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Abstract
Mediation analysis seeks to explain the pathway(s) through which an exposure affects an outcome. Traditional, non-instru-
mental variable methods for mediation analysis experience a number of methodological difficulties, including bias due to con-
founding between an exposure, mediator and outcome and measurement error. Mendelian randomisation (MR) can be used 
to improve causal inference for mediation analysis. We describe two approaches that can be used for estimating mediation 
analysis with MR: multivariable MR (MVMR) and two-step MR. We outline the approaches and provide code to demonstrate 
how they can be used in mediation analysis. We review issues that can affect analyses, including confounding, measurement 
error, weak instrument bias, interactions between exposures and mediators and analysis of multiple mediators. Description 
of the methods is supplemented by simulated and real data examples. Although MR relies on large sample sizes and strong 
assumptions, such as having strong instruments and no horizontally pleiotropic pathways, our simulations demonstrate that 
these methods are unaffected by confounders of the exposure or mediator and the outcome and non-differential measure-
ment error of the exposure or mediator. Both MVMR and two-step MR can be implemented in both individual-level MR 
and summary data MR. MR mediation methods require different assumptions to be made, compared with non-instrumental 
variable mediation methods. Where these assumptions are more plausible, MR can be used to improve causal inference in 
mediation analysis.

Keywords  Mendelian randomisation · Mediation analysis · Multivariable Mendelian randomisation · Two-step Mendelian 
randomisation

Introduction

Mediation analysis can improve aetiological understanding 
and identify intermediate variables as potential intervention 
targets, when intervening on an exposure is not feasible. 
However, in order to make causal inference, non-instru-
mental variable (IV) regression based mediation analysis 
requires strong assumptions. Mendelian randomisation (MR) 
is an alternative causal inference approach using genetic var-
iants as an IV for a phenotype [1]. In this paper we compare 
non-IV regression-based methods for mediation analysis 
with MR methods for mediation analysis, and describe the 
assumptions required for MR mediation methods to make 
valid causal inference.
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Mediation analysis

Methods for mediation analysis emerged in the early 
twentieth-century, although often not described as such 
at the time, with formal methods developed by Baron and 
Kenny in the 1980s [2, 3]. More recently, a large amount 
of research has built on and improved mediation methods 
for better causal inference [4].

Three parameters are typically estimated in a traditional 
mediation analysis i) the total effect (the effect of the expo-
sure on the outcome through all potential pathways) ii) the 
direct effect, either controlled or natural (the remaining 
effect of the exposure on the outcome that acts through 
pathways other than the specified mediator or set of medi-
ators) and iii) the natural indirect effect (the path from 
exposure to outcome that acts through the mediator(s)). 
In  situations where the total effect, direct effect and 

indirect effect all act in the same direction, an estimate 
of the “proportion mediated” (i.e., proportion of the total 
effect explained by the mediator) can be calculated. Two 
common approaches to estimate the indirect effect are; the 
product of coefficients method and the difference in coef-
ficients method [5] (see Fig. 1a).

Traditional non-IV mediation methods, such as Baron and 
Kenny methods, rely on several strong, untestable assump-
tions including, (i) no unmeasured confounding between the 
exposure, mediator and outcome (ii) no exposure-caused 
confounders of the mediator and outcome (intermediate con-
founders, see Fig. 2a) and (iii) no exposure-mediator interac-
tion [4, 6, 7]. Furthermore, measurement error in either the 
exposure or mediator can introduce bias [8].

Baron and Kenny methods were introduced to estimate 
mediation with a continuous exposure, mediator and out-
come, although they are also now often applied to binary 
variables. In the presence of a continuous or rare binary 

Fig. 1   The decomposed effects 
in a non-IV regression-based 
mediation analysis where c rep-
resents the total effect, c’ rep-
resents the direct effect and the 
indirect effect can be calculated 
by subtracting c’ from c (differ-
ence method) or multiplying A 
times B (product of coefficients 
method) b multivariable Men-
delian randomisation, using a 
combined genetic instrument for 
both the exposure and mediator 
of interest, to estimate the direct 
effect c’ of the exposure and c 
two-step Mendelian randomisa-
tion, where the effect of the 
exposure on the mediator (A) 
and mediator on the outcome b 
are estimated separately, using 
separate genetic instrumental 
variables for both the exposure 
and mediator. These estimates 
are then multiplied together to 
estimate the indirect effect of 
the mediator (A*B)
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outcome the estimates from the difference in coefficients and 
the product of coefficients method should coincide [4, 9].

