that our assumptions 
about the system are correct. In either case, how- 
ever, it cannot yield a general theory of control. 

Discussions on ‘control’ or ‘regulation’ usually 
centre on the question of which enzymes are con- 
trolling the flux in a pathway and suggest experi- 
mental means of identification. In the absence of a 
general theory of control, the basis of such experi- 
mental identification will remain obscure, being at 
best intuitively plausible. (See, however, the excel- 
lent review by Rolleston, 1972.) The measurements 
which are made for this identification include the 
levels of enzymes and of pools, inhibition charac- 
teristics of enzymes and feedbacks, the levels of 
inhibitors or activators, the measurement of fluxes 
and their changes under a variety of conditions. The 
discussions suggest that ‘controlling enzymes’ can 
be identified as those which satisfy a number of dif- 
ferent criteria (e.g. see Chance, Holmes, Higgins & 
Connelly, 1958; Newsholme & Gevers, 1967; 
Scrutton & Utter, 1968) which are rather directly 
related to the measurements. It is, however, not 
clear in what way diverse criteria are related or how 
consistent they are with one another. But princi- 
pally, what appears to be lacking are agreed defini- 
tions of the various aspects of control to which 
these criteria could be applied. The establishment of 

the necessary definitions and their inter-relations 
requires a rigorous theoretical approach. 

Higgins (1963) has presented a kinetic treat- 
ment of sequential reactions and has analysed 
system responses in terms of ‘reflection coefficients’. 
Our treatment is based on essentially the same 
approach. We shall outline a general theory of 
steady-state enzyme networks and apply it to the 
problem of the control of flux. It involves concepts 
to which we find it useful to attach new names and a 
methodology which is basic to our approach. Four 
control measures will be defined, given operational 
meaning and set into the framework of a quantita- 
tive systems theory. 

Parameters, variables and responses 
We must begin by being clear about the distinction 
between parameters and variables in a biochemical 
system. On the one hand parameters represent the 
constant constraints of any organism. We can 
identify these with the genetically determined con- 
stants of enzymes such as turnover numbers, 
Michaelis constants, inhibition constants, etc., and 
with the externally set concentrations of the 
nutrients, effectors and other substances. Under a 
wide variety of circumstances enzyme concentra- 
tions are found to be uninfluenced by changes in 
metabolism, in which case they too can be treated 
as parameters. There are, in addition, general 
thermodynamic constraints represented by the 
equilibrium constants. The system parameters con- 
cerned with enzyme quantity and quality and with 
the environmental conditions, are constant for most 
interpretable experiments, but are, within limits, 
under our control. We can set, say, glucose or argi- 
nine outside the system to any desired value and we 
can similarly, though not quite as easily, alter the 
enzymic values by e.g., either changing the dose or 
the alleles of certain genes. 

The variables, on the other hand, represent 
the levels of metabolites and the diverse molecular 
forms arising from them. It is their characteristic 
that they move and settle to certain values. In, e.g., 
the steady state, which is both algebraically and 
experimentally a convenient state to consider, the 
concentrations of the pools are time-invariant 
because each has reached a balance of formation 
and removal which in turn depends on other rates, 
extends right through the system and involves, in 
principle, all the enzymes*. The pools are in fact the 
‘links’ in the system’s interactions. Thus pool con- 
centrations and fluxes (which are flows into and out 
of pools) are determined by the constellation of the 
system’s parameters. Flux is a systemic property 
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and questions of its control cannot be answered by 
looking at one step in isolation - or even each step 
in isolation. An analysis must consequently be in 
terms of the quantitative relations between the parts 
as much as in terms of the gross structure or the 
molecular architecture of its catalysts. Any particu- 
lar pool or flux is thereby not determined by a 
single parameter, but in general, by all of them act- 
ing and interacting as a system. The situation out- 
lined above can be represented mathematically in a 
fairly general way (Appendix A). 

This raises the first question: Are all param- 
eters equally important in influencing the value 
which a particular variable, say a flux, settles to? Or 
an alternative form of the same question: What is 
the quantitative influence of one parameter on, say, 
one particular flux and how do we ascertain it? 

Clearly if we want quantitative answers we 
must ask quantitative questions. Let us take a flux 
through a pathway and focus our attention on one 
of the enzymes. If we could, in a thought experi- 
ment or in a real experiment, make a change in the 
quantity of this enzyme, and this enzyme alone, and 
observed any change in flux which may be caused, 
this would be a relevant obervation. We would get 
an idea how sensitive the flux is to changes in this 
enzyme’s concentration. 

Secondly, if we extracted the enzyme and 
investigated how its rate of reaction varied with, say, 
an inhibitor concentration, this would be a relevant 
observation. This might tell us how controllable this 
enzyme is, particularly if we knew what the inhibitor 
concentration in vivo was. Thirdly, we could inves- 
tigate how changes in the pool concentrations, from 
the values they have, would affect the rate of the 
reaction. This might tell us how ‘elastic’ that step is 
in response to pool changes. 

*It has often been said that pools ‘must be maintained at 
their proper levels’ or that there is a ‘normal’ level, 
‘excess‘ of which would either be uneconomic or would 
upset ‘the delicate equilibrium’ so necessary to ‘integrate 
the different metabolic functions’. Natural selection has 
been invoked as being responsible for this amazing feat 
of juggling. Those who are aware of the forces respon- 
sible for coming to a steady state realise, of course, that 
this is a fanciful delusion. Almost any set of enzymes will 
generate a steady state with all fluxes in operation. The 
existence of the vast array of genetic variation shows that 
there are very many different ‘delicate equilibria’ which 
are just right. As Mark Twain observed, while marvelling 
at our amazing adaptation: ‘Our legs are just long enough 
to reach the ground.’ 
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Fig. 2. Effect of finite and infinitesimal changes on a 
hypothetical function J- f(I). AJ/AI# dJ/dI. 

If it is agreed that these three vague questions 
are not unlike what many people have in mind 
when talking about control, we can proceed to make 
them more precise. We will in fact show that they 
allow us to formulate a quantitative systems theory 
of control. But first we must translate these ques- 
tions into a form which is suitable for both experi- 
mental procedures and theoretical evaluation. 

The following example will suggest how this 
can be approached. Take an external parameter, say 
an effector acting as a specific enzyme inhibitor, I, 
which we allow to act on an enzyme in the system. 

Let us measure by some suitable method, the 
flux, J, carried by that enzyme step in the presence 
of a certain fixed external concentration 1’. 

Flux was symbolized by F in the original. 

For this part of the argument it is assumed that the 
internal level, I, depends only on the external level 
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1". In the case of compartmentation the effective 
internal concentration may be difficult to ascertain. 

How does variation in I affect J? Let us 
impose such a variation, AI, and observe how J 
changes. Since the absolute changes, A I  and AJ, 
depend on the units chosen to measure these, it is 
best to use fractional changes to describe this, AJ/J 
and AUI, independent of units. 

A measure of the effect of I on J would be the 
ratio 

E/E  
J I  

But since, in general, the relationship is non-linear, 
this ratio will depend on the size of the fractional 
change made. If, however, we reduce the size of AI, 
then, in the limit, we obtain a ratio of differentials 
independent of step size 

~ / T + T / T =  A J  A I  d J  d I  R:. 

This coefficient, & [Note: R in the original], will be 
recognized as the scaled slope at the value of I 

I 
R:=slope*- 

d J  I 
d I  J J' 
-.-= 

In practice, an infinitesimal change cannot be 
achieved, but very small intervals, 6, can approxi- 
mate this: 

or, more generally, for any parameter 

Let us make two points. Firstly, it is important 
that we consider small changes (what we call the 
method of modulation), in order that a good esti- 
mate of the slope should be obtained. We shall use 
this method throughout our treatment. If necessary 
this can be done by interpolation between points if 
the shape of the curve is ascertained. 

Secondly, by this procedure we can relate two 
measurements through a coefficient whose value 
applies to the system in the state it is. The ratio can 
be re-expressed as: 

fractional change in flux 

= R:*fractional change in inhibitor. 

We may call &the Response Co@nt and its value 
may be thought of as an overall measure of the con- 
trol exerted by the inhibitor at the value it has. 

We will now show how this Response Coeffi- 
cient can be usefully separated into two parts, the 
first, measured by the Controllability which is con- 
cerned with the response to inhibitor changes of the 
enzyme in isolation, and the second, measured by the 
Flux Control Coefficient which is concerned with 
the response of the whole system to changes of the 
enzyme. 

The Flux Control Coefficient, symbolized C{, 
was named Sensitivity, symbolized Z in the 
original article. 

The Controllability Coefficient 
The term Controllability Coefficient has not 
been extensively adopted, and it is now gener- 
ally regarded as an Elasticity (introduced later). 
The distinction being made here by Kacser and 
Burns was between the response of an isolated 
enzyme to a chemical whose concentration was 
determined externally to the metabolic system 
under consideration, i.e. a parameter, and the 
response of an isolated enzyme to a metabolite 
whose concentration was set by the metabolic 
system itself, i.e. a variable. The former case is 
their Controllability Coefficient, given the 
symbol K, and the latter is the Elasticity Coeffi- 
cient, given the symbol E. Nowadays, if it is 
necessary to distinguish between these two 
types of Elasticity Coefficient, the Elasticity to a 
parameter (the Controllability Coefficient) can 
be notated as K~ (or, alternatively, n [4a]). 

When we consider the possible mechanisms 
which may be involved in the inhibition example, it 
is immediately clear that the value of this Response 
Coefficient depends, in part, on the nature and the 
extent of the interaction of the inhibitor with the 
enzyme. If this interaction is of the familiar competi- 
tive kind we would expect to get the relationship (a )  
(Figure 3). On the other hand, should the enzyme 
be an allosteric one with a high Hill coefficient, the 
relation will be as in (b). Clearly the difference 
between these two possible situations must have 
something to do with the size of the response. This 
is the aspect which is usefully referred to as the 
Controllability. We are here considering the inter- 
action of enzyme and inhibitor isolated from the 
complete system, as is usual in most enzymological 
exercises, and that is why we have described the 
rate as v and not as a system flux, J. It is, however, 
important that such determinations are not carried 
out at some arbitary or traditional concentrations of 
the substrates and products. Instead they must be 
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I 

Fig. 3. Effect of small changes in inhibitor on the rate, 
v. (a )  Competitive, (b) allosteric. 

held constant at precisely those steady-state levels 
which obtain in the organism. The necessity for this 
is particularly evident when a competitive inhibition 
example is considered since the response in rate, 
for a given SZ, will depend on the absolute value of 
the substrate concentrations. We therefore have 
another important control measure. It consists of 
isolating, or virtually isolating, the step from the rest 
of the system so that the surrounding pools are not 
free to move. Within this milieu, we then determine 
the change in rate consequent upon a small change 
in a parameter, P, such as the inhibitor, Z, used in 
the example [Note: on a particular enzyme 
denoted i ]  

or operationally, 

In general, for any parametric effector acting 
directly on the enzyme, we have: -I-- 6Vi dP-, E p .  i 

vi P 

This is K ~ k  the Controllability C o e m t .  Like the 
Response Coefficient, it is a differential applied to 
the particular constellation of enzyme, substrate and 
effector values, but unlike the Response Coefficient 
it defines only the ‘local’ response of the step in iso- 
lation without allowing it to influence or be influ- 
enced by events in the rest of the system. The 
Controllability, then, is a measure of the extent to 
which the effector has the potential to influence the 
flux. 

