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Introduction 
    Motile cells have two states: stationary and moving. 

Stationary modes are characterized by symmetric forces on 

the cell. In order to achieve movement, a cell must break 

symmetry [1]. When symmetry is broken, the forces exerted 

on the cell become unbalanced, which causes the cell to 

move. We aim to model how symmetry is broken in motile 

cells. 

    Our minimal model, originally proposed by A. Mogilner 

(NYU) [1], considers three factors that influence cell 

movement: actin flow, myosin concentration, and the 

membrane. Using a mathematical model, we show that a cell 

can achieve various modes of  motion by altering parameters 

such as actin polymerization, initial myosin concentration, 

and the viscosity of  the actin network. 

    We show that the mechanisms included in the model are 

enough to break symmetry in the cell and initiate movement. 

By simulating cells with various parameters, we discover 

which characteristics must change to break symmetry. 

1. Mathematically assess how changing parameter sets leads 

to transitions between moving and non-moving states.  

2. Predict how changes in a cell’s internal structure lead to 

transitions in modes of  motility. 
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Discussion 

Conclusion 
    Even though the model only considers actin velocity, 

myosin and the membrane, characteristic features of  cell 

movement are preserved. Changes in total myosin, viscosity, 

and actin polymerization are sufficient to prevent, initiate, or 

change the type of  movement. The two models give insight 

to the role of  adhesions of  actin to the membrane.  

[1] E. Barnhart et al. (2015). PNAS 112(16):5045-5050. 
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Actin Flow 
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Membrane 

Velocity 
𝒏 ∙ (𝒗𝒇 − 𝒖) = 𝑣𝑝    𝒏 ∙ (𝒗𝒇 − 𝒖) = 𝑣𝑝   

Parameters: 

𝛼: viscosity 

𝛽: force per unit myosin 

𝑣0: velocity of  

polymerization 
𝑘: membrane tension 

𝐴0: initial area of  cell 

𝐴: area of  cell 

𝑚𝑚𝑑: diffusion threshold 

𝑚𝑚𝑎: advection threshold 

     

Simulation of  cell rotating in “Zero-Velocity” Model 

𝛼 = 1, 𝑣0 = 12.5, 𝜇 = 6.28 

For a cell to move, membrane velocity must be asymmetric. 

A positive feedback loop—the gradient of  myosin bound to 

actin speeds up the actin flow which in turn reinforces the 

gradient of  myosin—leads to a steady state of  asymmetry in 

distributions of  myosin and actin velocity fields, if  the total 

myosin is sufficiently large. 

• “Zero-Velocity” Model: differences in myosin 

concentration cause movement 

• “Zero-Stress” Model: differences in actin velocity 

cause movement 

The cell’s shape determines the type of  movement. 

• If  a cell’s rear becomes concave, myosin concentrates in 

the two corners of  the cell. Each provides a contractile 

force on the actin network until one becomes stronger 

than the other, and the cell begins to rotate.  

• If  a cell’s rear remains convex, myosin concentrates in the 

back. This is the sole locus of  force on the actin network, 

so stable forward motion occurs. 
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Model 
    The original equations are revised because they yield 

nonphysical states: collapsing cells and cells that develop 

singularities.  

Simulation of  cell moving straight in “Zero-Velocity” Model 

𝛼 = 1, 𝑣0 = 2.5, 𝜇 = 6.28 

Variables: 

𝑚: myosin 

concentration 

𝒖: actin flow 

𝒗𝒇: membrane 

velocity 

    In simulations, the cell initially has a circular shape, a 

slight linear myosin gradient, and no actin flow. These initial 

conditions, “favoring” a stationary state, were chosen to 

probe its stability with respect to transition to motion.  

Collapsing: cell area decreases to 

zero 

Singularity: all myosin collects at 

one point in the cell, and actin 

velocities become infinite there  

Moving (Straight) Moving (Rotating) Stationary 

Initial cell  

Directed 

actin flow 

decreases 

Symmetry 

contraction 

dominates 

viscosity 

dominates 

diffusion 

S
tatio

n
ary 

𝛼 = 1, n = 0 𝛼 = 0.5, n = 0 
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Velocity of  Actin Polymerization, 𝑣0 
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Velocity of  Actin Polymerization, 𝑣0 