Counterfactual reasoning has been used to develop con-
founder adjusted methods that can address some of the pre-
viously described strong assumptions in non-IV mediation 
methods [10–14]. The assumptions made by these coun-
terfactual approaches, mean mediation can be estimated in 
the presence of exposure-mediator interactions and account 
for measured intermediate confounders. Additionally, these 

more flexible approaches can allow for binary mediators 
and outcomes. However, these methods remain biased in the 
presence of unmeasured confounding, measurement error 
in the exposure or mediator, or in a mis-specified model 
with reverse causality [4, 15]. Here, the estimated direct 
effect is described as being a “controlled direct effect” if 
the value of the mediator is controlled at a certain value for 
all individuals in the population, or a “natural direct effect”, 
when the value of the mediator is allowed to take the value 

Fig. 2   Schematic diagram illustrating the causal assumptions (dashed 
lines) in a non-IV regression-based mediation methods and b Mende-
lian randomisation mediation analysis with the measured associations 
in solid black lines. Additional assumptions: in non-IV mediation 
there is no measurement error in the exposure or mediator; in Men-

delian randomisation mediation there is no exposure-mediator inter-
action. In Mendelian randomisation, the exclusion restriction criteria 
mean there are no alternative pathways from the instrument to the 
outcome other than via the exposure (or mediator) of interest
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for each person that it would have taken naturally had they 
been unexposed, in a counterfactual scenario. The “natural 
indirect effect” represents the average change in an outcome 
if the value of the exposure was fixed, but the value of the 
mediator changes from its natural value when exposed to 
its natural value when unexposed. If there is no interaction 
between the exposure and mediator, the estimate of the natu-
ral direct effect is equivalent to the controlled direct effect, 
and indeed would align with estimates from Baron and 
Kenny approaches to mediation [4, 9, 16].

Mendelian randomisation

In Mendelian randomisation (MR) randomly allocated 
genetic variants are used as instrumental variables (IV) for 
a phenotype [1, 17, 18]. Given the random allocation of 
genetic variants at conception, MR estimates are not biased 
by confounding between an exposure and outcome, reverse 
causation and measurement error [17]. Three core assump-
tions are required for a genetic variant to be a valid IV, these 
are (i) the genetic variants are associated with the expo-
sure (the relevance assumption) (ii) genetic instruments are 
exchangeable with the outcome, across levels of the instru-
ment (the independence assumption) and (iii) the genetic 
variants do not affect the outcome via any variable other 
than the exposure (the exclusion restriction criteria) (Online 
Resource 1: sFig. 1) [1]. Indeed, in the case of the independ-
ence assumption and exclusion restriction criteria, these are 
strong and unverifiable assumptions.

Rationale for using Mendelian randomisation 
in mediation analysis

MR can be used to overcome some of the previously 
described strong assumptions required for causal inference 
in mediation analysis. For example, estimates are not biased 
due to unmeasured confounding between an exposure, medi-
ator or outcome.

In mediation terms, univariable MR estimates the total 
effect of the exposure on the outcome. Two differing MR 
approaches can then be used which broadly mirror tradi-
tional non-IV regression-based approaches to mediation to 
decompose the direct and indirect effects: multivariable MR 
(MVMR) [19, 20] and two-step MR [21–23].

In MVMR the controlled direct effect of the exposure on 
the outcome, controlling for the mediator, is estimated [19, 
23]. The genetic instrument for both the primary exposure 
and the second exposure (mediator) are included as instru-
ments in the analysis (Fig. 1b) [24, 25]. The indirect effect 
can then be estimated by subtracting the direct effect from 
the total effect (akin to the difference in coefficients method). 
MVMR assumes no interaction between the exposure and 
the mediator; therefore, the controlled direct effect estimated 

is equivalent to the natural direct effect where this assump-
tion holds true. As such, we refer to this as the direct effect, 
without further distinction, throughout this manuscript.

Two-step MR (also known as network MR) is akin to 
the product of coefficient methods. Two MR estimates are 
calculated i) the causal effect of the exposure on the media-
tor and ii) the causal effect of the mediator on the outcome 
(Fig. 1c) [21, 23, 26]. These two estimates can then be mul-
tiplied together to estimate the indirect effect. Two-step MR 
also assumes no interaction between the exposure and the 
mediator.

