Heparin Drip Calculation Reference
(sample calculations for reference only!)

Heparin Infusion Rate:
$$\text{Total Units (in IV bag)} = \text{Units/hour} \times \text{Total Volume (ml)}$$

Your patient has a DVT is ordered for a heparin infusion to start at 18 units/kg/hour per the practitioner’s order. His weight is 75kg. The heparin infusion comes in a 500ml bag with 25,000 units. Calculate the starting rate of the infusion (ml/hour).

Step 1: Calculate the starting units per hour.

$$18 \text{ units} \times 75 \text{ kg} = 1350 \text{ units/hour}$$

Step 2: Calculate the starting rate of the Infusion (solve for X).

$$\text{Heparin Infusion Rate: } \frac{25,000 \text{ units}}{500\text{ml}} = \frac{1350 \text{ units/hour}}{X \text{ (ml/hour)}}$$

$$25,000 \text{ units} \times (X \text{ ml/hr}) = 675,000$$

$$X \text{ ml/hr} = \frac{675,000}{25,000}$$

$$X = 27 \text{ ml/hour}$$

Your patient’s PTT result is 55. Per the Intravenous High Intensity Heparin Nomogram (for DVT/PE), the infusion dose should be increased by 2 units/kg/hour. Your patient is currently receiving an infusion based on 18/units/kg/hour. What is the new rate for the infusion (note: use the same initial weight to calculate the new rate).

Step 1: Calculate the new units per hour.

$$18 \text{ units/kg/hour} + 2 \text{ units/kg/hour} = 20 \text{ units/kg/hour}$$

$$20 \text{ units} \times 75 \text{ kg} = 1500 \text{ units/hour}$$

Step 2: Calculate the new rate of the infusion (solve for X).

$$\text{Heparin Infusion Rate: } \frac{25,000 \text{ units}}{500\text{ml}} = \frac{1500 \text{ units/hour}}{X \text{ (ml/hour)}}$$

$$25,000 \text{ units} \times (X \text{ ml/hr}) = 750,000$$

$$X \text{ ml/hr} = \frac{750,000}{25,000}$$

$$X = 30 \text{ ml/hour}$$