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UK Biobank
Naomi E. Allen1,2*, Ben Lacey1,2, Deborah A. Lawlor3,4, Jill P. Pell5, John Gallacher6,7, Liam Smeeth8, 
Paul Elliott9,10, Paul M. Matthews12, Ronan A. Lyons13, Anthony D. Whetton14,  
Anneke Lucassen15,16, Matthew E. Hurles17, Michael Chapman18, Andrew W. Roddam19,  
Natalie K. Fitzpatrick20, Anna L. Hansell21, Rebecca Hardy22, Riccardo E. Marioni23,  
Valerie B. O’Donnell24, Julie Williams25, Cecilia M. Lindgren26, Mark Effingham1, Jonathan Sellors1, 
John Danesh27,28,29, Rory Collins1,2

Population- based prospective studies, such as UK Biobank, are valuable for generating and testing hypotheses 
about the potential causes of human disease. We describe how UK Biobank’s study design, data access policies, 
and approaches to statistical analysis can help to minimize error and improve the interpretability of research find-
ings, with implications for other population- based prospective studies being established worldwide.

INTRODUCTION
Population health research has come a long way in the past few de-
cades, with major advances in our understanding of the causes of 
disease. In particular, prospective studies that were initiated in the 
1950s, such as the British Doctors Study (1) and the Framingham 
Heart Study (2), have been invaluable for understanding the associ-
ation between lifestyle factors and disease risk, because they over-
come many of the biases inherent in case- control studies, most 
notably that risk factors for disease (exposures) are measured before 
disease onset. However, until recently, the conclusions that could be 
drawn from such studies were limited by small sample size, varying 
analytical approaches for defining various risk factors, and the rela-
tively short duration of follow- up time to assess health outcomes. It 
was not until data from these different studies were integrated into 

large- scale individual- level meta- analyses that associations of expo-
sures with disease risk were identified robustly. For example, it is 
now well established that circulating lipids and high blood pressure 
are causally related to vascular disease (3), adiposity with cardiovas-
cular disease (4), menopausal hormone therapy use and alcohol 
consumption with breast cancer (5, 6), and oral contraceptive use 
with a reduced risk of ovarian cancer (7).

More recently, there has been remarkable progress in research on 
the genetic determinants of disease. In the early 2000s, the literature 
was dominated by a plethora of genetic studies that focused on as-
sociations with particular conditions within specific “candidate” 
genes that were of a priori interest. Many of these studies involved 
small numbers of disease cases and yielded false- positive results that 
failed to replicate, often because of undue emphasis on post hoc se-
lective reporting of the more extreme associations that were ob-
served. Subsequently, improvements in assay technology led to 
genome- wide association studies that allowed hypothesis- free iden-
tification across the genome of variants associated with a particular 
phenotype. Much effort was typically spent on characterizing the 
phenotype under investigation precisely in the belief that outcome 
misclassification would have a substantial impact on the ability to 
detect associations. However, when meta- analyses of different stud-
ies were performed, which yielded much larger numbers of indi-
viduals with the outcome of interest (albeit differently defined), 
small- to- moderate associations between genetic variants and out-
comes began to be identified reproducibly after stringent adjust-
ment for multiple testing (8).

Even larger sample sizes—of the order of hundreds of thousands 
of participants—are needed to study gene- environment interac-
tions, especially where the genetic variant or environmental expo-
sure of interest is rare or has a small effect on disease risk (9). 
Consequently, there is a strategic need to establish large- scale, well- 
characterized, population- based prospective cohorts in which bio-
logical samples are collected and health outcomes are followed 
long- term to facilitate research into the determinants of disease.

UK Biobank combines scale, depth, duration, 
and accessibility
UK Biobank is a population- based prospective cohort of 500,000 
men and women designed to enable research into the genetic, lifestyle, 
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and environmental determinants of a wide range of diseases of 
middle- to- old age (https://ukbiobank.ac.uk). It was established by 
the UK Medical Research Council (MRC) and Wellcome, which 
continue to fund it along with the British Heart Foundation, Can-
cer Research UK (CRUK), and the National Institute for Health 
and Care Research. The key design features are its easy accessibil-
ity, large- scale prospective nature, depth and range of risk factor 
data, and comprehensive linkage to health outcomes, which togeth-
er enable academic and industry researchers worldwide to perform 
discovery science (table S1).

UK Biobank was designed to promote innovative science by 
maximizing access to the data in an equitable and transparent man-
ner. All approved researchers (academic or commercial) can access 
all of the de- identified data to perform any type of health- related 
research that is in the public interest. This is the key criterion against 
which applications to access the data are considered, with restric-
tions only placed on their use for potentially contentious research 
(e.g., investigations that could lead to racial or sexual discrimina-
tion). Access to biological samples is currently largely restricted to 
assays that will be conducted on the whole, or large representative 
samples, of the cohort.