These MR methods are increasingly being used in medi-
ation analysis [19, 27–30]. In this paper, we demonstrate 
how MVMR, and two-step MR can be used to estimate the 
direct effect, indirect effect and the proportion mediated, and 
which assumptions are required for the resulting estimates 
to be unbiased [23–25]. We provide guidance about how to 
carry out each method, with code provided, and illustrate 
each method using both simulated and real data (see Online 
Resource 2), applied to an individual level MR analysis.

Methods

Simulation study

We simulated data under the model illustrated in Fig. 1 with 
continuous, rare binary (5% prevalence) and common binary 
(25% prevalence) outcomes. We varied the total effect of our 
exposure and proportion mediated and obtained results using 
non-IV regression based mediation methods using both the 
difference and product of coefficients approaches, and MR 
methods using both MVMR and two-step MR. Additionally, 
we simulated results where the total effect of the exposure 
on the outcome is small, and where each of the exposure and 
mediator were subject to non-differential measurement error. 
Finally, we simulated how MR methods can estimate media-
tion in the presence of multiple mediators, these simulations 
are illustrated in Online Resource 1: sFig. 2. The full range 
of scenarios simulated are presented in sTable 1. Simulation 
analyses were carried out using R version 3.5.1 and the cor-
responding code for the simulation studies can be found at 
https://​github.​com/​elean​orsan​derson/​Media​tionMR.

Applied example

Using data from UK Biobank (N = 184 778), we investi-
gate the role of body mass index (BMI) and low-density 
lipoprotein cholesterol (LDL-C) in mediating the associa-
tions between education and systolic blood pressure, car-
diovascular disease (CVD) and hypertension (continuous, 
rare binary and common binary outcomes, respectively). 
The effects on binary outcomes (hypertension and incident 

https://github.com/eleanorsanderson/MediationMR
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CVD) were estimated on risk difference, log odds ratio, and 
odds ratio scales. Applied analyses were performed using 
Stata version 15 (StataCorp LP, Texas) and corresponding 
code is available at https://​github.​com/​alice​rosec​arter/​Media​
tionMR. The full worked through example is available in 
Online Resource 2.

Statistical analysis

The following approaches were applied to both applied anal-
yses and simulated data. Equations describing each of these 
analyses are given in Online Resource 1.

Difference in coefficients method

Each outcome was regressed on the exposure adjusting for 
the mediator to estimate the direct effect of the exposure. 
The direct effect was subtracted from the total effect, esti-
mated using multivariable regression, to estimate the indi-
rect effect. In all simulation scenarios the standard deviation 
of the regression coefficients was calculated across repeats 
to evaluate precision.

Product of coefficients method

Two regression models were estimated. Firstly, the media-
tor was regressed on the exposure. Secondly, the outcome 
was regressed on the mediator, adjusting for the exposure. 
These two estimates were multiplied together to estimate 
the indirect effect.

Multivariable Mendelian randomisation

Using MVMR to estimate the direct effect, in the first stage 
regression, the effect of the instrument for the exposure and 
the polygenic score for the mediator are used to predict each 
exposure respectively. In the second stage regression, the 
outcome was regressed on the predicted values of each expo-
sure. The direct effect was then subtracted from the total 
effect, estimated using two-stage least squares regression, 
to estimate the indirect effect.

Two‑step Mendelian randomisation

A univariable MR model was carried out to estimate the 
effect of the exposure on the mediator. A second model 
estimating the effect of the mediator on each outcome was 
carried out using MVMR. Both the genetic variants for the 
mediator and the exposure were included in the first and 
second stage regressions in MVMR. Previous approaches in 
the literature have not used MVMR for this second step [21, 
23] and propose carrying out a univariable MR of the effect 
of the mediator on the outcome. However, using MVMR 

ensures any effect of the mediator on the outcome is inde-
pendent of the exposure. Additionally, this method provides 
an estimate of the direct effect of the exposure on the out-
come. The two regression estimates from the second stage 
regression are multiplied together to estimate the indirect 
effect.

Multiple mediators

In non-IV mediation analyses, to estimate the direct 
effect attributable to multiple mediators, the outcome was 
regressed on the exposure, controlling for all mediators, 
using multivariable regression. Here, the coefficient for the 
exposure reflects the direct effect [31]. This direct effect was 
then subtracted from the total effect to estimate the indirect 
effect. Secondly, the product of coefficients method was used 
to estimate the indirect effect of each mediator individually. 
The combined effect of all mediators was then estimated by 
summing together each individual effect.

