HEALTH

¹University of Tennessee Knoxville, ²Worcester Polytechnic Institute, ³UConn Center for Quantitative Medicine

Validation

Whole Body Model of Iron Dynamics

Grey Davis^{1,3}, Hope Shevchuk^{2,3}, Jigneshkumar Parmar³, Pedro Mendes³

NSF Award #1470967

Iron plays an important role in many processes of the body, most importantly oxygen transport by red blood cells. The goal of this research is to create a predictive model of whole body iron metabolism for humans. As a first step, a whole body model of iron homeostasis was created for mice. This model will be used to gain a better understanding of iron metabolism disorders (i.e. anemia and hemochromatosis). The present mouse model was calibrated to data previously published by the Reich group. All calculations, including parameter estimation, were carried out with the open-source

- 2. Rate constants for iron entering and leaving the rest of the body have a strong influence on nearly all other iron species

	kNTBI_FeTf1	kInGut	kInHepat	kInRBC	kInRest	Km	Ki	kFeTf1_FeTf	VgutNTBI	VhepatNTBI	VmacroNTBI	VrestNTBI	vRBCMacro	krestOUT	kInBM	Diet	Hepcidin Synthesis	Hepcidin Decay
FeGut	0	0.051977	0	C	-0.0519244	0.963331	-1.179850	0	-1.234690	0	C	0.037045	0	-0.036632	0	1.236130	1.194040	-1.192300
FeRBC	7.16E-13	-3.76E-12	-1.79E-12	-5.37E-13	-0.999001	-0.704779	0.709476	1.79E-12	-1.43E-12	1.25E-12	-2.68E-12	0.712719	-0.999001	-0.704779	1	0.992750	-0.708802	0.709504
FeMacro	7.86E-13	-3.93E-12	-1.77E-12	-1.96E-13	-1.148330	0.189023	-0.325525	1.77E-12	-1.57E-12	1.96E-12	-1.148330	0.819468	-1.18E-12	-0.810167	1.149830	1.141490	0.328799	-0.328442
FeHepat	8.22E-13	-3.76E-12	1.058060	-7.05E-13	-1.056880	0.253629	-0.299648	1.41E-12	-1.53E-12	-1.056880	-2.70E-12	0.754088	-9.39E-13	-0.745625	-1.53E-12	1.050390	0.302578	-0.302265
Tf	-0.061360	1.36E-12	6.82E-13	3.41E-13	0.363034	0.256105	-0.257580	0.0613475	5.12E-13	-3.41E-13	8.53E-13	-0.258947	3.41E-13	0.256105	5.12E-13	-0.360676	0.257567	-0.257779
Hepcidin	0	0	0	C	0	0	0	0	0	0	C	0	0	0	0	0	1	-0.999001
FeTf	-0.284521	-5.14E-12	-2.57E-12	-5.93E-13	-1.411820	-0.996059	1.003780	0.284463	-1.98E-12	1.78E-12	-3.36E-12	1.007490	-7.91E-13	-0.996059	-1.78E-12	1.403390	-1.001740	1.002940
FeTf1	0.518123	-1.08E-12	-5.40E-13	-9.00E-13	-0.247240	-0.174347	0.173546	-0.518018	-3.60E-13	-1.80E-13	-5.40E-13	0.175939	-7.20E-13	-0.174347	-5.40E-13	0.244963	-0.175343	0.175146
NTBI	-0.802228	0.003428	0.116328	-3.59E-13	-0.893291	-0.821855	0.828849	-0.196905	-1.26E-12	1.79E-12	-2.51E-12	0.831401	-5.38E-13	-0.821855	0.608349	1.158140	-0.826545	0.827650
FeRest	4.70E-13	-3.60E-12	-2.03E-12	-4.70E-13	-7.83E-13	-3.13E-12	4.89E-14	1.72E-12	-1.57E-12	1.25E-12	-2.35E-12	-4.07E-12	-9.39E-13	-0.999001	-1.57E-12	1	-3.13E-13	-2.82E-12
FeBM	7.04E-13	-3.80E-12	-1.83E-12	-0.999001	-0.999001	-0.704779	0.709476	1.83E-12	-1.41E-12	1.55E-12	-2.54E-12	0.712719	-7.04E-13	-0.704779	1	0.992750	-0.708802	0.709504