Having determined the Controllability we do 
not, however, know what the net change in the 
system will be, since this depends on the response 
of the rest of the system. This, as we have seen, is 
mediated via the ‘links’, the metabolites which are 
shared among the enzymes. The effect of a change 
in inhibitor when the metabolites are free to move 
will be that they settle to new values when a steady 
state will be achieved. It is immediately obvious 
that, in general, this movement of metabolite pools 
will also result in a new constellation of metabolites 
around the inhibited enzyme which has, in the first 
place, initiated these changes. The outcome of all 
this is then to place the enzyme into a metabo- 
lite-inhibitor environment dzFkrent from that which 
applied to the determination of the Controllability. 
The systemjlux change consequent upon a change in 
inhibitor will therefore be different - and in general 
lower - than the rate change determined in isolation. 

The Flux Control Coefficient 
We must therefore attempt to assess this system 
response. We have already had a hint how this can 
be done. Since the system adjusts by transmitting 
the pool changes arising at the affected enzyme, it is 
really changes at that step when it is embedded in the 
system which require discussion. For this, no refer- 
ence to the immediate cause of the change is called 
for. The change in the rate, caused by the change in 
inhibitor, can always be thought of as equivalent to 
some change in the concentration of the ergme. If, for 
example, some inhibitor change causes a 1% reduc- 
tion in rate, this is equivalent to a 1% reduction in 
enzyme concentration. We can therefore ask how is 
the effect of a small change in enzyme concentration 
modified by the interactions of the rest of the 
system? For this we must measure system fluxes 
and measure the results of enzyme modulations. 

As before, we can determine the respective 
fractional changes. The symbol ei here refers to 
enzyme concentration [Note: of a particular 
enzyme denoted i ] ,  but its more general meaning is 
discussed in Appendix A 

or 

-+: 65 Se, 
(3) 
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Cj can be described as the Flux Control Coej%mt* 
of the system flux with respect to enzyme concen- 
tration. It represents the system's sensitivity to 
modulations of one of its components, and is a 
measure of the control importance of the step per se 
whether the step is or is not controllable by any 
external effector. 

In the original publication of 1973 and many 
that followed, this control coefficient was 
symbolized by Z and called the Sensitivity Coeffi- 
cient. The footnote to the above paragraph was 
therefore more significant than appears in the 
light of the current terminology. The change in 
terminology ought not to obscure the fact that 
Metabolic Control Analysis is a form of sensi- 
tivity analysis, such as is used for equivalent pur- 
poses in other scientific fields. 

In some circumstances, we can directly deter- 
mine these Flux Control Coefficients. An example 

*In a previous publication (Kacser & Bums, 1968) this 
coefficient was symbolized by C but no other coefficients 
were defined. In another treatment Higgins (1965) 
defined a similar coefficient of 'Control Strength' also 
designated by the symbol C. 

4 

3 

2 2  L L  

1 

of this comes from the arginine pathway in Neuro- 
sporu investigated by Dr R Tateson in our labora- 
tory [S]. Part of this pathway is shown in Figure 4. 
The flux of arginine can be determined by estimat- 
ing the amount of urea produced and the amount of 
arginine incorporated into protein in a given time 
interval. We would like to know how sensitive the 
flux is to modulations in the enzyme. They are all 
clearly necessary since elimination of any one (by 
genetic blocks) reduces the flux to zero. But how 
important are they at the level they are? In Neuro- 
sporu we can modulate the concentration of any 
enzyme by means of suitable heterokaryons. In this 
case mixtures of two nuclear types, one of which 
contained a functionally inactive gene for one of the 
three enzymes, were constructed. Depending on the 
nuclear proportions of the two types of nuclei, 
mycelia with different (and lower) concentrations of 
the enzyme were obtained. Figure 4 shows the 
result of such experiments with three series of 
heterokaryons. For the moment two aspects will be 
considered. In the first place it will be noted that, at 
the normal 'wild type' level, all three enzymes have 
a small Flux Control Coefficient as indicated by the 
slope of the curves at the 100% enzyme points. 
Secondly, although we have not many points at the 

0 50 100 0 50 100 
% OCTase % SY Nase 

OCTase SY Nase ASAase 

ORN + I I  CIT -+ ASA -+ I proT ARG 

1 
Urea 

0 50 100 
% ASAase 

Fig. 4. Effect on flux through arginine of different concentrations of the last 
three enzymes in the pathway. The wild type (homokaryon) level is given, in 
each case, as 100%. Each graph represents different heterokaryons and each 
point represents a different nuclear ratio in the mycelium of Neurosporu 

c~assu [ 51. 
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lower parts, for technical reasons, it is clear that the 
curves must come down to the zero point. The 
curves must therefore increase their slopes and, at 
very low levels of enzymes, the relationship ap- 
proaches proportionality. The coefficient will then 
approach unity. This means that there will be an 
equal fractional response in flux to a given fractional 
change in the enzyme. At that point, then, an 
enzyme might be said to be ‘fully controlling’ the 
flux or to be a ‘bottleneck: 

C;+ 1 (controiling). 

What if the enzyme sits in a position when its 
coefficient is O S ?  Should we say that it is half con- 
trolling the flux or is half a bottleneck? At this point 
we realise that we must not fall into the semantic 
trap of using language where only a precise quanti- 
tative index can represent the situation. 

It should be noted that the three curves were 
constructed each with the other two enzymes at the 
normal 100% levels. For reasons which will appear 
later, it is not possible in this situation for all three 
enzymes to have a coefficient of unity simultane- 
ously. Only one can be in this position at a time. It is 
of course possible, indeed likely, that control is, so 
to speak, shared between many enzymes insofar as 
they all have coefficients between zero and one. 

Many experiments have since been published 
where Flux Control Coefficients have been 
measured. Taken together, they confirm that 
near-zero and small coefficients are very 
common, whereas values approaching one have 
been rare. Some of these experiments will be 
cited later and more can be found in recent 
reviews, e.g. [6,7]. 

Before we go into more subtle aspects of control, 
and in particular into an analysis of the various 
factors that contribute to it, it is worth pointing out 
again that the coefficient is defined as a differential 
at one point and in practice therefore requires small 
changes to define it when the complete curve is not 
available. By contrast, a large step, say from 100% to 
1% of activity, will almost inevitably lead to a severe 
reduction in flux but will not give any information 
about the Flux Control Coefficient either at 100% or 
1 %. 

Another example comes from the work of Dr 
Kathryn Andrews investigating the melanin flux in 
the mouse (Andrews and Kacser, in preparation). 
The flux can be estimated in the skins of young 
mice. The pathway is a ‘short’ one and its probable 
structure is given in Figure 5. By suitable genetic 

PHE - TYR -!+ DOPA - DOPAQUIN -C MEL 

Fig. 5. Effect on flux to melanin of different tyrosinase 
activities. The wild-type (Black) level is given as 100% 
and so is the corresponding flux. The other points are 
obtained from genetic substitutions at the albino locus 
of the mouse. (From Andrews, Butfield & Kacser, in 

preparation.) 

substitutions the specific activity of tyrosinase can 
be varied as shown. In contrast to the arginine path- 
way enzymes, variation in this enzyme results in 
points on the ‘lower’ part of the flux curve and the 
coefficient for ‘normal’ (wild-type) levels is not very 
small. 

These direct means of measuring Flux 
Control Coefficients are not always feasible and we 
shall discuss important indirect means in a later 
section. 

Further experimental evidence comes from 
the work of Niederberger et al. [8] where tetra- 
ploid yeast was used and the flux was monitored 
as a function of each of the last five enzymes in 
tryptophan synthesis. By means of null mutants, 
a series of strains containing between zero and 
four doses of each of the genes specifying the 
relevant enzymes could be obtained. As before, 
the flux control coefficients were found to be 
very small at the 100% enzyme concentrations. 
Similar flux-enzyme curves have also been 
observed by: titration of glycolytic flux in liver 
homogenates with added enzymes [9];  variable 
induction of tryptophan 2,3-dioxygenase in 
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tryptophan catabolism in rat hepatocytes [ I01 
and of B-galactosidase in the lactose catabolism 
of Gcherichia coli [ I I 3; and variable expression 
of one of the elements of the glucose trans- 
porter system in €. coli on transport and cata- 
bolic flux after placing it under the control of a 
variably inducible promoter [ 121. The Flux Con- 
trol Coefficients observed in these ways have 
varied between 0 and 0.8, with lower values pre- 
dominating at normal enzyme contents. 

The partitioned response 
We therefore have defined two measures of control 
each concerned with separate aspects, the Control- 
lability Coefficient, K ~ d  and the Flux Control 
Coefficient Cj. The net response depends upon 
both, and it can be shown by a strict theoretical 
treatment (Appendix B) that the Response Coeffi- 
cient is the product of the two control measures: 

R i =  CjK&$. (4) 
This relationship reveals that in vitro studies 

can be misleading in predicting the effects in the in 
viwo situation without a knowledge of Flux Control 
Coefficients. The Flux Control Coefficient is a sys- 
tem property independent of whether any effectors 
act on the enzyme or what their strength is. The 
Controllability is a local property of the enzyme in 
its environment independent of what changes it 
might set into motion in the rest of the system. For 
both we have indicated experimental procedures 
which can, in principle, measure their coefficients. 
There are, of course, the equivalent algebraic opera- 
tions consisting of partial differentiation of the 
relevant rate expressions (Appendix A). These will 
be shown to be useful in the further analysis of 
control. 

Groen et al. [ I31 have made brilliant use of 
this relationship in their study of mitochondria1 
respiration, which was the first paper to use the 
inhibitor titration method for the determination 
of Flux Control Coefficients. Since then, inhibi- 
tor titration has been one of the most exten- 
sively applied techniques in experimental 
Metabolic Control Analysis (e.g. see [6,7]). 

The Flux Summation Theorem 
While it is useful to determine the value of the Flux 
Control Coefficient for particular steps (in order to 
see how narrow the neck of the bottle is), there is a 
more important consequence of our sensitivity 
analysis. This concerns the distribution of coeffi- 
cients in a pathway. 