In MR analyses, the direct effect attributable to multi-
ple mediators was assessed using MVMR, controlling for 
all mediators. This direct effect was then subtracted from 
the total effect to estimate the combined indirect effect. 
Secondly two-step MR was used, as previously described, 
considering each mediator individually and summing the 
effects together to obtain the indirect effect of all mediators 
combined.

Proportion mediated

The proportion mediated is calculated by dividing the indi-
rect effect by the total effect. In individual-level MR, the 
confidence intervals can be estimated via bootstrapping.

Testing the assumptions of mediation 
analysis

In this analysis, we have simulated a number of scenarios 
where non-IV regression based methods or MR methods 
for mediation analysis may provide biased answers. In this 
section we outline these results and any implications for 
analyses.

Unmeasured confounding between the exposure, 
mediator and outcome

Many of the key causal assumptions in non-IV mediation 
analysis relate to assumptions of no unmeasured confound-
ing between all of the exposure, mediator and outcome, 
including where confounders of the mediator and outcome 
are descendants of the exposure (intermediate confound-
ing). Controlling for confounders in multivariable regression 

https://github.com/alicerosecarter/MediationMR
https://github.com/alicerosecarter/MediationMR
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analyses often leads to residual confounding because it is 
generally impossible to measure all confounders, and fre-
quently those that are measured are measured with error.

Indeed, in our simulations where residual covariance 
was simulated to reflect confounding, both the non-IV dif-
ference method and non-IV product of coefficients method 
were equally biased (Fig. 3 and Online Resource 1: sTa-
bles 2). Where no confounding was simulated in the case of 
no true total effect, estimates from non-IV approaches were 
free from bias (Online Resource 1: sTable 3). In simula-
tions both with and without residual covariance to reflect 
confounding, MVMR and two-step MR estimated the direct 
effect, indirect effect and proportion mediated with no bias 
(Fig. 2 and Online Resource 1: sTables 4 and 5).

Collider bias can be introduced by adjusting for the 
mediator in the presence of un- or mis-measured media-
tor-outcome confounders, where a backdoor path opens up 
between the exposure and the confounder (Online Resource 
1: sFig. 3) [6, 32, 33]. Given that MR estimates are unbi-
ased by unmeasured confounding of the exposure-outcome 
and mediator-outcome relationships [1, 17], this means that 
within MR analyses, adjusting for the mediator does not 
result in collider bias.

Analysis of binary outcomes

Mediation analysis of binary outcome is challenging because 
of the non-collapsibility of odds ratio. This means the asso-
ciation between an exposure and outcome would not be con-
stant on the odds-ratio scale by strata of categorical covari-
ate [34, 35]. In mediation analysis, including the mediator in 
the model estimating the direct effect, means the model is no 
longer comparable with that for the total effect.

The mediation literature indicates that to estimate the 
direct and indirect effects of a binary outcome, the outcome 
must be rare (less than 10% prevalence), so the odds ratio 
approximates the risk ratio, and the product of coefficients 
method should be used [9]. In the presence of a common 
binary outcome, estimates from the product of coefficients 
method and difference method are unlikely to align (and 
indeed the literature suggests both are likely biased) [4].

In our simulations, both the difference in coefficients and 
the product of coefficients non-IV methods, with common 
and rare binary outcomes on a linear relative scale were 
biased as expected by unmeasured confounding (Fig. 3 
and Online Resource 1: sTables 6–9). The size of bias was 
similar across the two non-IV methods. In simulated MR 

Fig. 3   Size of absolute bias for the indirect effect of an exposure on 
a continuous outcome, rare binary outcome and common binary out-
come through a continuous mediator, for a range of fixed true total 
effect sizes (0.2, 0.5 and 1.0) and range of true indirect effect sizes 

using non-IV regression based mediation methods or Mendelian ran-
domisation, on the relative scale (simulated N = 5000). In all scenar-
ios, unmeasured confounding is simulated
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scenarios with common and rare binary outcomes on a linear 
relative scale, estimated effects were concordant between 
MVMR and two-step MR, with little to no bias (Fig. 3 and 
Online Resource 1: sTables 10–13).

In the scenarios simulated, there was some bias when 
analysing binary outcomes on the log odds ratio scale 
using both MVMR and two-step MR, for both common 
and rare binary outcomes (Online Resource 1: sTables 14 
and 15). This bias was small and typically would not alter 
conclusions made, although typically the size of absolute 
bias increased as the size of the true proportion mediated 
increased. However, the exact bias from non-collapsibility 
will be unique to each scenario, including depending on the 
strength of the mediators. Analyses in individual level MR 
can be conducted on the risk difference scale, which reduces 
bias due to non-collapsibility.

