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Abstract 
Heterogeneity in aging is a fundamental biological process arising from multifactorial etiologies, including genetic, lifestyle, and socioeconomic 
factors. Modeling this heterogeneity in animal systems is critical for elucidating the underlying mechanisms of aging and for leveraging these 
insights in translational research. Here we present part II, a summary of the model organism research presented at the NIA Heterogeneity and 
Successful Aging workshop, held in May 2023.
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Aging is characterized by a time-dependent increase in dis-
ease susceptibility and morbidity. As researchers, our primary 
goal is to elucidate the mechanisms of aging and to develop 
interventions that extend both health span and life span. 
Model organisms—including nematodes, flies, fish, rodents 
(mice, rats, naked mole rats), cats, dogs, and nonhuman pri-
mates—have been crucial for mechanistic and translational 
studies of human aging (1). Although average values of aging 
phenotypes have been extensively examined, the variance 
of aging phenotypes within and between age groups—com-
monly referred to as heterogeneity in aging (2–4)—has only 
recently received significant attention (5,6). In May 2023, 
the Division of Aging Biology at the National Institute on 
Aging (NIA) convened the virtual workshop “Heterogeneity 
and Successful Aging” to compile existing knowledge on het-
erogeneity in aging and to discuss how phenotypic hetero-
geneity can be harnessed to understand and predict factors 
that determine successful aging and prolonged health. We 
define heterogeneity in aging as the variability in complex 
trait outcomes associated with chronological age. A multi-
disciplinary panel consisting of aging experts, geneticists, AI/
ML experts, ichthyologists, human and animal behaviorists, 

and more discussed strategies to better understand mecha-
nisms promoting heterogeneity in aging and for translating 
heterogeneity of aging to improve therapeutic opportunities 
and clinical care of our aging population. The diverse panel 
of experts contributing to a rich discussion focused on the 
following themes: investigators currently studying heteroge-
neity in aging and the methods used to tackle this challenging 
area of research, the need to train multidisciplinary teams, 
future directions of research to advance our understanding 
of the biology of aging, and improve the healthspan and clin-
ical care of our aging population. This report summarizes 
key insights from the workshop on using animal models to 
define, quantify, elucidate mechanisms, and ultimately exploit 
this heterogeneity to promote successful aging. A complete 
transcript of the conference proceedings can be found on the 
NIA website (7).

Genetically Diverse Mice
The C57BL/6J mouse strain is currently the most widely used 
and the reference mouse stain. The lack of genetic diversity in 
this inbred strain while useful in generating repeatable results, 
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may hinder generalizable research in aging. As an alternative, 
Dr. Gary Churchill and colleagues developed a genetically 
diverse mouse stock from 8 different inbred founder strains, 
resulting in 52 million cataloged genetic variants called the 
Diversity Outbred Stock (DO) (8). Dr. Churchill described 
variability and heterogeneity of aging at the molecular and 
tissue levels in large cohorts of 960 DO mice across 5 groups 
(192 mice per group) under various dietary interventions 
(9,10). RNA and protein profiling revealed different aspects 
of aging: transcriptomic data pointed to immunity and 
inflammation senescence whereas changes in the proteome 
pointed to energy metabolism and proteostasis. The levels of 
Cdkn2a expression, a marker of cellular senescence, increased 
with age in kidney tissue but was highly variable across DO 
population. Dr. Churchill proposed the DO mouse stock as 
a novel resource for the aging community to better model 
genetic heterogeneity present in human populations. Further-
more, he underscored the importance of longitudinal studies 
for aging research despite the challenges they pose. In con-
trast, although cross-sectional studies are easier to complete, 
they may generate misleading results that risk generational 
confounding.