Ready access to such a large- scale, in- depth resource has encour-
aged researchers from many disciplines across academia and indus-
try to collaborate to ensure that different types of complex data, e.g., 
whole- exome and whole- genome sequencing data, magnetic reso-
nance imaging (MRI) scans, accelerometer waveform data, and 
electronic health records, are generated and analyzed appropriately. 
The ready accessibility of the data at low cost without requiring col-
laboration with, or peer review from, the UK Biobank study investi-
gators has led to an exponential increase in research output. By the 
end of 2023, there were more than 38,000 registered researchers 
(84% from outside the United Kingdom) and about 10,000 pub-
lished papers (attracting 2.5 million citations), with the number of 
publications increasing exponentially each year. In particular, the 
release to the worldwide research community of cohort- wide genome- 
wide genotyping and imputation data in 2017 has been hugely influ-
ential in advancing our understanding of the genetic determinants 
of disease.

The requirement that researchers publish their findings and 
make available any derived variables that have been generated as part 
of their research, together with the underlying code that generated 
the research output, enables the wider scientific community to cri-
tique, modify, and build upon the work of others in a transparent 
manner (10). For example, research groups with expertise in signal 
processing have created derived variables related to the intensity 
and duration of physical activity from the raw accelerometer data 
(11, 12). Similarly, academic and commercial research groups with 
expertise in image analysis have made available variables derived 
from the MRI scans related to body fat distribution (13), fat and iron 
content of specific organs (14, 15), as well as metrics of the structure 
and function of the brain (16) and heart (17). In this way, complex 
data that might otherwise only be of use to specialists in a narrow 
field of research are turned into well- curated derived variables that 
are integrated with other UK Biobank data and can be used exten-
sively by nonspecialists to answer a range of research questions.

Easy access to such a wealth of data has led to new ways of pre-
senting results. For example, summary statistics of all of the associa-
tions of individual genetic variants (18, 19) and polygenic risk scores 
(20) with a wide range of phenotypes are now available via online 

browsers. This move toward the publication of all summary results 
rather than publication of particular results in traditional scientific 
journals (where cherry- picking the most “interesting” associations 
may introduce bias) is likely to accelerate scientific discovery and 
provide easier replication of associations across different studies. To 
help democratize access further, UK Biobank launched a cloud- 
based Research Analysis Platform in 2021 that allows streamlined 
access for researchers worldwide (particularly to the genome sequence 
data that are too large to transfer to researchers), as well as free com-
puting and data storage for researchers from low-  and middle- income 
countries and for early career researchers.

One consequence of researchers with different expertise access-
ing this wealth of data is the potential for unfamiliarity with various 
types of biases that are inherent in prospective studies that might 
influence results and with the complexities associated with data that 
are outside of their areas of expertise. All researchers accessing bio-
medical resources to study the determinants of disease need to be 
aware of small sample size (that may produce imprecise estimates 
due to random error), incomplete or inadequate measurement of 
risk factors (that may lead to systematic underestimation of disease 
associations), and health outcomes (that may lead to more impre-
cise estimates) and their potential confounding factors (that may 
obscure or lead to spurious associations between exposures and out-
comes). Insufficient duration of follow- up may also lead to reverse 
causation bias, whereby the disease process influences potential risk 
factors (particularly nongenetic ones), especially for conditions with 
a long prodromal phase, such as Alzheimer’s disease.

UK Biobank has been set up to help minimize random and sys-
tematic error so that it can support reliable research into the deter-
minants of disease (table S1), although the general principles of 
careful study design and appropriate data analysis apply equally to 
all large- scale, prospective studies. There are a number of trade- offs 
that need to be considered when designing a cohort study, which 
relate to the size and heterogeneity of the study population, as well 
as to the methods used for its recruitment, data collection, and 
follow- up. UK Biobank has aimed to generate a large- scale, prospec-
tive biomedical resource that includes a wide range of exposure and 
health outcome measures collected as accurately as possible, with 
easy accessibility to the data. However, as with all prospective stud-
ies, it is important to consider, and if possible correct for, potential 
biases arising from the study design and collection of data.

The importance of a large- scale prospective design
UK Biobank recruited 502,000 volunteers aged 40 to 69 years be-
tween 2006 and 2010 from across England, Wales, and Scotland. 
This age group was selected to include individuals who were young 
enough that relatively few would have developed health conditions 
at the time of recruitment. As a prospective study, UK Biobank has 
many advantages for investigating the effects of genetic, lifestyle, 
and environmental factors on disease outcomes (21). In particular, 
information on exposures to potential risk factors can be assessed 
before disease develops, which avoids bias caused by differential re-
call of information about past exposures depending on an individu-
al’s outcome status (recall bias). The prospective design also allows 
investigation of factors that might be affected by disease processes or 
their treatments or by changes in an individual’s behavior after the 
development of some condition (reverse causation bias). In addi-
tion, it can support studies of conditions that cannot readily be in-
vestigated retrospectively (e.g., fatal illnesses). Furthermore, by allowing 
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a wide range of different conditions to be studied within the same 
study population, the full effects of a particular exposure on all as-
pects of health can be better assessed (e.g., smoking on a wide range 
of different diseases). Likewise, the effects of many different expo-
sures on a single disease can be determined, provided that sufficient 
numbers of cases have occurred to allow the separate and combined 
effects of exposures to be assessed reliably.