In simulation scenarios explored, neither MVMR nor 
two-step MR were able to estimate the mediated effects 
without bias when using the odds ratio scale (Online 
Resource 1: sTables 16 and 17).

Measurement error in the exposure or mediator

Our results show that in non-IV approaches, with a continu-
ous exposure and mediator, non-differential measurement 
error in the mediator leads to an underestimate of the medi-
ated effect. This is consistent with previous methodological 
and applied work [8]. Where non-differential measurement 
error was simulated in the exposure, the mediated effect was 
over estimated (Online Resource 1: sTable 18).

In MR simulations, both MVMR and two-step MR esti-
mated the mediated effects with little bias when non-differ-
ential measurement error was simulated either in the expo-
sure or the mediator (Online Resource 1: sTable 19). This 
is consistent with the previous literature demonstrating that 
MR estimates are less prone to bias by measurement error 
than conventional non-IV analyses [1, 17].

Weak instrument bias

In order to obtain valid causal inference for mediation, all 
standard MR assumptions must be met. This includes hav-
ing strong instruments, typically determined through an 
F-statistic or conditional F-statistic of greater than 10. The 
conditional instrument strength in multivariable MR can 
be tested using the Sanderson-Windmeijer F-statistic [36]. 
When the instruments in the simulation were weakly asso-
ciated with the exposure, both MVMR and two-step MR 
estimates of the indirect effect and proportion mediated were 
biased. The size of bias was greatest for a common binary 
outcome. When weak instruments were simulated for the 
mediator, estimates of the indirect effect and proportion 
mediated from both MVMR and two-step MR were biased 

(Online Resource 1: sFig. 4 and sTable 19). Bias due to weak 
instruments have been discussed extensively in the literature 
[37–39], and methods are now available for testing for weak 
instrument bias in MVMR [40].

Pleiotropy

One of the core MR assumptions is that the genetic vari-
ants used as instruments do not affect the outcome other 
than via the exposure of interest, known as pleiotropy. Bias 
can be introduced to MR mediation analyses if any of the 
associations between the exposure and outcome, exposure 
and mediator or mediator and outcome are pleiotropic. In 
simulations with pleiotropy in the association between the 
exposure and outcome, estimates of the total effect and 
direct effect are biased (Online resource 1: sTable 20). In this 
scenario, no pleiotropy is present for the association between 
the exposure and mediator or mediator and outcome, there-
fore no bias is present for the indirect (mediated) effect. In 
simulations with pleiotropy in the association between the 
mediator and the outcome estimates of the direct effect and 
indirect effect are biased (Online resource 1: sTable 21).

Bias due to pleiotropy has been discussed extensively 
in the literature [41, 42]. Methods are available for test-
ing for and assessing for pleiotropy, including in MVMR 
[40, 43–45]. Indeed, MVMR was developed as a method to 
account for pleiotropic variants [24, 25, 46].

Small total effects

In simulation studies with no true total effect the MR esti-
mate of the proportion mediated is implausible (Online 
Resource 1: sTable 4). Where there is no evidence of a total 
effect, consideration should be given as to whether it is 
appropriate to continue with mediation analyses. Although 
an indirect effect can be estimated in the absence of a signifi-
cant total effect, or absence of total effect when the indirect 
effect and direct effect act in opposing directions and cancel 
each other out, these estimates are prone to inflated type 1 
errors (i.e. false positive results) [47].

Where the total effect is weak or estimated imprecisely, 
simulations show the indirect effect and the proportion 
mediated using MR can be estimated but have large stand-
ard deviations (Online Resource 1: sTables 22–25). In this 
case, results should be interpreted with caution, especially 
considering the bounds of error.

Interactions between the exposure and mediator

In simulation scenarios with an interaction between the 
exposure and mediator present, the estimate of the direct 
effect of the exposure from both the difference in coefficients 
method and MVMR method was biased. In our simulations, 
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as the size of the interaction increased, the size of both the 
absolute and relative bias of the direct effect increased 
(Online Resource 1: sTable 26). The size of the bias was 
typically larger in the non-IV analyses compared with MR 
analyses.