We shall discuss this with reference to a 
simple sequence of transformations catalysed by 
enzymes. Consider a chain of enzymes E, to En 

Fig. 6. 

with any values of V,, , ,  K,, etc., and measure the 
flux to X ,  (dX2/dt= J )  at steady state. All the pools 
will be at their steady-state values since their net 
rates of formation and removal are equal. If, in a 
thought experiment, we were to increase all the 
enzyme concentrations simultaneously by the same 
small fractional amount, a, 

6ei -=a 
ei 

the balance of all the rates would remain the same, 
i.e. the pools would not move. The fractional change 
in the flux however, would be exactly a: 

6J 
J 

-=a 

This we may call the 'co-ordinate property' of the 
pathway. How is this brought about? Provided a, 
the common fractional change, is small, this total 
change, S J / J ,  can be considered as the sum of all 
the individual changes, C( 6 J/J)i, which would be 
caused by the alterations to each of the separate 
enzymes. For the zih enzyme the definition of the 
Flux Control Coefficient gives: 

There are, of course, as many Flux Control Coeffi- 
cients as there are enzymes in the chain (n). We can 
write, using relation (5): 

( 6  J/J)i  = Cja 

The summation gives 

-1 - = a C C !  
!!- J 1 - n  (7); I - n  

From (6) it follows that 

C c;=1 
I - n  

(7) 

The sum of all the Flux Control Coefficients is 
equal to unity. This means that in such a chain of 
enzymes the Coefficients are distributed so that 
they are all smaller than unity and only one could 
approach full control importance with a coefficient 
nearly unity. Equally possible is that none of the 
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enzymes is of major importance. ‘Pacemakers’ or 
‘bottlenecks’ do not therefore necessarily exist in a 
particular system. It is interesting to note that this 
conclusion is consistent with the general evidence 
from inborn errors of metabolism. Most of these are 
fully recessive which means that the usual 50% 
reduction in enzyme activity in the heterozygote has 
almost no effect on the flux. 

The Summation Theorem, demonstrated with 
reference to a simple chain where only one system 
flux exists, can be shown to apply generally to 
systems of any complexity (Appendix B). Any flux 
in such a system will satisfy the condition that the 
sum of its coefficients over all the enzymes in the 
system is equal to unity. This allows for a variety of 
relations such as feedback, coupling and branching. 
In the case of branching, increasing an enzyme in 
one branch can result in a decreased flux in the 
other branch so that we obtain negative coefficients. 
This will, of course, complicate the analysis of con- 
trol distribution in such systems. 

Although it is true that, in pathways with 
branches and cycles, certain of the Flux Control 
Coefficients can be negative, and that this allows 
the theoretical possibility that one Flux Control 
Coefficient could be greater than unity (or two 
or more could be near to  one if there were 
some sufficiently large negative Coefficients in 
the system), there are no experimental examples 
of such large positive coefficients at  present. 
However, there have been reports of two flux 
control coefficients in branched systems both 
being near I, associated with a coefficient of - I 
[ I3a, I3bI. 

One corollary to the Summation Theorem is 
that, in a system containing a reasonable number of 
enzymes, almost all the enzymes will appear to be 
‘in excess’ in the sense that, choosing any one, its 
quantity or activity can be reduced (sometimes con- 
siderably) without appreciable effect on the flux. 
This form of words has caused some confusion, 
particularly in the minds of those who imagine that 
all enzymes should have activities which are ‘just 
sufficient’ for the task. We have shown that it is 
impossible for such a situation to exist? 

Kacser and Burns in their paper ‘The molecu- 
lar basis of dominance’ [ 141 discuss in some 
detail why most mutants show recessivity, that is 

‘The implication of this for the problem of Dominance 
and its evolution will be dealt with in a separate publica- 
tion. [Note: ref. [ 141; see also the added commentary 
above.] 

the heterozygotes of mutant with wild-type 
have a phenotype not very different from that of 
the wild-type homozygotes. This arises directly 
as a systems property of metabolic pathways if 
the enzyme in such homozygotes has a very 
small Flux Control Coefficient, as is generally 
found. Previous explanations of dominance, such 
as Fisher’s, have assumed it is an evolved 
property, but this is not consistent with the 
observation of dominance in artificial diploids of 
an organism that is normally strictly haploid [ 151. 
On the other hand, these results are perfectly 
consistent with arguments presented by Kacser 
and Burns. For these reasons, the impact of ‘The 
Control of Flux’ has been as significant in 
genetics as in biochemistry. 

A second corollary arises from the situation 
when, in a given system, say, one enzyme quantity 
is drastically reduced. In such a case, this step may 
change from one having little control to one of 
importance, i.e. the Flux Control Coefficient has 
increased. Since the summation property applies 
equally at the new position, the Flux Control Coeffi- 
cients of all the other (unchanged) enzymes must 
have changed so that the sum remains equal to 
unity. This demonstrates that the Flux Control 
Coefficient of one enzyme is a system property only 
in part determined by its own parameters. 

In genetics terminology, such a situation 
would be described as showing epistasis, which is 
an inherent property of multi-enzyme systems 
[ 161. 

Control analysis of pathways 
We can now return to the analysis of the net 
response which was seen to be dependent on the 
relationship 

R J  = C J K E i  
P r P  

Since 

we can write 

This formulation shows that the flux response is 
dependent on the numerical values of three factors. 
The first, Ci, indicates how sensitive the system is to 
change at this step [i] and the summation property 
imposes restraints on its magnitude. Many authors 
may have had such a concept in mind when they 
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have attempted to divide enzyme steps into ‘bottle- 
necks’, ‘pacemakers’, ‘rate limiters’ on the one hand 
and their presumed opposites on the other. With 
quantitative specification of the coefficients such a 
simple dichotomous classification is not very mean- 
ingful. It is true that in a limiting case, when the 
Flux Control Coefficient of one step is very large 
while the others have very small values, the choice 
of an appropriate term may be found to be satisfy- 
ingly descriptive. In general, however, one expects a 
distribution of the values with none of them neces- 
sarily dominating and this is quite independent of 
the Controllability which may operate. Much of the 
interpretation of results in the literature is con- 
founded by the search for the alleged rate-limiting 
step (or whatever terminology local tradition speci- 
fies). 

This was particularly well illustrated by the 
history of research on the control of mitochon- 
drial oxidative phosphorylation and liver 
gluconeogenesis. The fruitless arguments about 
the rate-limiting steps in both of these pathways 
were revealed for what they were when the 
Amsterdam group measured the Flux Control 
Coefficients in both [ 13,171. 

Any value for the Controllability, K ~ b ,  the 
second factor, may be associated with a low Flux 
Control Coefficient and hence results in a very 
small response. On the other hand, control can be 
exerted in such a situation when the Controllability 
Coefficient [Note: External Elasticity Coefficient] 
has a very high value (such as may be the case in 
allosteric systems). In this case an effectively con- 
trolling enzyme need not be a ‘bottleneck‘ although 
it may become one once it has been acted on by 
certain concentrations of the effector (see, however, 
the later section on feedback inhibition). It is clear 
that the inverse is equally true. Only a quantitative 
analysis can elucidate the situation. 

Finally, since the response is dependent on 
the magnitude of the effector change, dP/P,  a 
judgement as to whether control is actually exerted 
must depend on exact physiological information of 
possible movements of P. 

Metabolic Controllability: the Elasticity 
Coefficient 
The analysis so far has dealt with the effects on 
system properties such as fluxes, exerted by sub- 
stances which are controlled, or in principle con- 
trollable, by setting some parameter external or 
internal to the system. In many cases, however, 
inhibitors are substances generated in the metabol- 

ism and are therefore vanhbles. Any changes in 
such metabolite levels, be they substrates, products 
or effectors, are of course only brought about by 
changes, albeit remote ones, in one or more para- 
meters. Such changes affect many pools simultane- 
ously. Thus one cannot describe the influence of 
metabolites on system fluxes in the same manner as 
was used for parameters. Nevertheless, many inves- 
tigators assert that pools may exert ‘control’. We 
will now consider the role of such pool-mediated 
controls and their relation to Flux Control Coefi- 
cients. 

In the same way as we were able to determine 
the Controllability Coefficient of some parametric 
inhibitor on the rate of a reaction, we can apply this 
procedure to, e.g., the substrate. Remembering that 
the enzyme should be isolated from the rest of the 
system, but with all interacting molecules held at 
their in Vivo concentrations, we can modulate the 
substrate, for example, and obtain a coefficient 
[Note: for enzyme i ] :  

dv;/dS 

or 

(9) 

This may be called the Ehttiity C o e f i n t  and for 
any reaction there are as many coefficients as there 
are metabolites and effectors which interact with the 
enzyme. It will be noted that the method of deter- 
mining these elasticities is not unlike part of a 
Michaelis constant or inhibition constant determi- 
nation except that the molecular milieu is the in vivo 
one and the movement of the pool is over a small 
distance. Although we have defined both Control- 
lability and Elasticity by means of direct operations 
which may have considerable practical difficulties, 
their importance for analysing control is unim- 
paired by this. (We shall discuss alternative 
methods in a later section.) In what follows it will be 
seen that the definitions of Elasticities allow us to 
make use of other measurements in a meaningfil 
manner. 

Of particular interest are the Elasticities of an 
enzyme with respect to effectors which are meta- 
bolically somewhat remote from the enzyme’s 
action. In the case of, e.g., end-product inhibition, it 
is not sufficient to demonstrate that the extracted 
enzyme is inhibitable under assay conditions. Meta- 
bolically significant statements must rely on the 
Elasticity estimates made under conditions equiva- 
lent to the internal milieu. Furthermore the range of 
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end-product concentrations investigated should be 
related to the known in vivo concentration changes. 
The finding of a high end-product Elasticity could 
warrant the use of the term ‘regulatory enzyme’ or 
‘key enzyme’ but, as before, such classificatory 
nomenclature is much less desirable than the quan- 
titative description of its Elasticity. A high Elasticity 
will often be manifested as pool movements around 
the inhibited enzyme satisfying the Cross-over 
Theorem (Chance et al., 1958). Having found a high 
Elasticity does not, however, mean that the enzyme 
necessarily plays an important role in ‘regulating’ 
the flux. The value of its Flux Control Coefficient is 
an equally important factor. We shall discuss 
further aspects of this in a later section. 

The substrate Elasticities are important in 
being concerned with the linking pools between 
adjacent enzymes. In fact we shall show that they 
apportion the Flux Control Coefficients, and hence 
the control, in a chain of such enzymes. Consider 
two enzymes within a pathway linked by a common 
pool s,. 

I E ,  E ,  f - 5, - 5 ,  - s, - 
/ I 

Fig. 7. 