Dr. Robert W. Williams discussed how genetics and envi-
ronment, and the heterogeneity in each of these parameters, 
may affect aging outcomes. Studying interactions between 
genotype and environment (GxE) is a crucial direction in the 
field of aging research. Dr. Williams defined successful aging 
broadly as maintaining function until a certain age, then 
experiencing a swift decline. Heterogeneous aging data are 
needed, as well as strategies for integrating these data into 
a cohesive body of knowledge. Factors that promote suc-
cessful aging vary with environment, so there is a need for 
accurate healthcare tailored to an individual’s environment 
and genome. He advocated for studies involving multiple 
genotypes and the use of genetically diverse mouse pop-
ulations such as reciprocal F1 crosses (diallel panel) (11), 
recombinant inbred panels such as BXD (12) mice, derived 
from a cross between C57BL/6J mice (B6) and DBA/2J 
mice (D2), and outbred mice such as UM-HET3 (13,14). 
Williams lab has exploited the BXD recombinant inbred 
lines to carry out genetic mapping and GxE studies (15) and 
studied nearly 13 000 UM-HET3 mice for mapping age- 
related quantitative trait loci (QTLs) (16). QTL mapping in 
mice and functional validation in C. elegans confirmed the 
MRPS5 gene is associated with lifespan and aging rates (17). 
Dr. Williams’ group also compared the lifespan outcome and 
changes in omics profiling after high-fat or normal-chow 
diet consumption in mice (GxE interaction) (15). Although 
mean lifespan was significantly improved in mice consuming 
a low-fat diet, some genotypes showed improved lifespan 
on the high-fat diet. These GxE studies reveal diversity in 
longevity outcomes.

Longitudinal High Content Live Data 
Acquisition in Animal Models
Longitudinal investigations of animal behavior and pheno-
types represent a rapidly expanding field, driven by advance-
ments in instrumentation, technology, and computational and 
statistical methods. The development of novel mathematical 
models, coupled with innovative phenotyping techniques, has 
the potential to open new frontiers in aging research. In this 
context, Drs. Vivek Kumar and J. Graham Ruby demonstrated 

their approaches to longitudinal data acquisition from video 
recordings of mouse behavior, whereas Dr. Claire N. Bed-
brook presented her work on life-long monitoring of fish 
behavior.

According to Dr. Kumar, many behavioral paradigms 
are limited by their subjective methodologies, lack of stan-
dardization, temporal fragmentation, and, in some cases, 
validity. This is particularly a challenge in longitudinal 
interventional studies that can last several years. Changes in 
research personnel and other technical challenges may intro-
duce unwanted variation in the data that can confound bio-
logically important phenotypic variation. To address these 
problems, his group utilizes computer vision and machine 
learning for automated behavioral quantification in the lab-
oratory mouse with the goal of increasing reproducibility, 
scalability, and replicability of frailty studies (18). Currently, 
frailty in rodents is measured using a subjective index-based 
approach that introduces technical heterogeneity in long-
term aging studies (19). Kumar’s lab has approached the 
assessment of frailty using advanced behavioral methods 
in several domains. His team generated one of the largest 
frailty datasets in mice with over 600 mice that were tested 
using traditional manual frailty indexing as well as machine 
learning-based behavior frailty assessment. The team char-
acterized features such as gait, posture, flexibility, among 
others, to train an algorithm to predict frailty status (20). 
The new method, called visual frailty index, is sensitive, 
accurate, and highly scalable and has the potential to enable 
the investigation of heterogeneity and of new interventional 
studies for healthspan and lifespan in rodents (18).

Similarly, Dr. Ruby discussed capturing the heterogeneity 
of aging in mice through video monitoring of home cage 
behaviors (21) and highlighted the need for improved repro-
ducibility and scalability in frailty measurements. He uti-
lized Calico’s custom home cage video monitoring system to 
assess frailty in mice, noting that outputs from this digital 
frailty index correlated well with both chronological age, age- 
related decline, and with scores from manual (ie, clinical) 
frailty assessments (19). Among frailty parameters deter-
mined from video images, wheel-running was a particularly 
rich source of age- and frailty-relevant data. Notably, cor-
relation of both manual and video-based frailty with age was 
strong for C57BL/6J mice and weaker with DO mice, suggest-
ing genetic diversity as a large source of heterogeneity, a dis-
crepancy that is also reflected in manual FIs. Ruby highlighted 
the opportunities for improvement to video-based home cage 
frailty and emphasized that this tool is not explicitly an age 
predictor; rather, increased frailty reflects the physiological 
decline that accompanies age.