Analysis of multiple mediators

The direct effect of an exposure controlling for multiple 
mediators in a single model can be assessed using MVMR. 
Where all MR specific assumptions are satisfied, the direct 
effect of multiple mediators is estimated with no evidence of 
bias (Online Resource 1: sTable 27). Here, non-overlapping 
SNPs for all exposures and mediators are included in one 
set of instruments. The estimated direct effect attributable 
to multiple mediators is unbiased, even when one mediator 
causes another mediator, which in our simulations was dem-
onstrated by M2 causing M3 (Online Resource 1: sFig. 2).

Where the mediators do not cause each other, estimates 
of the indirect effects and proportion mediated from both 
MVMR (mutually adjusting for all mediators) and two-step 
MR (considering each mediator individually and summing 
together) will coincide (Online Resource 1: sTable 27). In 
our simulations, both MR methods estimated the indirect 
effect of each mediator, and the three mediators jointly, with 
no bias (Online Resource 1: sTable 27). This is consistent 
with the existing literature on analyses with multiple media-
tors [31].

Where one mediator causes another mediator, the indirect 
effect estimated via two-step MR captures both the amount 
of the association explained by the mediator of interest, and 
the amount of the mediator-outcome association captured by 
related mediators. In our example, this means that the effect 
of M3 is estimated twice, once directly and once via M2. As 
such, the estimate for the proportion mediated summing all 
three mediators together will likely be an overestimate of 
the combined proportion mediated, but the estimated direct 
effects remain unbiased. In our simulations, the combined 
proportion mediated was over-estimated by 6% (Online 
Resource 1: sTable 27), which is equivalent to the proportion 
explained by M3 via M2. The indirect effect of M2 estimated 
using two-step MR is however unbiased and reflects both the 
direct effect of M2 on the outcome and the indirect effect via 
M3 (Online Resource 1: sFig. 2).

Limitations of Mendelian randomisation 
applied to mediation analysis

Instrument selection

When using MR for mediation, SNPs included in the instru-
ments for the exposure and mediator should be independ-
ent. Contrastingly, when MVMR is being used to test for 
potential pleiotropic pathways, SNPs associated with the two 
exposures under consideration can be included [24, 25, 48]. 
This is not the case when MVMR is being used to test for 
mediation. Should non-independent SNPs be included as 
instruments it would not be possible to distinguish whether 
an attenuation in the direct effect, compared with the total 
effect, was due to mediation or pleiotropy.

In a two-step MR mediation analysis, the mediator is 
considered as both an exposure (of the outcome) and as an 
outcome (of the exposure) and therefore any instruments for 
the exposure that are also instruments for the mediator are 
pleiotropic in the estimation of the effects of the exposure 
on the mediator and should be excluded. Where there are no 
independent SNPs, or the SNPs had a perfectly proportional 
effect on both the exposure and the mediator, then it would 
not be possible to use MR methods to estimate mediation.

The exclusion restriction criteria assuming no pleiotropic 
pathway is an important assumption of standard univariable 
MR, which applies equally when MR is used for mediation 
analysis. Some methods are available to assess pleiotropy 
including for the use of MVMR [43–45].

Binary exposures and/or mediators

Very few binary exposures will be truly binary and are likely 
a dichotomization of an underlying liability, changing the 
interpretation of an MR analysis [49]. For example, smok-
ing is often defined as ever versus never smokers, when the 
underlying exposure is a latent continuous variable reflecting 
smoking heaviness and duration. As a result, the exclusion 
restriction criteria are violated, where the genetic variant 
can influence the outcome via the latent continuous expo-
sure, even if the binary exposure does not change [49]. In a 
mediation setting, the same would apply to a binary media-
tor. In these scenarios, two-step MR could be used to test 
whether there is evidence of a causal pathway between the 
binary exposure and/or mediator. However, the estimates of 
mediation would likely be biased.

Interactions between the exposure and mediators

Within non-IV methods based on counterfactual assump-
tions, exposure-mediator interactions can be accommodated 
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when estimating mediation parameters. This is not possible 
in the non-IV mediation methods assessed here (difference 
in coefficients and product of coefficients) or in the MR 
methods, MVMR or two-step MR.

