
Experiment 1:
P. aeruginosa mutants 

under 0.5 mM external 
copper concentration

Gram-negative bacteria:
§ Two membranes
§ Two cellular compartments

Opportunistic pathogen: [5]

§ Causes ~51,000 cases of  healthcare
associated infection annually in the U.S.

Experimental design:
§ Perform sensitivity analysis to determine which protein 

concentrations should be experimentally measured
Address parameter dependence:
§ Analyze the identifiability of  parameters
§ Obtain and incorporate protein concentration data into model

Possible improvements to model:
§ Add specific cuproproteins and chaperones as information 

regarding their biochemical interactions becomes available
§ Change rate equations involving transporters to reflect their 

confinement to the inner and outer membranes
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Abstract 
Copper is an ideal biological redox cofactor because it accepts and 
donates electrons with relative ease. However, free copper can interfere 
with other important cellular redox reactions. Therefore, bacteria 
maintain tight control of  cellular copper levels. In collaboration with 
the Argüello group at Worcester Polytechnic Institute, we obtained 
data measuring copper levels across the periplasmic and cytoplasmic 
compartments of  P. aeruginosa. Using this data, we modeled copper 
homeostasis as a system of  chemical reactions transferring copper 
between protein pools according to mass action kinetics. 
Mathematically, this is a series of  ordinary differential equations 
describing the fluxes between different copper pools. We used the 
biochemical modeling software COPASI to simulate and estimate 
parameters for the model. During the modeling process we determined 
that knowledge of  the protein levels is required to accurately estimate 
the model parameters. Additionally, it seems necessary to invoke 
regulation of  periplasmic cuproproteins to fit a model to the data. 
These results will help our collaborators design experiments that 
produce the most crucial information for developing a more detailed 
model of  the copper homeostasis system in P. aeruginosa.

Results
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Model Methods

§ Bioavailable as Cu2+ (oxidized) and Cu+ (reduced) [2]

§ Easily converts between oxidation states by accepting and 
donating electrons [2]

§ Essential redox cofactor for many cellular processes 
(ex: cytochrome oxidases in electron transport chain) [2]

§ Free copper can be toxic to the cell by participating in harmful 
redox reactions [3]

§ Copper overload can have antimicrobial effects [3]

Mass action kinetics: 
§ The rate of  a chemical reaction is proportional to the product of  

the concentrations of  the reactants [6]

Model equations:
§ The change in the concentration of  each protein species is given 

by an ODE equal to the sum of  the rates of  the reactions it 
participates in. For example, for HmtA the ODE is:

The biochemical modeling software COPASI [1] was used to implement 
and analyze our model.

Parameter estimation:
§ Protein concentrations and kinetic parameters unknown
§ Sequentially generate parameter sets using optimization 

algorithms and evaluate error between model output and 
experimental data using the objective function

Algorithms for parameter estimation:
§ Global: Particle Swarm, Scatter Search, Simulated Annealing
§ Local: Hooke & Jeeves, Levenberg–Marquardt, Nelder–Mead 

Objective function:

Outer Membrane &
Cell Wall

Periplasm

Inner Membrane Cytoplasm

§ There is evidence in parameter estimation that some parameters 
are highly interdependent. This makes it difficult to estimate all 
of  them accurately.

§ Knowledge of  the protein levels is required to accurately 
estimate the other model parameters.

§ It seems necessary to invoke up-regulation of  the periplasmic
cuproproteins to adequately fit a model to the data.
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Time course calculations:
§ COPASI uses the LSODA algorithm to calculate deterministic 

time course trajectories
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Image from [4]

Experiment 2:
Wild type P. aeruginosa
under varying external 
copper concentrations
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