The rest of the system can have any structure or 
complexity provided S, does not interact with any 
other enzymes in the system. We can perform 
another thought experiment and make simultane- 
ous and opposite changes in the concentrations of 
El and E2 such that the steady-state values of So 
and S, (and hence the flux) remain unaltered. The 
only change is in the level of S,. The effect of the 
movement in S, on the rates of the two enzymes is 
determined by their Elasticities with respect to Sl , 
namely E ~ ,  and E ~ , .  An argument (Appendix B) 
based on this leads to the following: 

I 2 

C:E:., + c;&:, = 0 (10) 
This means that there is a simple relationship 
between the Flux Control Coefficients of two 
adjacent steps in a pathway and their Elasticity 
Coefficients with respect to the common pool. 

This equation has since become known as the 
Connectivity Theorem, though that name was 
not used in this paper. 

It enables one to estimate the relative values of the 
two Flux Control Coefficients without the direct 
method previously discussed. Equation (10) can be 
written as: 

c:/c: = - (11) 

(The negative sign arises because the two Elasticity 
Coefficients are normally of opposite sign, i.e. 
product ‘inhibits’, substrate ‘activates’ the rates.) 

Thus by measuring the local response of 
enzymes (Elasticities), the ratio of their effects when 
acting within the system (Flux Control Coefficients) 
can be ascertained. This can clearly be extended to 
determine the relative Flux Control Coefficients 
(Ci: Ci: C:: C::. . .) of a number of successive steps of 
a pathway so long as pools internal to the pathway 
affect only their adjacent enzymes. The relative Flux 
Control Coefficients of a pathway can thus be 
related to measurements on the separate enzymes. 
Unlike the Controllability which measures the pot- 
ential of one enzyme to control a flux, the Elasticit- 
ies enable us to connect different steps in a pathway. 

This idea has since been developed further 
both theoretically and experimentally, as will be 
explained in notes to later sections. Groen’s 
study [ I71 of hepatocyte gluconeogenesis illu- 
strated this by being the first to use elasticity 
estimates to determine the Flux Control Coeffi- 
cients on the gluconeogenic flux. 

In summary, we have argued that certain 
aspects of control, viewed at the level of the whole 
system, can be described quantitatively by means of 
the system coefficients R i  and Ci and we have indi- 
cated experimental means of measuring them. 
These will be seen as particular applications of 
Higgins’ general ‘reflection coefficients’ (Higgins, 
1963). On the other hand we have also considered 
control as it affects the rate of the individual 
enzymes, considered in isolation from the rest of 
the system. This is described quantitatively by the 
two types of ‘local’ coefficients E $  and “E$.  The 
result of introducing these local coefficients is that 
it becomes possible to advance a general theory 
which relates the control behaviour of the whole 
system to the properties of its components. As will ’ 

be shown in the next section this directly leads to 
the establishment of Criteria of control in terms of 
familiar and readily accessible measurements. 

Applications to control criteria 
The above analysis connects Flux Control Coeffi- 
cients to the Elasticities of enzymes. This makes it 
possible to introduce such quantities as specific 
activity (V,,), pool levels, degree of inhibition, etc. 
To establish these relationships to Elasticities 
requires us to make assumptions about or have 
information on the form of the rate expression 
which applies to the steps under consideration. 
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A method which avoids any assumptions 
about the form of the rate expression has been 
developed by Kacser and Burns [18]. This has 
now been called the 'double modulation 
method' and has been incorporated into the 
'top-down' procedure that has been applied by 
Brand, Brown and colleagues [ I3b,20] t o  the 
control of respiration. Theoretical analysis of the 
method continues [21]. In the modulation 
method, measurements of metabolite pool 
changes and flux changes in situ are made conse- 
quent on two independent changes (e.g. inhibi- 
tions by unspecified mechanisms). This makes it 
possible to  obtain values for the elasticities with- 
out knowing what rate equations operate. A fur- 
ther development has recently been proposed 
[22] that allows all the elasticities and control 
coefficients to  be obtained from a set of such in 
vivo modulation measurements. 

For the case where Figure 7 represents a chain of 
unimolecular transformations, a suitable form of the 
rate expression (allowing for reversibility and 
saturability) is, for the first enzyme, e.g. 

(12) 
VI/Ml(S" - SI/KI) 
1 + S"/M, + &/MI* 

v, = 

where So and S, refer to the pools and K ,  refers to 
their equilibrium constant. V, and MI are the maxi- 
mal velocity (V,,,) and Michaelis constant (K,) 
measured in the 'forward' direction and MI* is the 
Michaelis constant for the backward direction. The 
suffix '1' for the constants refers to the number of 
the enzyme in the chain. (For expression of more 
complex reactions see Cleland, 1963.) 

The symbol MI t o  stand for the more familiar 
K,, was used in the original t o  simplify the for- 
mulations, and has been retained here for the 
same reason. 

Let us first consider the limiting case, amen- 
able to immediate analysis, where we can assume 
that all the enzymes concerned are 'unsaturated 
[when the value of the denominator of (12) 
approaches unity]. Here the appropriate rate 
expressions simplify and for two successive steps 
are: 

v, = ( V,/M2)(S1 - S,/K,). (134 
There were incorrect division signs between 

the bracketed terms in the above equations in 
the original. 

The operation of modulating S, to determine 
the Elasticity Coefficients has its algebraic equiva- 

lent in differentiating these expressions with respect 
to S, (Appendix A). This yields 

and 

The signs of these two equations were trans- 

It is thus seen that the Elasticity Coefficients are 
related to the pool configuration around the 
enzymes at steady state. Using equation (11) we 
obtain 

posed in the original. 

We can therefore express the ratios of Flux Control 
Coefficients as ratios involving the steady-state 
pools. Repeating this for successive pairs of 
enzymes, we obtain the ratio of Control Coefficients 
for a sequence of steps in terms of pools 

c; : c;: c:: .. . = (S" - S , / K , )  :(S, - S2/K,)/K, : 

(S, - SJK,) / (K,  K,) : . . . (15) 

Disequilibrium 
The first thing to note is that the difference terms 
represent the degree to which the step is out of 
equilibrium. (For equilibrium this difference 
approaches zero.) One can express this in another 
way, given by the Disequilibrium Ratio, p, which 
for the first step, e.g., is 

p1 = (S , /So) /Kl  =(Mass Action Ratio/Equilibrium 

Relation (1 5) can be rewritten in terms of the ratios: 

Constant). 

c;:c;:c;: ...= 1 -PI : p l ( l  -p, ) :  

PIP2(1 -p3):*** (16) 

Disequilibrium has frequently been used as a 
criterion (Krebs, 1947; Hess & Brand, 1965; 
Williamson, 1965; Newsholme & Gevers, 1967; 
Krebs, 1969) for classifying steps into non-control- 
ling ('equilibrium') and potentially controlling @on- 
equilibrium') categories. Since the deviation from 
equilibrium can take any value between these 
extremes, it is difficult to see where the two classes 
should be separated, although an arbitary limit of 
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0.2 has been suggested (Rolleston, 1972) on 
thermodynamic grounds. More important, however, 
is the fact, shown in the above relations, that the 
Disequilibrium Ratios do not themselves represent 
the correct functions for comparison. Relation (16) 
represents the proper formulation. We are thus able 
to assess the relative Flux Control Coefficients in 
terms of pool ratios and equilibrium constants only. 
It will be noted that since only pool ratios are 
involved many of the difficulties attached to deter- 
minations of absolute concentrations are avoided. 

One result clearly follows. If any of the steps is 
at equilibrium (pi= l), the term corresponding to 
its Flux Control Coefficient becomes zero and 
hence the step becomes completely insensitive. A 
further consequence is that all steps ‘to the right’ act, 
from a control point of view, as if that step were not 
present (all terms multiplied by pi= 1). This con- 
clusion is, of course, in accordance with the 
commonly held view that equilibrium reactions are 
‘non-controlling’. We must, however, sound a 
cautionary note. No step in a system carrying a flux 
can be exactly at equilibrium and therefore its exact 
p value must be considered within the above rela- 
tion (16) in comparison with the other steps. 

This is perhaps best illustrated by two simple 
examples. Taking three successive steps we can 
show using relation (16): 

(1) The step nearest to equilibrium (largest p)  
is not necessarily the least sensitive to control 
(smallest Cj). 

Step no. 1 2  3 
Assumed p 0.9 0.01 0.1 
Calculated C! ratios 0.10: 0.89 :0.008 

Step no. 1, which is 90% towards equilibrium, 
is 12times more sensitive than no. 3 which is 
further away from equilibrium (10%). 

(2) The step most out of equilibrium (smallest 
p)  is not necessarily the one most sensitive to 
control (largest C:). 

Step no. 1 2  3 
Assumed p 0.3 0.3 0.01 
Calculated Ct ratios 0.70 : 0.2 1 : 0.09 

Step no. 3 has the highest disequilibrium (1%) 
of the three but is the least sensitive to control. 

(In both examples the last step has the 
smallest Cj. This is, of course, not an invariable 
result, although there is a ‘position effect’ tending 
this way.) 

Although these are constructed counter- 
examples, they are intended to demonstrate that the 

intuitively held view must be modified by reference 
to the more rigorous relations derived here. 

Analysis of the mammalian serine synthesis 
pathway [23] provides an experimental illustra- 
tion that the largest control coefficient can be 
found on the final step, and also that near-equi- 
librium steps can have a non-zero control coeffi- 
cient. 

Maximal rates 
Instead of formulating the ratios of Flux Control 
Coefficients in terms of pools we can replace the 
terms in relation (1 5) by maximal velocities. Using 
the rate equations (equation 13) for the condition 
when they are equal to the common pathway flux, J, 
this yields the equivalent form: 

... (17) -MI M2 M3 c::c::c:: ...=--.----.- 
V, ’ V2K, ’ V3K,K2 

Again, it can be seen that maximal velocities 
are not in themselves a proper measure of Control. 
The values of the equilibrium and Michaelis con- 
stants can be seen to be equally important. With 
these additional measurements, however, we have a 
feasible criterion in relation (17). 

Criteria for control involving Disequilibrium 
Ratios and maximal velocities (V,,,,,) have often 
been advocated. No reference to the degree of satu- 
ration of the enzymes is made in such discussions. 
We have shown that, for the case of a chain of 
unsaturated enzymes, these experimental quantities, 
although relevant, are not themselves criteria. We 
must now enquire what role saturation plays. 

It can be shown that the simple formulation 
for the Elasticity Coefficient previously established 
(equation 14) is modified by an additional factor 
(Appendix C). Thus for the second step: 

7 (unsaturated) (144 SI 
S, - S2/K2 

E S ,  2 = s1 (1 - 6) (saturable). (18) 
S, - S,/K2 

By additional determination of the system 
flux, J,  and the maximal velocity, V,, it is possible to 
make a correction to estimates based on the unsatu- 
rated theory. 