Dr. Bedbrook presented her research tracking whole-life 
behavior to model aging and predict remaining lifespan in the 
African turquoise killifish. Model lifespan of 4 to 7 months 
enables study of rapid aging (22,23). Lifelong tracking of 
behavioral profiles allows Bedbrook to characterize aging 
trajectories and variability in health endpoints (24). She fur-
ther used these data to develop models that can predict aging 
trajectories and remaining life. For instance, using MoSeq 
(25), an unsupervised method for behavior segmentation, she 
extracted approximately 100 behavioral syllables for killifish 
and correlated behavioral trajectories over lifespan. Given the 
large amount of data that is collected—a million frames per 
day for several months per animal—Bedbrook highlighted the 
big data challenge.
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Selected Cohorts and Successful Aging
A complementary approach to addressing heterogeneity in ani-
mal models is through selectively bred lines for a desired trait. 
Dr. Lauren G. Koch has developed rat models of high and low 
intrinsic exercise capacity, also adopted by Dr. John P. Thyfault 
for metabolic studies. They illustrated advances in understand-
ing the biology of aging made possible by these selected cohorts 
of extreme phenotypes such as for discovering epistatic interac-
tions, synergistic actions, and gene modifiers in aging.

Dr. Koch applied a two-way artificial selective breeding 
scheme to generate two rat populations with the same genetic 
background but with different intrinsic exercise capacity 
(26,27). Her goal was to explore the mechanistic basis of 
health and disease, which supports work linking exercise with 
longevity based on energy transfer principles. After 24 years 
and 48 generations of breeding, the 2 rat groups display sig-
nificant divergence in exercise capacity and are known as high 
and low-capacity runners (HCR and LCR, respectively). Dr. 
Koch’s data showed that HCR rats lived longer and had bet-
ter sustained healthy function of the heart, muscles, liver, and 
brain (28–30). Based on her work with the HCR and LCR 
rats, Dr. Koch formulated the Energy Transfer Hypothesis of 
Aging (ETH) stating that “variation in capacity for aerobic 
energy transfer is the central mechanistic determinant of the 
divide between aging and longevity.” Dr. Koch emphasized 
the importance of measuring the maximum rate of oxygen 
consumption attainable during exercise (VO2 max) as clinical 
biomarker. She noted that VO2 max reflects wide genetic het-
erogeneity (31), can predict all-cause morbidity and mortality 
(32) and is a biomarker of oxygen metabolism.

Dr. Thyfault’s research focuses on how hyper-caloric diets 
and inactivity contribute to metabolic disease. His work shows 
that exercise improves metabolic health of skeletal muscles, 
liver, pancreas, heart, adipose tissue, and vasculature. Similar 
to findings from the Koch laboratory, the Thyfault group has 
shown that HCR rats have a lower risk of all-cause mortality 
than LCR. Dr. Thyfault provided compelling evidence connect-
ing aerobic capacity and disease risk (eg, Alzheimer’s disease, 
metabolic syndrome, and fatty liver disease). Furthermore, 
HCR rats are protected against metabolic dysfunction induced 
by a high fat diet (HFD) (33), and this metabolic protection 
appears driven by an enhancement of mitochondrial content 
and function in all metabolic tissues (34). In his studies on 
fatty liver, the presence of disease was inversely correlated 
with aerobic fitness (35) suggesting that the liver is highly 
responsive to physical activity interventions. Moreover, HCR 
rats were protected from HFD-(hyphen) induced steatosis. In 
short-term HFD intervention, HCR and LCR rats had differ-
ent transcriptional responses. Despite consumption of HFD, 
liver from HCR rats showed heightened bile acid and cho-
lesterol metabolism, and a more robust metabolic flexibility, 
including maintenance of glucose homeostasis. In contrast, 
chronic HFD-feeding led to mitochondria collapse in LCR rats 
(36). Thyfault argued that high fitness elevates mitochondrial 
content in the liver which is consistent with epidemiological 
findings demonstrating a strong association between midlife 
fitness, aerobic capacity, and later life disease incidence.

