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Introduction Methods Results

Discretizing floating point fMRI data

Reverse engineering static network • Consensus networks constructed using the mean edge

probabilities of the constituent methods consistently out-

performed all individual methods.

• Our experimentation with which weighted sum and how

many constituent methods to include in the consensus

networks only differed to the thousandths digit when

constructing networks using the mean edge probability.

• We found that combining inference methods outperforms

individual methods, which is consistent with the learnings

of molecular biology [7].

• REACT performed best when the fMRI data was

discretized using the BiKmeans method. This is consistent

with the predictions from our benchmarking metric.

• Similarly, in the preliminary probabilistic Boolean network

prototypes, we observed recurring Boolean functions

when using BiKmeans output, suggesting that we can use

the occurrence of Boolean functions to assign

probabilities.
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Lower area, less error, better performance
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We benchmarked 11

discretization methods

encoded in GED PRO

TOOLS [5]. We proposed a

novel benchmarking metric

that compares the discretized

data with the normalized raw

fMRI data by computing the

absolute area difference

between data sets.

97.97% of the networks constructed by taking the mean of the

edge probability of the constituent methods out-performed all 44

network inference methods. 45.5% of the consensus networks

constructed using the median of the edge probabilities

outperformed all 44 inference methods.
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We generated static brain networks by applying 44 inference

methods encoded in the software MULAN [1]. 42 of the methods

came from neuroscience and 2 came from molecular biology [2,3].

To determine which combinations of inference methods would

out-perform individual methods, we computed 11 weighted sums

of two metrics: accuracy (ACC) and area under the receiving

operating characteristic curve (AUC of the ROC) [4]. We then

computed 198 consensus networks by taking the mean and median

edge probabilities of the top reverse engineering methods for each

weighted sum.

Motivation: The brain functions by communicating information

across multiple regions, and neurological diseases can alter the way

these brain regions communicate. Modeling the brain as a

functional brain connectivity network (fBCN) from functional

Magnetic Resonance Imaging (fMRI) data can allow clinicians

to compare patient and non-patient brain networks and

systematically diagnose brain disorders. fMRI is a is a functional

neuroimaging procedure that indirectly measures brain activity. We

want to model the mechanisms involved in brain disorders

through probabilistic Boolean networks (PBNs). PBNs are

dynamic and stochastic, capturing moment to moment changes in

the brain and making them robust to uncertainty and noise

present in biological systems, data collection, and data processing.

PBNs are defined as 𝐺 𝑉,ℱ, 𝛼 , where 𝑉 = {𝑣1, … 𝑣𝑛}
represents a set of n brain regions, ℱ = 𝐹1, … 𝐹𝑛 represents a

set of n corresponding families of Boolean functions, and 𝛼 =
{𝑎1, … 𝑎𝑛} represents a set of n families of associated network

selection probabilities corresponding to each 𝐹𝑖 .

Objective: Develop and test a pipeline to reverse engineer a

fBCN from fMRI data using Probabilistic Boolean Networks.

To test our pipeline, we generated 10 fMRI data sets with 49 

brain regions and 204 time points from 10 static networks (5 

Barabasi-Albert scale free networks and 5 Erdos-Renyi random 

networks). We divided the datasets using sliding windows and 

computed a dynamic Boolean network for each window. We then 

generated PBNs by combining the Boolean models.

We inferred a dynamic Boolean network by inputting the

discretized fMRI data and consensus networks into REACT [6].

We systematically tuned the parameters by running 50 simulations

on the 10 data sets.

We divided the 5 discretized Barabasi-Albert data sets into two

windows of length 150 with overlap of 96 and into four windows

of length 101 with overlap of 34 or 35. To run REACT, each of

the windows was paired with its static network. We made

prototype PBNs by grouping Boolean update functions by brain

region and assigning probabilities based on occurrence.

This plot shows the results of the 11 AUC/ACC weighted sums.

We compared these results to the top-performing individual

method to observe which consensus networks out-perform all

other individual methods.
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This plot shows the performance of consensus networks with

varying number of top-performing constituent methods

compared to the top-performing individual method.
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Conclusion and Future Work
• Due to their dynamic, functional, and stochastic nature, 

PBNs can be used to model the functional connectivity of  

brain networks.

• In the future, to evaluate the success of  our pipeline we 

will 1) hide part of  the fMRI time series when training the 

model and see how well the model predicts the hidden data 

2) compare our method to other methods for computing 

PBNs.

• We used in silico data in order to evaluate our pipeline. To 

assess its clinical value, we will compare the in silico data 

generated by MULAN to experimental data.