One particular limiting case is of some 
interest. When the maximal velocity of a reaction is 
found to be very near to the measured system flux, 

353 

I995 



Biochemical Society Transactions 

354 

their ratio, J/V;, approaches one and the correction 
factor approaches zero. This means that the Elas- 
ticity Coefficient becomes very small and the Flux 
Control Coefficient of the enzyme becomes large by 
comparison with others. This is because the two 
coefficients are inversely related (equation 11). In 
this case, therefore, the V,, of a single step ti a 
criterion for a high Flux Control Coefficient and this 
has been recognized by a number of authors (e.g. 
see Krebs, 1969). It is worth pointing out that the 
condition V,,, = J carries with it the implication 
that the enzyme is highly saturated and its Disequi- 
librium Ratio, p, extremely small. Either of these 
conditions separately, however, is not a valid 
criterion. 

In the absence of such extreme conditions, the 
general formulation of type (18) must be used and 
will give the desired information. 

Although the previous sections have referred 
to the calculation of the ratios of Flux Control 
Coefficients, if the ratios of all the Control 
Coefficients are expressed in terms of their elas- 
ticity ratios, the addition of the Summation 
Theorem requirement that all the Flux Control 
Coefficients add up to one is sufficient to 
uniquely determine their values. This was first 
applied experimentally to hepatocyte gluconeo- 
genesis by Groen et al. [ 171. A systematic proce- 
dure for expressing the values of the Flux 
Control Coefficients in terms of the Elasticity 
Coefficients, the matrix method, was proposed by 
Fell and Sauro in I985 [24] and was claimed to  
be extensible to complex pathways that included 
feedback inhibition, cycles and branches. This led 
to much work on the mathematics of these rela- 
tionships [24a-el, culminating in the proof by 
Reder [25] that such calculations were generally 
possible in metabolic systems of any complexity 
provided they attained a stable steady state and 
were fully connected by mass flows. See the 
notes to the section on Limits and Limitations 
for further discussion, particularly concerning 
two or more metabolic processes connected 
solely by catalytic or regulatory effects and 
exceptions to  the Summation Theorem. 

Feedback inhibition 
Having discussed the role of the enzymes’ im- 
mediate metabolites in the control of flux, we must 
now turn to those interactions involving molecules 
not metabolized by the enzyme. The classical case 
is that of feedback inhibition. 

1 -- - - - - - - - - - -  - -  
1 
El  E ,  € 3  E,  x ,  - 5, - 5, - s, - 

Fig. 8. 

Just as in the last section the Elasticity Coefficients 
with regard to shared pools formed the basis for 
relating the Flux Control Coefficients of adjacent 
enzymes, now the pool S, forms the control link 
between three enzymes E l ,  E3 and E4 (Figure 8). By 
an extension of the previous argument for equation 
(10) it is easy to show that (Appendix B): 

C:&:., + C:&;, + C:&:, = 0 (19) 
The three Flux Control Coefficients are connected 
by the Elasticities to the common pool S,. The 
presence and nature of the inhibition function, how- 
ever, produce complexities and make insight into 
the problem somewhat opaque. Let us consider 
again the two types of inhibited enzymes, this time 
affected by the internal pool S,, differing only in 
their inhibition curves. A steady state of the system 
with the pool at S3* can be maintained with either of 
these enzymes. In each case the level of the in- 
hibited enzyme is the same, but their Elasticity 
Coefficients with respect to S, are very different, as 
can be seen from the slopes at that point (Figure 9). 

Let us consider in greater detail the interesting 
case when the pool lies in this ‘control range’ of an 
allosteric enzyme (curve b), i.e. in the range of high 
Elasticity. A common question of importance is to 
enquire how a system such as that in Figure 8 
responds to alterations in ‘demand and what role 
the feedback plays in this. Demand can be repre- 
sented by an effectively irreversible last step and 
variation in demand represented by changes in the 
concentration of this last enzyme (E4), which can be 
thought of as having been brought about by some 
change in physiological state. 

Consider, therefore, an increase taking place 
in the last enzyme (E4). The resulting tendency for 
S3 to decrease would be counteracted by the sharp 
de-inhibition of El in the control range. This has the 
effect of virtually ‘locking’ the pool within narrow 
limits over a wide range of last-enzyme variation. 
The flux ‘extracted’ from the system will therefore 
be almost proportional to the level of this last 
enzyme, since flux varies directly with enzyme con- 
centration in a constant pool environment. This 
means, of course, that the last enzyme has a Flux 
Control Coefficient of almost unity, i.e. it ‘controls’ 
the flux. Since the sum of the Control Coefficients in 
a chain has been shown to be equal to unity, it 
immediately follows that the rest of the enzymes, 
including the ‘controlled’ one, have very low Control 
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s,* 
5, - 

Fig. 9. Effect of a pathway product, S,, on the rate of 
the first enzyme E, (cf. Fig. 8). (a) Competitive inhibi- 

tion, (b) allosteric inhibition. 

Coefficients and therefore no ‘control’. This appar- 
ent paradox of ‘a controlled enzyme exerting no 
control’ is in fact semantic and is resolved when it is 
restated as: The enzyme has a high Elasticity 
Coefficient with respect to the controlling pool, but 
its Flux Control Coefficient with respect to the 
system flux is low (Appendix C). 

The reason for these rather complex relations 
is to be found in the fact that Elasticities (to pools) 

tions remain time-invariant (e.g. see Stebbing, 
1972). Such a system could correspond to some 
early stages of growing organisms or a culture of 
micro-organisms, where time averages are found, 
since concentration changes of both enzymes and 
pools may occur periodically throughout the cell 
cycles, and mycelial organisms where a single 
expanding phase with constant concentrations is 
approximated. Expanding systems, however, differ 
in the number of real fluxes since every steady-state 
pool balances not only its fluxes of formation and 
removal but also its flux to expansion into the 
exponentially growing volume. Certain additions to 
the set of flux equations must therefore be made to 
describe such a system (Appendix A). The Summa- 
tion Theorem must take this into account when 
applied to such systems. 

Our treatment does not deal with transients, 
the trajectories of the system from one steady state 
to another. Experiments designed to measure these 
transitions and interpret their results in control 
terms (e.g. see Higgins, 1965) are therefore not 
served by our analysis. There are probably rela- 
tionships between our various coefficients and the 
relaxation times of such events, but we have no 
explicit statements to make about them. 

and Control Coefficients are interrelated contrary to 
the independence of the Controllabilities (to para- 
meters) and Control Coefficients. 

This emphasizes the necessity to distinguish 
clearly the two types of control, the one by internal 
variable, the other by external parameter. It also 
raises the great difficulties in interpreting certain 
types of experiment, where an intermediate pool is 
defucto converted into a parameter by supplying it 
from outside (e.g. see Williamson, Browning & 

Since then, some progress has been made in 
dealing with the transition times, t, of metabolic 
systems and their dependence on enzyme con- 
centrations. Melendez-Hevia et al. [26] showed 
that a different Summation Theorem (CC:= - I )  
applies. 

It has also been shown that Flux Control 
Coefficients are attainable from observations of 
the pool transients [27]. 

Olson, 1968). The result- of such an operation is 
really to alter the structure of the system. 

Limits and limitations 
In conclusion it is important to consider the range 
of applicability of the foregoing analysis. Through- 
out the treatment we have considered only the 
steady state, applicable either to a constant volume 
or an expanding system. The former has fixed inter- 
nal and external parameters and time-invariant 
values for pools and fluxes. It could correspond to, 
for instance, an adult metazoan or a liver slice. 

The expanding system also has fixed external 
parameters (nutrients) and fixed enzymic param- 
eters, but the quantitiRF of enzymes, pools and fluxes 
increase. In an exponentially growing system, how- 
ever, volume increases exponentially, as well as 
enzymes, pools and fluxes, so that their concentra- 

Similarly the major changes which higher organ- 
isms undergo during differentiation and develop- 
ment can only be marginally illuminated by the 
analysis (Kacser, 1963). During restricted periods, 
however, when enzyme changes may be slow com- 
.pared to the metabolic relaxation times, a strict 
steady-state treatment is still applicable. 

The complex structure of metabolic systems 
provides the possibility that, in certain parts, there 
may occur constellations of effective time constants 
which will not result in a steady state of some pools, 
but will produce an oscillatory solution under con- 
ditions. (See e.g. [28]). Such circumstances are, 
strictly speaking, excluded from our treatment but 
we believe certain time-average values would allow 
us to apply the general results of our analysis. 

A major problem, hardly touched on so far, 
and yet fundamental to every theoretical and experi- 
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mental approach, is the question of systems limits 
(Kacser & Burns, 1968). It is evident that the whole 
metabolism is one system and to draw arbitrary 
lines around a part is unjustified. Yet often theoreti- 
cal approaches start at a constant source of supply 
and, a few enzymes - or even a few dozen enzymes 
- later, end in a ‘product’. Experimentally too, we 
sever or ignore vast portions of the map and 
happily make our measurements. How justified are 
we in adopting these procedures and are there any 
rules that tell us where to draw the lines? In some 
special circumstances criteria for delimiting sub- 
systems can be given but, in general, this remains a 
most intractable problem. A condition which allows 
us to assign a ‘beginning’ to a sub-system (apart 
from an externally controlled substance) would be if 
the pool in question is effectively held constant by 
mechanisms outside the sub-system. One such 
mechanism has already been referred to when a 
pool acting as a feedback signal to a steep control 
enzyme was described as ‘locked’. Over a consider- 
able range of variation of any sub-system distal to 
this pool, the pool can be considered as a param- 
eter. Similarly, if a pool is participating in many 
reactions with considerable fluxes through it, one of 
these fluxes, particularly if it is relatively small, may 
cause little alteration in the concentration. The ‘end’ 
(or ‘ends’) of a sub-system may sometimes be 
identified if there occurs an effectively irreversible 
step to a product which represents another phase 
(precipitation, gaseous product, etc.). 

Such specific circumstances, however, may 
not be frequent enough to serve as a general recipe 
for dealing with the problem. Is our analysis, then, 
restricted to such rare cases? It will be recalled that 
the elasticity analysis yielded ratios of Control 
Coefficients by estimating Elasticities only. These 
can be determined from the isolated enzymes or 
from steady-state pools and these ratios are there- 
fore not dependent on defining any sub-system. It 
therefore requires only to determine the absolute 
value of one Control Coefficient to calculate the 
values of all the others for which adjacent Elastici- 
ties are available. Sub-system limits are, therefore, 
not relevant and hence not restrictive to this treat- 
ment. 

On the other hand the Summation Theorem, 
if it is to be applied to a small portion of the system, 
does depend on identifying a ‘beginning’ and an 
‘end’. 