Steady State Ratios of Adjusted / Normal Hepcidin

Iron Species	Normal Hepcidin	20% of Normal (Lower Hepcidin) Hemochromatosis	180% of Normal (Higher Hepcidin) Anemia		
GUT	1	0.192	2.17		
RED BLOOD CELLS	1	3.79	0.684		
MACROPHAGES	1	0.746	1.27		
HEPATOCYTES	1	0.761	1.25		
TRANSFERRIN	1	0.151	1.12		
HEPCIDIN	1	0.2	1.8		
FeTf	1	5.7	0.577		
FeTf1	1	0.3	0.879		
NTBI	1	19	0.656		
REST OF THE BODY	1	1	1		
BONE MARROW	1	3.79	0.684		
TOTAL BODY IRON	1	3.31	0.754		
Tf SATURATION	1	3.79	0.684		
PLASMA IRON	1	3.79	0.684		

	Hemochr	omatosis	Anemia			
	Increase	Decrease	Increase	Decrease		
Expectations	NTBI Transferrin Saturation Total Body Iron FeGut FeMacro FeHepat Plasma Iron	Transferrin	FeGut FeHepat FeMacro Transferrin	RBC Total Body Iron Transferrin Saturation NTBI Plasma Iron		

Red indicates unexpected Results

The rate laws used in the model are listed in the table to the right. In COPASI, a rate law is the symbolic form of one term of the differential equations

v = rate of reactionS = substrate $S^* = competitive inhibitor$ \forall = volume of substrate's compartment M = modifier (FeTf) $C,k,h,K_m,K_i,M_{halve} = constants$

Methodology Features Modeled rates of injected radioactive iron transport Lopes et al. Lopes et al between organ compartments Model² Data² Mice of 3 different diets in experimental data SBML File Available Mass Action Rate Laws Simple Injected NTBI and FeTf in Plasma Iron Model Fewer Compartments Contains: Transferrin **Kinetics** Steady Hepcidin Synthesis & Based State Degradation Model Data³ Inhibition of iron export by Hepcidin Tracks normal and radioactive iron separately Whole Body Mouse Contains Steady States Has predictive power Model

Model Equations

Rate Law Name	Equation	Reactions			
Constant Flux	v = C	Diet Hepcidin Synthesis (constant hepcidin model)			
Mass action (Same compartment)	v = k * S	NTBI->FeTF1 FeTf1->FeTf Rest->Out Hepcidin Decay			
Mass action (Different compartments)	$v = k * \forall * S$	FeTf->BM FeTf->Hepat FeTf->Rest FeTf->Gut FeTf1->BM FeTf1->Hepat FeTf1->Rest FeTf1->Rest FeTf1->Gut RBC->Macro			
Henri-Michaelis-Menten	$v = \frac{v_{max} * S}{K_m + S}$				
Noncompetitive Inhibition	$v = \frac{v_{max} * \forall *S}{(K_m + S)(1 + \frac{I}{K_i})}$				
Mixed Competitive / Noncompetitive Inhibition	$v = \frac{v_{max} * \forall *S}{(K_m + S + S^*)(1 + \frac{I}{K_i})}$	Gut->NTBI Macro->NTBI Hepat->NTBI Rest->NTBI			
Hill	$v = \frac{V * M^h}{M_{halve}{}^h + M^h}$	Hepcidin Synthesis (variable hepcidin model)			

References

Pahle J., Simus N., Singhal M., Xu L., Mendes P. and Kummer U. (2006). COPASI: a COmplex PAthwav Simulato

Lopes TJ, et al. Systems analysis of iron metabolism: the network of iron pools and fluxes. BMC Syst Biol. 2010;4:112. 3. Templeton, D. (2002). Regulation of Systemic Iron. In Molecular and Cellular Iron Transport (p. 671). New York, NY: Marcel Dekker.