Methods are available for estimating interactions in an 
MR framework with individual level data, but these do not 
currently extend to estimating mediation in the presence of 
exposure-mediator interactions [13, 50, 51]. Estimates of 
mediation from MR mediation methods will be assuming 
effect homogeneity of both the exposure on the mediator 
and outcome, and mediator on the outcome. This means 
that the effect of either the exposure or the mediator on the 
outcome is not modified by the genetic instrument [52]. 
For estimates of the direct effect and indirect effect from 
two-step MR to be unbiased, the homogeneity assumption 
must be satisfied between the exposure-mediator associa-
tion and mediator-outcome association and there should be 
no interaction between the exposure and mediator [23, 53]. 
Similarly, where MVMR is used, the effects between the 
exposure, mediator and outcome should all be homogenous 
[45]. Where the homogeneity assumption cannot be satis-
fied, the causal estimates from MR analyses will provide 
a valid test of the causal null hypothesis, but not the local 
average treatment effect [45, 54]. Developing MR methods 
which can account for these interactions will be important 
areas of future research.

Non‑linear effects of an exposure or mediator

A further limitation of MR methods are where the effects 
of the exposure or mediator are non-linear. Although some 
methods are emerging for carrying out MR analysis with 
non-linear exposures [55, 56], these methods have not yet 
been extended to MR mediation analyses. Current MR meth-
ods for mediation analysis will assume a linear association 
between the exposure and outcome. As above, where the 
linearity assumption cannot be satisfied, the causal estimates 
would be a valid test of the causal null hypothesis, but not 
the local average causal effect. Where non-linear effects are 
of interest in a mediation model, non-IV methods should be 
considered.

Time varying exposures or mediators

In non-IV mediation analyses, the effects of exposures and 
mediators throughout the life course can be investigated by 
analysing prospective longitudinal data. In a simple model, 
the exposure, mediator and outcome should all be meas-
ured at separate, sequential, time points. This approach is 
preferred even when time varying effects are not a focus 
of the analysis, as cross-sectional data does not reflect 
the implied temporality suggested by mediation analysis 
[57–59]. In a more complex model, the longitudinal time 

varying relationships between exposures and mediators can 
be modelled using structural equation models [60]. However, 
all of these approaches assume the direction of the effect 
between the exposure, mediator and outcome has been cor-
rectly specified, and is not due to reverse causality. Where 
this is incorrectly specified, or there are bidirectional rela-
tionships over time, estimates of the mediated effects can be 
biased. Additionally, where prospective data are used, the 
length of the interval between the exposure and mediator 
measurement is typically not accounted for [61]. Therefore, 
these analyses assume all variables have been measured at 
the critical time point and interval lengths for the associa-
tions between the exposure, mediator and outcome to exist. 
Here, the indirect effect estimated will be dependent upon 
the timing of these three measurements.

Mediation estimates from MR represent lifetime effects of 
the exposure and mediator measured at a single point in time 
[23]. As with non-IV approaches for this model to be valid, 
the assumptions must be made that the temporal relation-
ship between the exposure and mediator has been correctly 
specified, that these relationships do not change through-
out the life course and that the exposure and mediator have 
been measured at the relevant time points. However, as the 
genetic variants used as IVs for the exposure and mediator 
used in MR represent lifetime effects cross-sectional data 
collection can be applied here. Where time varying effects 
are not accounted for, the direct effect from an MR media-
tion analysis can be thought of as the effects of a one unit 
change in the lifetime exposure, not explained by a change 
in the mediators.

Using simulations, Labrecque and Swanson have explored 
bias in MVMR and two-step MR due to time varying effects 
of exposures and mediators [62]. Where there are bidirec-
tional relationships between an exposure and mediator at dif-
ferent timepoints, estimates of the total, direct and indirect 
effects can be biased. One key advantage to using MR is that 
evidence of reverse causality or causal bidirectional associa-
tions between the measured exposure, mediator and outcome 
can be tested. Where instruments are available for the effect 
of an exposure at different timepoints, the potential time-
varying bidirectional relationships can be explored [63]. In 
some unique cases instruments may be available for an expo-
sure at different time points (e.g., childhood and adulthood 
BMI), allowing for a longitudinal approach to MR mediation 
analysis to be carried out. However, using these instruments 
come with additional methodological challenges [63].

As GWAS methods develop and sample sizes increase, 
the potential opportunities for incorporating time varying 
effects into MR analyses will likely increase. Future meth-
ods developments should focus on methods to incorporate 
instruments reflecting changes in the exposure and mediator 
across the life course. Additionally, further research should 
consider the meaning and interpretation of these lifetime 
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effects, or indeed time varying effects, in the context of the 
direct and indirect effect.

Power

MR studies require very large sample sizes to achieve ade-
quate statistical power. Conditional F-statistics in MVMR 
are typically weaker than standard F-statistics, and indeed 
are likely to become weaker with each additional mediator 
included, further decreasing the power of complex analyses. 
Therefore, to achieve adequate statistical power, or preci-
sion, sample sizes for mediation analysis likely need to be 
even larger than those needed in a univariable MR analyses.