This also applies to  the methods referred to  
earlier, such as the matrix method, where the 
values (rather than the ratios) of the Control 
Coefficients are obtained from the Elasticities, 

because these calculations assume the applic- 
ability of the Summation Theorem to the 
system. In addition, a number of other circum- 
stances have been identified where the Summa- 
tion Theorem may not be applicable or may 
need modification. These include channelling (i.e. 
direct transfer of an intermediate from one 
enzyme to  the next without it entering the bulk 
phase) [28a], enzyme-enzyme interaction in 
general [28b] and group transfer pathways [28c]. 
Some of these questions are affected by the 
form of the definition of the flux control coeffi- 
cient [4a]. which will be mentioned again in the 
notes to  Appendix A. 

The identification of units of metabolism that 
have a beginning and end has been taken further 
in Modular Control Analysis [28d,28e]. A 
module will be a set of connected reactions 
involving mass flows; when i ts environment 
remains constant, it obeys the Summation and 
Connectivity Theorems. Separate modules, 
either at the same level (another metabolic 
pathway) or at a different hierarchical level (syn- 
thesis and degradation of the enzymes of the 
pathway) may interact via catalytic and regula- 
tory interactions. Modular Control Analysis deals 
with how the Control Coefficients of isolated 
modules are modified t o  become overall Con- 
trol Coefficients in a system consisting of several 
interacting modules. 

For determinations of absolute Control 
Coefficients the previously discussed method of 
genetic modulation is suitable, as also is a method 
of using a specific enzyme inhibitor and applying 
relation (4). As far as Elasticities are concerned 
extraction and reconstruction of the in vzvo milieu 
involve methodological and practical difficulties and 
these must be borne in mind when such experi- 
ments are considered. In particular a knowledge of 
the effective concentration surrounding the in vivo 
enzyme is required. Where organelles such as mito- 
chondria are involved this may not prove excess- 
ively difficult. When evidence of compartmentation, 
not associated with organelles, exists, however, the 
problem becomes extreme. There is a means of cir- 
cumventing these difficulties by in vivo Elasticity 
determinations which consists essentially of pro- 
ducing suitable pool modulations generated by 
alterations (e.g. inhibitions) to other components 
remote from the enzyme in question. (Note: since 
published as [ 181.) 

A considerable number of experiments are 
performed, both in vivo and in vilro, which change 
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the concentration of a metabolite by a very large 
step. Sometimes this is achieved through hormones 
or nutritional changes and sometimes by direct 
presentation of the metabolite. We have already 
commented on the methodological implications of 
changing variables into parameters. Here we would 
like to restrict consideration to the quantitative 
aspects. 

The first thing to observe is that such large 
step experiments are outside the scope of our 
modulation analysis. The various quantifiable coef- 
ficients (Cj, and E:) are strictly differentials and 
in practice can only be estimated by modulation 
experiments involving small changes. Large steps 
could still be used if the whole curve (or a signifi- 
cant portion) is determined and, by interpolation, 
the small change in slope is estimated. What cannot 
be done is to compare usefully the metabolic values 
of two widely differing configurations. The reason 
for this is evident when it is realized that the Control 
Coefficients, for example, change in value with large 
changes of any parameter since they themselves are 
systemic properties. 

An instructive example is given in Figure 10. 
This represents the results of a computer experi- 
ment in which the effect of changing the initial sub- 
strate is varied. The system consists of a chain of 

some of the enzymes, however, change in a 
dramatic way. It can be seen that El has almost all 
the control for part of the X range (C{= 1). It then 
declines rapidly and control is ‘transferred’ to E,. 
This is connected with the greater saturability of 
this enzyme. Such a switch could not have been 
predicted from a measurement of the flux change 
only. Thus an arbitrary large change in X may fall 
anywhere and even a knowledge of the Control 
Coefficients at the start will give no indication of 
their distribution at the new point. This kind of situ- 
ation may well apply to many of the reported ex- 
perimental investigations. If large steps are therefore 
produced, modulation analysis at both points must 
be carried out. 

In some cases a naturally occurring situation 
is found to involve changes of considerable magni- 
tude and widespread consequences. Thus, e.g. 
Bulfield (1972) has shown that the obese and adipose 
alleles in the mouse, apart from exhibiting about 
twice the rate of lipogenesis of their normal alleles, 
show simultaneous alterations in at least fourteen 
enzymes. Although certain genetical conclusions 
can be drawn from these investigations, he points 
out that it is impossible to draw any meaningfbl 
conclusions concerning rate control from such 
comparisons. 

five enzymes whose rate expressions include satu- 
ration terms as in equation (12). By the general 
method described (Burns’ 1968’ 1969) 
the flux was computed for a range of values of the 
initial substrate, X.  The computation also gener- 
ated the Control Coefficient of the flux with respect 
to each enzyme at all settings of X.  Figure 10 shows 
the plot of flux against the substrate of the pathway. 
It is seen that the flux responds in a reasonably 
monotonic fashion. The Control Coefficients for 

There have since been a number of significant 
developments in using the Control Coefficients 
to predict the effects of large changes in enzyme 
activities [29,30]. The theory developed in these 
papers also clarifies why a 2-fold change in lipo- 
genesis requires an increase in the activity of SO 

many enzymes, and explains from a Metabolic 
Control Analysis perspective why it will gener- 
ally be difficult to obtain large increases in flux 
by modulating a single enzyme. Out of these 
insights have come proposals as to how meta- 
bolism can be modified to achieve a selective 
increase in a particular metabolic flux, the ‘Uni- 
versal Method’ [ 3 I 3. 

100 - 

C; 
.I 5 0 -  0.5 - 

Conclusions 
The purpose of the foregoing analysis has been 
twofold. In the first place it has attempted to set the 
problems of control in biochemical systems on a 

E E E, E E,  conceptually sound basis. As we have shown, there 
are a variety of phenomena and procedures which 
must be distinguished, and distinguished clearly, if 
experimental evidence is not to founder on seman- 
tic confusion. Controllability is distinct from the 
sensitivity to control. Direct parametric influences 
are distinct from those acting, perhaps at many 

0.50 1 .OO I .so 2.00 

XI 

x,& s,=4 s,* s,& 5, = x, 

Fig. 10. Effect of changes in the pathway substrate, X, 
on the flux. Changes in the Flux Control Coefficients 
of the five enzymes are also given. Computer simula- 
tion of a chain of saturable enzymes. (From Bacon, 

Bums and Kacser, in preparation.) 
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removes, through the system. Systemic properties 
are distinct from those measurable on isolated com- 
ponents. 

Elucidation of the conceptual issues, however, 
is not enough in an area where logical argument has 
to be supplemented by quantifiable relations. The 
analysis, therefore, has to be carried out within the 
framework of kinetic systems theory and the con- 
cepts must be given precise quantitative definitions. 
When this is done relationships are uncovered 
which allow a clearer understanding of the complex 
processes within the organisms. 

An important conclusion was that the ‘pace- 
maker’ (or similar term) has little meaning (except 
in extreme circumstances) and should be replaced 
by the assignment of a quantity, the Flux Control 
Coefficient, to each of the enzymes. There will, in 
general, be a distribution of such values of coeffi- 
cients in a pathway rather than two extreme classes. 

Our theory also shows rigorously how these 
coefficients may be calculated from easily accessible 
data such as disequilibrium ratios, equilibrium con- 
stants, maximal velocities and Michaelis constants. 
The relevant formulations derived from our theory 
were compared to a variety of criteria which had 
been suggested on mainly intuitive grounds. 

Alternative to these methods we showed how 
direct determinations of the Flux Control Coeffi- 
cients can be made by modulation of enzymes. The 
method of modulation was equally applicable to the 

Appendix A. Mathematical 
representation 
We begin with a mathematical formulation capable 
of representing the steady-state properties of fairly 
general biochemical systems. The system may be 
growing or non-growing, the enzyme concentra- 
tions may be fixed or subject to regulation by the 
levels of small metabolites, the reactions may be 
bimolecular or of higher order and they may be 
subject to inhibition or activation by remote meta- 
bolites. 

Consider the system at any moment to have 
concentrations S,, S,, etc., of intermediary metabo- 
lites and to exist in a volume v, not necessarily con- 
stant. In unit volume of this space the net rates at 
which the different enzymes, considered separately, 
produce or remove their substrates and products 
are represented at any instant by values v,, v,, etc. 
For a metabolite with concentration SI the total 
amount present in the system at any moment is vS,. 
The net rate of its production in the whole volume 
can be found by adding or subtracting terms of the 
form vv,, vv,, etc., in accordance with the informa- 
tion from the metabolic map concerning which 
enzymes remove or produce which metabolites. 
Assuming, for example, that the metabolite with 
concentration S,  is produced by the first and third 
enzymes and removed by the seventh, we can write: 

rate of increase in total amount = 

determination of Elasticities which stand central to 
our theory. 

The second purpose was to marry theory to 

net rate of production in whole volume. 

or 

experiment and observation. Experiments suggest 
theories and the interpretation of results is always 
carried out within the context of such a theory and 
its assumptions. We have attempted to show that 
the area of control requires a quantitative theory 
and have presented its outline. Equally important is 
the feedback from theory to experiment. We have 
suggested what new types of experiments might be 
done - and what experiments we could do without. 
Our theory generates its own methodology and the 
technique of modulation is basic to this approach, 
making it possible to match operational and alge- 
braic procedures. 

The feedback from theory to experiment has 
been well illustrated by the subsequent develop- 
ment of Metabolic Control Analysis, in which 
many biochemical, genetic and molecular biologi- 
cal techniques that were originally developed for 
different purposes have been modified and 
applied in new ways to measure the coefficients 
described here (see e.g. [6,7]). 

d(S,= vv, + vv3- VV7 
d t  

This can be written in the form 

For the steady-state condition, in which we 
are primarily interested, the pool concentrations 
become stationary, dS,/dt=O, and the system 
settles to a steady exponential growth rate, G, with 
G= l/v(dv/dt). Thus, at the steady state, the con- 
dition for balance at the first metabolite gives 

v , + v ~ - v 7 - G s I  -0 (A2) 
In this steady-state condition any rate per unit 
volume, v, is in principle related to the enzyme con- 
centration and to the concentrations of all metabo- 
lites interacting with the enzyme by a suitable rate 
equation (e.g. see Cleland, 1963). Suppose, for 
example, that the reaction rate vl is catalysed by an 
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enzyme of concentration E l ,  which interacts with 
internal metabolites S, and S,, the rate equation 
could be normally written as: 

v, =f(E1, s,, 85, PI’ P2, XI, X,) 
o r = v l r  for convenience. Such a rate equation also 
involves genetically determined parameters P I ,  P,, 
etc. (e.g. Michaelis constant, inhibition constant, etc.) 
as well as the environmentally set parameters XI 
and X ,  (levels of nutrients, effectors, etc.). 