Longitudinal Studies in Human
Although not a model organism, deep phenotyping 
approaches advantaged by the use of wearable devices are 
more readily being used to quantify heterogeneity of aging in 

human populations. These devices enable monitoring of indi-
vidual parameters over time and facilitate categorization and 
stratification of individuals in a study population. Dr. Megan 
Huisingh-Sheetz discussed the utility of wearable accelerome-
ters as a high-resolution method for assessment and manage-
ment of frailty in older adult clinical care, and showed how 
lower overall activity is correlated with increased frailty (37). 
Dr. Huisingh-Sheetz emphasized the need for computational 
method development to effectively leverage the richness of 
data obtained from wearables. For instance, the accelerom-
eter dataset was used to generate 98 distinct measures, and 
machine learning-based analysis achieved 83% accuracy in 
the prediction of cognitive decline in older adults. Although 
physical activity is widely recognized as a highly effective inter-
vention for disease prevention, Medicare coverage is a central 
impediment to implementation of frailty-focused interven-
tions in aging adults. Dr. Huisingh-Sheetz believes that new 
technologies such as remote interactions and voice-activated 
home devices may overcome current challenges associated 
with care of frail individuals.

Future Perspectives
Box 1 highlights the most promising areas for advancing our 
understanding of aging heterogeneity and includes suggestions 
facilitating translation of healthy aging. The main themes can 
be summarized as: heterogeneity in animal models, longitudi-
nal and lifelong health monitoring, generation and interpreta-
tion of large datasets, fostering of multidisciplinary teams and 
training of new generations of aging researchers, and trans-
lation of basic knowledge into geroprotective interventions.

This is a field with aging experts, geneticists, statisticians, 
computer scientists, human and animal behaviorists, and 
more. This is an incredibly wide range of expertise which is 
ultimately a strength of the field. The aging field should be com-
mended for enabling a diverse and inclusive environment and 
must continue to foster a multidisciplinary approach, expand-
ing opportunities for the inclusion of research sub-specialties 
underrepresented in aging research, and critical for driving 
technical on conceptual innovation. Strategies to encourage 
collaboration of multidisciplinary teams and approaches to 
study heterogeneity in aging were proposed. Specifically, in 
the era of big data science, the inclusion of mathematicians, 
engineers (eg, med devices and new instrumentation), com-
puter scientists, and statisticians, together with experts able to 
introduce biological, physiologic, clinical and other perspec-
tives to such analyses was viewed as critical to the advance of 
research in the field of aging. Computational methods such 
as machine learning and computer vision can be used to train 
models that quantify biological age and its heterogeneity in 
genetically diverse model organisms. Models can also be used 
to predict aging trajectories and generate testable hypotheses. 
Lifelong behavioral monitoring of short-lived species such as 
killifish are promising and should be extended to other model 
organisms such as mice and rats. Finally, although highly con-
trolled studies to quantify aging traits in model organisms 
are useful, studies that examine aging in humans in nonex-
perimental conditions, that is, “in the wild,” are also enabled 
by new technologies. Although panelists agreed that privacy 
issues of daily monitoring by wearable devices and electronic 
tracking systems need to be addressed. The panelists discussed 
the importance of cross-species translation, particularly 
novel strategies for hypotheses testing in higher order model 
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organisms. Training of a workforce that can leverage ML/AI 
to interrogate complex, multidimensional, multimodal, and 
big data is also a high priority.

Lastly, the group discussed the promise of interventions 
to minimize disease burden, including studies of senolytics, 
time-restricted feeding, physical activity, and social con-
nection. Caloric restriction was discussed as both a poten-
tial human intervention and as a research tool. Continued 

development of new technology is necessary to enable and 
build upon much of this work. This research can inform 
implementation strategies for community level interventions 
aimed at decreasing morbidity and mortality. Considerations 
included measures beyond the frailty index (eg, whole animal 
imaging, molecular indices, life course geropathology), com-
parable and translatable phenotypes, data integration within 
and between animal models and humans, machine learning/
AI models and trait outcomes, cross-sectional versus longi-
tudinal design, and data analysis, and statistical methods in 
animal models for applications in humans.
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