In the absence of formal power calculators for complex 
MR scenarios, the power of these analyses can be considered 
by evaluating the precision of the confidence intervals for all 
of the total, direct and indirect effects, as well as assessing 
the conditional instrument strength.

Genetic confounding

Although assumptions about unmeasured confounding in 
MR can be relaxed compared with traditional non-IV analy-
ses, confounding can be introduced through population strat-
ification, assortative mating, and dynastic effects [64]. Here, 
the confounding is not between the exposure, the mediator 
and the outcome, but between the genetic instruments for 
the exposure (or mediator) and the outcome. Adjusting for 
genetic principal components and other explanatory vari-
ables that capture population structure or within family anal-
yses can minimise bias [64].

Mediation analysis with summary sample 
Mendelian randomisation

Methods applied in this paper can be used with summary 
data MR. Similar considerations will apply for both indi-
vidual level MR, as presented here, and summary data MR. 
Importantly, all sources of summary statistics for the expo-
sure, mediator and outcome should be non-overlapping [65]. 
As the mediator is considered an outcome in the exposure-
mediator model, sample overlap can introduce bias [65]. As 
individual level data is not available in summary data MR, 
bootstrapping cannot be used to estimate the confidence 
intervals for the indirect effect or proportion mediated, but 
the delta method can be used to approximate these confi-
dence intervals if samples are independent [30]. Analyses 
will also be restricted to the scale reported by the GWAS 
used, so consideration will need to be given for binary out-
comes where sensitivity analyses to test potential non-col-
lapsibility are limited.

Which method and when

Although MR is not biased by many of the untestable 
causal assumptions in non-IV mediation methods, such 
as unmeasured confounding, there are instead a set of MR 
specific causal assumptions (Fig. 2), and careful consid-
eration should be given to which assumptions are most 
plausible. Additionally, the data available, or research 
question of interest may not be suitable to test in an MR 
framework. For example, if the research question is inter-
ested in exposures and mediators with time varying effects, 
or where interactions are present between the exposure 
and mediator.

MR has specific advantages compared with non-IV 
mediation methods where causal assumptions are required. 
The causal effect of the exposure on the outcome, the 
exposure on the mediator and the mediator on the outcome 
can all be tested. Additionally, bi-directional MR could 
be used to determine which of two variables is the causal 
exposure and causal mediator, where this is not known.

Our results demonstrate that both MVMR (akin to the 
difference in coefficients method) and two-step MR (akin 
to the product of coefficients method) can estimate the 
mediating effects for both continuous and binary out-
comes, with little evidence of bias. However, caution is 
required in some instances, for example where total effects 
are weak. Where all exposures, mediators and outcomes 
are continuous, MVMR may confer an advantage of power, 
where the standard deviations for the simulated effects 
estimated in MVMR were smaller compared with the same 
effects estimated using two-step MR.

If an analysis is interested in estimating the effects of 
multiple mediators, consideration should be given to the 
causal question of interest when deciding which method to 
use to analyse multiple mediators. Where the causal question 
specifically relates to identifying the combined effects of 
multiple mediators, MVMR is likely to be the most appro-
priate method. Where the causal question aims to estimate 
the effect of multiple mediators individually, and potentially 
any impact of intervening on a mediator, two-step MR may 
be most appropriate. However, it is important to note, that 
as the number of mediators included in an MVMR model 
increases, the power of the analysis would likely decrease. 
Additionally, future research should be carried out to deter-
mine if including increasing numbers of exposures in an 
MVMR model further violates any of the MR assumptions.

Although we have included a range of simulation sce-
narios, including both continuous and binary outcomes, 
this is not an exhaustive range of scenarios and there may 
be further scenarios where MR methods are biased.

The flow chart in Fig. 4 aims to help with the decision-
making process, based on practical limitations of MR. 
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However, best practice would always be to triangulate 
across non-IV and MR approaches, and across multiple 
data sources wherever possible [66].

Conclusions

MR can be extended to estimate direct effects, indirect 
effects and proportions mediated. MR estimates are not 
biased by violations of the often-untestable assumptions 
of non-IV mediation analysis, including unmeasured con-
founding and measurement error. MR analysis makes its own 
strong, but distinct assumptions, especially relating to instru-
ment validity. To estimate mediation using MR, we require 
large sample sizes and strong instruments.
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