In general the enzyme concentrations E, ,  E2. .  . 
will themselves be related to the concentrations of 
any pools which act as signals within the enzyme 
control loop. This relation can be taken account of 
by replacing the enzyme concentrations, occurring 
in the rate expression, with suitable ‘regulatory’ 
functions. Thus the inclusion of enzyme regulation 
in the mathematical formulation only involves using 
more complicated ‘general’ rate expressions and 
does not alter their number of their disposition in 
balance conditions such as (A 2). The condition for 
balance at S, can now be written as an algebraic 
equation involving these general rate expressions 

v ,  + v3 - v ,  - GS, = o  (A 3) 
This is a balance equation involving the parameters 
mentioned above and the unknown steady-state 
values of the variable pools S,, S,, etc. There are as 
many such equations as there are pools since a 
similar balance must apply for each pool. The solu- 
tion of this complete set of simultaneous algebraic 
equations, involving general rate expressions, thus 
represents the way in which steady-state fluxes, J ,  
and pools are related to the underlying genetic and 
environmental parameters. The steady-state fluxes, 
J, are values which the rates, v, take when a steady 
state is achieved. It is usually the case that the equa- 
tions cannot be solved but nevertheless the repre- 
sentation just stated provides the basic theory of 
control outlined in this paper. 

The terms - GS,, - GS,..., which occur in 
the above balance equations represent the effect of 
exponentially increasing volume, the value of G 
being zero when no such increase occurs. They are 
formally equivalent to the rates, v,, v2, etc., and can 
be thought of as jluxes to expansion. 

CoefVicients and differentiation 
The control coefficients introduced at various 
points in the paper are all measures of the relations 
between a fractional change and a fractional 
response: 

fractional response = coefficient. fractional change 

The coefficients are related to partial differentiation 
and this will be used in our subsequent theoretical 
treatment. 

Local coefficients 
The local coefficients are concerned with the 
response of isolated reactions. They were defined in 
the limit as: 
For ‘Controllability’ 

dvi i dP - E p -  
Vi P 
_- 

For ‘Elasticity’ 

The relation of the coefficients to the partial differ- 
entiation of rate expressions is thus seen to be of the 
form 

P avi 
vi ap E P = -  - 

s avi 
vi as’ ES=- - 

where a represents the operation of partial differen- 
tiation. [Note: and vi  represents the rate function.] 

System coefficients 
These coefficients are concerned with the response 
of system flux, J ,  to a parametric change. The flux, J, 
involves the solution of the complete set of simul- 
taneous equations (A3). This solution can be 
formally written as a function involving all the para- 
meters of all the enzymes and all the external para- 
meters. 

Considering first the case where the enzyme 
concentrations El, E2, ... can be treated as param- 
eters, this function would be of the form 

J = f ( E , ,  E2, E,, . .*? p, ,  p2, ..., XI, X,’ ...I (A81 
or 

= J ,  denoting the function 

The system coefficients were defined in the limit as: 
For ‘Response’ 

dJ jdP,  

J P, 
- = R p i -  

For ‘Sensitivity’ 

d J  jdEi 
Ci - 

J Ei 
-= 
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The relationship of the coefficients is the partial dif- 
ferentiation of the solution of the set of simultaneous 
equations is thus seen to be 

and 

General Control Coemcients 
The account so far given of the Control Coefficient, 
Cj, has assumed that the enzyme concentrations 
can be considered as parameters in the formal func- 
tion (A 8). This will not always be the case and it is 
necessary to define the coefficient in a more general 
way than hitherto. In this situation the balance equa- 
tions (A 3) will involve general rate expressions and 
will not refer directly to enzyme concentrations. 
However, they can be rewritten with a new set of 
parameters, el, e,, etc., introduced so that each 
occurs as a multiplier within its corresponding rate 
expression, v I ,  v2, . . . , v,. Further parameters, en+ ,, 
..., are formally attached to the terms representing 
flux to expansion. The purpose of introducing these 
parameters is that they are related to the various 
rate expressions in the same way as the enzyme 
concentrations were related when considered as 
parameters. Using v', , v;, . . . to refer to the original 
rate expressions of (A3), the new form of the 
balance equation is 

e,v', + e3vi - ejvi- en+ I J .  S,  = O  (A 13a) 

or 

21, + v3 - vj- v,+, = o  (A 13b) 

where v I . . . v , are now functions combining e, and 
v,+,=e,+IGS,. The solution of this set of simul- 
taneous equations, which do not now refer to 
enzyme concentrations, but which include e para- 
meters, can be written formally as for the system 
flux, J 

(A 14) 

When the parameters el, e,, ... have the value unity, 
the original steady flux, J, will be unaltered by their 
presence but we can now consider the response of J 
to modulation of the e-type parameter occurring in 
any particular rate expression. For the enzyme reac- 
tions it will be recognized that the e-type param- 
eters are equivalent to turn-over numbers. The 
control coefficients for these abstract parameters are 
in fact the generalized definition of Control Coeffi- 
cient which we are seeking. The general Flux 

J=f(e,, e,, e3, ..., PI, Pr, ..., X , ,  X z ,  ....) 

Control Coefficient is then defined, in the limit, as: 

d J  Jdei -=c;- 
J e; 

Expressed as a partial derivative of (A 14), C: is of 
the form 

Although there was agreement in the new 
terminology to standardize on the definition of 
the Control Coefficients in terms of enzyme 
concentration, there are technical advantages of 
a more general definition in terms of an e-type 
parameter. Heinrich and Rapoport [ 2.31 assumed 
a more general parameter acting on enzyme rate 
in their original development. This was also con- 
sidered by Reder [25], and there has also been a 
more recent discussion on the differences 
between the various definitions [4a]. 

Appendix B. Relations between 
coefficients 
A number of general relationships exist between 
coefficients and were referred to in the paper; these 
will now be proved. The method of proof is similar 
throughout and involves the consideration of certain 
small movements of e-type parameters (A 13). The 
effects of these movements on the system are 
written out using the coefficient definitions of (A 4), 
(A 5) and (A 9), (A 10). 

The response of an isolated reaction to move- 
ment of its e-type parameter will often be required 
and is, by definition (A 13), directly proportional. So 
that for an isolated reaction 

dv de 
v e  
_-_ - 

Partitioned response 
The relationship Alp= C ; " E ~  of equation (4) can be 
proved by considering the situation when, in a 
system, a differential movement of a parameter, P, 
affecting an enzyme is exactly neutralized by a 
contrary movement of its e-type parameter. Under 
these circumstances no pool or flux has moved and 
the only changed factors affecting the enzyme are P 
and e. This can now be viewed in two different 
ways. Firstly considering the local situation of the 
enzyme we can write down the fact that the sum of 
the effects from P and e on the rate is zero, by using 
relations (A 4) and (B l), which involve local coeffi- 

Volume 23 



The Control of Flux: 2 I Years On 

cients. Thus 

On the other hand we can write down the same fact, 
that the net effect is zero, using the relations (A9) 
and (A 10) which involve system coefficients. Thus 

d J  d P  de, - - - R - + C? - = 0 
J ' P  ' el 

Elimination of ratio (dP/P)/(de,/ei) from (B 2) and 
(B 3 )  then yields the required result of 

R;= Cj K,$ (B 4) 

Elasticities ond Control Coefficients 
Any given pool will usually influence the rate of 
several enzymes either by being involved as a sub- 
strate or a product of them, or as a remote effector. 
There is a general theorem which connects the 
Control Coefficients of such a group of enzymes 
with their Elasticities to the given pool. 

This is the theorem now known as the Con- 
nectivity Theorem. 

Equation (10) is an application of the theorem in the 
case where a pool influences only its two neigh- 
bouring enzymes in a pathway. Equation (19) is an 
application to the case where a pool influences an 
enzyme remote in the pathway in addition to its 
neighbours. 

The theorem itself is quite general but will be 
proved for the case where the given pool, S, influ- 
ences any three enzymes, E, ,  E2 and E,, in a 
general metabolic network. Let the enzymes have 
elasticities with respect to S of E.\, E $  and e i  
respectively. 

If we imagine a differential movement of dS/S 
in the given pool then it is always possible to choose 
movements in the e-type parameters of the separate 
enzymes such that they exactly balance the effects 
of the S movement. Using (B 1) and (A 5 )  to express 
the fact that the sum of the effects of e and S on the 
ziohted enzymes are zero, we obtain the following: 

On the other hand these e movements will clearlv 
maintain a new steady state differing from the 
original only in the pool S. In particular, no change 
will result in any given flux, J, as a result of these e 
movements. We can express this fact by writing 
down that the sum of the effects of the e move- 
ments, acting within the whole system, is zero. 
Using (A 15) this gives 

d J  del J de2 I d e ~  -=O=Ci-+ C,  -+ C3 - (B6) 
J el e2 e3 

Using (B 5) to replace the ratios dele in (B 6) by the 
common factor dS/S we obtain the required general 
relation between Flux Control Coefficients and 
Elasticities as 

C:&:.+ C:&:+ C:&;=O (B 7) 
It should be noticed that the theorem (B 7) is very 
general since the three enzymes are not necessarily 
in the same pathway and the Control Coefficient 
can refer to any given flux, J, within a general meta- 
bolic network. The applications leading to equations 
(10) and (19) in the paper are for the restricted case 
where the enzymes all carry the same pathway flux. 

General Summation Theorem 
Inspection of the generalized balance equations 
(A 13) shows that if all the e-type parameters, 
including those formally attached to expansion 
fluxes, were simultaneously increased by a small 
fraction a,  then any given system flux, J, would also 
undergo a fractional increase a and no steady pool 
levels would be altered. This is because the balance 
of the rates would not be disturbed by such a 
change, only the rates being altered. 

This part of the proof is related to  the analo- 
gous Summation Theorem for Concentration 
Control Coefficients put forward at this time by 
Henrich and Rapoport [2]. This states that the 
sum of Control Coefficients for the concentra- 
tion of a particular metabolite over all the 
enzymes in the system is zero. 

We can thus write for any flux, J: 

total change=sum of changes due to separate e 

remembering that the total change is a and, using 
(A 15) to express the effects of the separate e 
modulations, this becomes 

modulations, 

J del J de2 a= C ,  -+ Cz -+... 
el ez 
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Hence 

c:+ c:+ ...= 1 (B8) 
The theorem is a general one applying to any 
steady-state flux in a metabolic system of any com- 
plexity. It should be noted, however, that the sum is 
over all e-type parameters, that is it refers to Flux 
Control Coefficients associated with all enzymic I 
steps in the system and also the Flux Control Coef- 
ficients associated with all fluxes to expansion. 

There are many other relationships between 
coefficients that have since been proved, and 
indeed additional coefficients have been defined 
(see recent reviews for a summary [6,7]). The 
Concentration Control Coefficients defined by 
Henrich and Rapoport and the Summation 
Theorem governing them [2] have been 
mentioned above. In addition, these authors also 
proved a relationship between the Flux Control 
Coefficients and the Concentration Control 
Coefficients that also involves the Elasticity 
Coefficients. Fell and Sauro [24], using the type 
of arguments shown above, developed a method 
(the matrix method) that claimed t o  be able to 
express the Flux Control Coefficients in terms 
of the Elasticities in any pathway structure, 
though this required developing additional rela- 
tionships between certain of the Flux Control 
Coefficients in branched and cyclic systems (the 
Branch Point Relationships) and modification of 
the Connectivity Theorem where pairs of 
metabolites contain a conserved moiety (such as 
nicotinamide in NAD+ and NADH). Many 
authors have since expanded this work, but of 
particular note is the work of Reder [25], who 
showed that all these relationships would be 
valid in pathways of any arbitrary structure by 
applying more purely mathematical reasoning 
rather than working from thought experiments 
on physical systems. Her work also showed that 
the Summation Theorem and the Branch Point 
theorems were different aspects of the con- 
straints imposed by the structure of a metabolic 
network. 

Appendix C. Applications 
Straight chain of unsaturated enzymes 
We will now consider in detail the application of the 
theory to the particular case of a chain of un- 
saturated enzymes, E l ,  E,, ..., En, carrying out the 
overall conversions of an external substance, XI to 
another external substance X ,  via successive inter- 
mediary metabolites s,, S2, . . . . This is indicated in 
Figure 11 and is of interest because it is possible to 
solve the simultaneous equations representing the 

system explicitly to yield an expression for the path- 
way flux, J in terms of enzymic and environmental 
parameters. 

€ 1  €2 E" 
XI - 5 ,  I_c 5, -... %-I  - X ,  

Fig. 11. 

Explicit solution 
Suitable rate expressions to represent the reversible 
unsaturated enzyme-catalysed reactions at each step 
were suggested in equations (13). Using these 
together with the fact that, at the steady state, all the 
rates, v, must equal the pathway flux, J, we can 
write the set of equations 

vn=J=- Mn " (  & - I - -  :) 
V and M represent the maximal forward velocity 

and Michaelis Constant of the successive enzymes 
and K the Equilibrium Constants. The unknown 
pool levels S,, S,, etc., can be eliminated from (C 1) 
by dividing the left hand sides by the appropriate V/ 
M terms and also by K ,  for the second equation, 
K , K 2  for the third, and so on. Addition of all the 
equations in this form eliminates the Ss and leads to 

Hence the required solution for J is 

This result shows immediately that all the enzymic, 
environmental and thermodynamic parameters are 
intimately involved in determining J and that no 
single factor need necessarily be controlling. 

Flux Control Coefficients 
Since in this case we have an expression, (C2) of 
type (A 8) for the flux, we can discover the Control 
Coefficient of J with respect to the different 
enzymes by direct differentiation as specified in 
(A 12). Thus we have, for the first step, and remem- 
bering that the Vs are equivalent to enzyme quanti- 
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ties stances do not appear in (B 7) and therefore do not 
affect the results concerning relative Control Coeffi- 
cients, no matter how complex the rest of the meta- 
bolism may be. 

Relation OfElasticities to dkequilibrium and saturation 
Consider a single saturable enzyme within a chain 
having substrate S, and product S, within its path- 
way and possibly other substrates and products 
coupled to it from outside the pathway. From the 
point of view of obtaining the Elasticities by differ- 

reasonable representation of a situation in which 

J vl aJ c =- - 
I J av, 

which yields 

By the same process the Control Coefficients of 
other enzymes turn out to involve replacing the 

tor corresponding to them. For example: 
term in the numerator by the term in the denomina- entiation of a rate expression, using relation (A 71, a 

We can see that 

c:+ c:+ ...= 

which confirms the general Theorem (B 8). 
Inspection of (C 3) and (C 4) directly confirms 

the criteria of equation (17) for relative Control 
Coefficients in terms of maximal velocities, 

Alternatively equations (C 1) can be used to write 
this criterion in terms of pool differences, thus con- 
firming equation (1 5). 

Criteria for Flux Control Coefficients 
We now wish to consider more rigorously the basis 
of the criteria for relative Flux Control coefficients 
set forth in the paper and just confirmed in the par- 
ticular example of an isolated chain of unimolecular 
unsaturated reactions. In particular we will consider 
in what way the criteria are affected by the pathway 
being embedded within a larger metabolic system 
and by effects such as feedback inhibition within the 
pathway and enzyme saturation. 

The basis of the argument for establishing 
relative Control Coefficients involves connecting the 
Control Coefficients of the enzymes with certain of 
their Elasticities, namely those concerned with their 
response to the pools which are links within the 
pathway. This connection depends on a general 
result, relation (B 7), and does not exclude situa- 
tions where, for example, the reactions are also 
coupled to ATP or perhaps inhibited by a metabo- 
lite remote from the pathway. The values of the 
Elasticities for these other 'out of pathway' sub- 

several metabolites may be involved in a reversible 
and saturable reaction is: 

V 
- (S ,ab -S2~d /K)  M 

v= , , (C5) 
S, S, a b 1+-+-+-+- ... 
M M* Ma Mb 

This will be recognised as a generalisation of equa- 
tion (12) for a unimolecular reaction which was: 

V 
= - M (S, - S, / K ) /  ( 1 + $ + 5) (C 6) 

The additional substances denoted by a, b, c and d 
represent substrates and products outside the path- 
way which will enter into both the disequilibrium 
term (i.e. the numerator) and the saturation term of 
the generalized rate equation (C5). The terms M,, 
Mb, etc., in (C5) represent the necessary extra 
Michaelis constants. As mentioned above we do not 
need to assume that the co-factors a, b, c and d are 
in any way held constant. 

Using (A 7) we can now write down the Elas- 
ticities as: 

for substrate, 

S, ab 
E:, = 

S,ab-S,cd/K- 

(C 7) 
SI / M  

1 + (S,/M) + (S,/NIX) + (a/Ma) + ... 
for product 

- S2 cd/K 
&;z = 

S, ab - S, cd/K- 

(C 8) 
s, / M  

1 +( s,/M)+(s,/M*)+(u/Ma)+ ... 
These Elasticities can be seen to be simply related 
to the general disequilibrium ratio, p = (S,cd)/ 
(S ,ab) /K,  of the reaction, and to the degree of 
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saturation of the enzyme by substrates as measured 
by the term Q, and Q2 where 

[ 1 + (S,/M) + ( S J W )  + (a /M,)  + ...I, etc. 
M 

Using this relation we can write the Elasticities 
in (C 7)’ (C 8) as for substrate, 

1 
81 &I\.l = - - 

1 - P  
for product, 

Clearly if the substrate and the product are small 
compared with their Michaelis constants then the Q 
terms will be small and the Elasticities will reflect 
the disequilibrium situation. However, even if the 
enzyme is saturated, when the Q terms may 
approach unity, the equilibrium terms will still 
dominate when the reaction is close to equilibrium, 
p = 1, since in this case they become very large. In 
the case of the unimolecular equation, (C6), it is 
possible to write the Elasticities as their disequilib- 
rium term multiplied by a correction factor which 
involves the ‘flux saturation’, J/  K 

Thus by using (C 6) we can write (C 9) as 

1 
&;, =- (1 -;) 

1 - P  

However, this relation does not hold for the 
general rate equation of (C6), in which we are 
presently interested. 

Relative Control Coeficients with feedback inhibition 

Fig. 12. 

We will assume that the various steps art: either 
unsaturated or close to equilibrium in which case 
their Elasticities to substrates and products in the 
pathway will be given by 1/( 1 - p)  and - p/ (  1 - p)  
respectively. The pools S, and S2 only influence 
their neighbouring enzymes whereas the pool Ss 
also exerts a feedback inhibition on El measured by 
E:,, the Elasticity of E, to S,. 

Let p, ,  p2, p3, p4, be the disequilibrium ratios 
of the four steps and suppose, for convenience and 
since the absolute values are not known, that the 
value of C! = 1 - p I .  We can find C; by using the 
general relation (B 7). Thus 

-0  
1 c: - -PI +Ci-- 

l - p ,  l-p2 

Remembering that we set C{ = 1 - p I ,  this gives 

el, = pdl- P2) 

We can now carry the identical operation to link C: 
and C: which yield C: = pIp2( 1 - p3). 

However, in order to calculate C: we must 
note that three enzymes are connected by S3 which 
gives 

Using the known values for Cf and Cl, this gives 

C:=PlP2P,(l -p4)-(1 -PI )  &:.l(l -p4) 

c : :c~:c ; :c :~( l -p , ) :~ l ( l -p~) :p~p~( l  -p,): 

Collecting these together we have the result 

PIP2P.3(1-P4)-(1-Pl)&$,(l-p4) ( c  l1) 

Clearly, when EL, = 0 and there is no feedback 
this confirms and extends the previous result, equa- 
tion (16), making clear that it is fairly generally 
applicable. 

When the feedback is operating the result 
(C 11) allows us to understand more clearly how it 
modifies the pattern of Control Coefficients which 
would be expected from the disequilibria alone. 
Thus we see that if &:{ is large it will tend to make 
the flux sensitive to the enzyme E4, that is, it will 
transfer some of the control out of the loop. On the 
other hand the idea that the controlled enzyme 
should have a high Control Coefficient is partially 
borne out if we note that this transfer of control will 
be most effective when p, ZJ 0. This will give 
CiB Ci and C; even though CiB Ci. In other 
words El should have a relatively high Control 
Coefficient within the loop if control is to be effec- 
tive. 

This last paragraph embodies one of the most 
important results of Metabolic Control Analysis, 
but one which has proved unwelcome because it 
has contradicted conventional views of meta- 
bolic regulation. E ,  is a regulatory enzyme which 
is concerned with homeostasis because the feed- 
back effect adjusts the rate of supply of S, to 
the rate of its consumption by €,. This has the 
effect of making the enzyme a poorer site for 
the exercise of control by external effectors 
that modify the enzyme activity because its Flux 
Control Coefficient has been reduced. Metabolic 
Control Analysis therefore makes a clear distinc- 
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tion between regulatory effects and control, 
whereas there has been an unwarranted assump- 
tion that regulatory enzymes are potential con- 
trolling enzymes. The issue is discussed at 
greater length in [32], but a potent illustration 
of the force of the argument presented here is 
the failure of a number of genetic engineering 
experiments to increase pathway flux by increas- 
ing the expression of regulatory enzymes subject 
to feedback inhibition. 

The Society for Experimental Biology is thanked for 
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Dr Douglas Kell is thanked for his comments and 
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