Prospective studies need to be large, because only a relatively 
small proportion of the participants will develop any given condi-
tion during follow- up. The rationale for recruiting 500,000 adults 
into UK Biobank was that it would enable large numbers of cases of 
the most common diseases to develop within a reasonable follow- up 
period (while also allowing detailed exposure information to be col-
lected within funding and organizational constraints). For example, 
after a median follow- up of 12 years (i.e., by the end of 2020), link-
age to electronic health care record data indicated that there had 
been at least 30,000 incident cases of diabetes, 25,000 cases of de-
pression, 15,000 cases of myocardial infarction, and 9000 cases of 
breast cancer (Table 1). For the reliable detection of risk ratios of 
about 1.3 for the main effects of different exposures (ranging from 
those that are dichotomous variables to those that are continuous 
measures), about 5000 to 10,000 incident cases of a particular dis-
ease would be required (22). The need for a large sample size is even 
more evident when assessing combined effects. For example, when 
estimating the combined effect of blood pressure and age on the risk 
of coronary heart disease, the SEs of the estimates (and hence the 
95% confidence intervals) are, on average, three times narrower 
with 500,000 versus 50,000 participants (23). As the UK Biobank 
participants age, the number of incident cases of different diseases is 
increasing substantially, allowing a wider range of outcomes to be 
investigated more completely. For example, by 2032, there will be 
more than 60,000 cases of diabetes and chronic obstructive pulmo-
nary disease (COPD). The sheer size of the study also means that 

robust research into less common conditions will also be possi-
ble. For example, between 2020 and 2027, the number of cases of 
Alzheimer’s disease, hip fracture, and Parkinson’s disease is expected 
to more than double to about 17,000, 13,000, and 10,000, respec-
tively (Table 1).

Comparing cohort characteristics with those of the 
wider population
In UK Biobank, the well- defined sampling frame means that it is 
possible to assess not only the overall participation rate but also the 
extent to which the study population differs from the wider popu-
lation from which it was drawn. Postal invitations were sent to 
9.2 million individuals aged 40 to 69 who were registered with the UK’s 
National Health Service (NHS) and lived within a short traveling 
time (typically about 25 miles) of 1 of 22 dedicated assessment cen-
ters. The choice of their location was determined by population den-
sity, ease of access, and potential to reach certain types of participants 
(e.g., ethnic minority groups and those living in more socioeconom-
ically deprived areas). During 2006 to 2010, 502,000 participants 
were recruited (5.5% of those invited). Although the participation 
rate was low and those who joined the study were somewhat health-
ier and wealthier than the UK population across the same age range 
(24), the cohort includes large numbers of individuals across a 
broad spectrum of potential risk factors that vary from low to 
high exposure.

It is this heterogeneity across different levels of exposure (e.g., 
genetic, lifestyle, sociodemographic, and environmental), and not 
the relatively low overall participation rate, that largely determines 
the generalizability of the findings to the broader UK population 
(25). For example, although individuals from more socioeconomic- 
deprived areas are underrepresented in UK Biobank (16% versus 
33% in the UK population), there are sufficiently large numbers of 
this group (82,000) to enable reliable assessment of the association 

Table 1. Cumulative numbers of observed (2020) and predicted incident cases of various health conditions. 

Condition

Year of diagnosis

Observed* Predicted

2020 2027 2032

diabetes 31,000 54,000 70,000

Myocardial infarction 15,000 30,000 46,000

Stroke 12,000 25,000 37,000

coPd 25,000 47,000 65,000

depression 25,000 39,000 47,000

Breast cancer 9,000 14,000 18,000

colorectal cancer 5,000 8,000 11,000

lung cancer 4,000 6,000 8,000

Prostate cancer 10,000 16,000 20,000

Hip fracture 5,000 13,000 22,000

rheumatoid arthritis 4,000 6,000 8,000

Alzheimer’s disease 5,000 17,000 37,000

Parkinson’s disease 4,000 10,000 14,000

*observed values are based on incident events identified from linkage to records of deaths, hospitalizations, cancers, and primary care in the cohort to the end 
of 2020.
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of socioeconomic deprivation with disease risk. By contrast, al-
though UK Biobank is reasonably representative of the national 
distribution for different ethnic groups, with 29,000 participants re-
cruited from Black and other ethnic minority groups (which is about 
the same proportion, ~5%, as the rest of the UK population at that 
time) (26), it is insufficient to examine reliably the differences in 
exposure- disease associations by ethnicity. Although UK Biobank is 
currently the largest study in the world with whole- genome sequenc-
ing data on individuals of African and South Asian ancestry (27), 
the numbers are still relatively small (with about 10,000 participants 
in each ethnic group).

Researchers who wish to present simple summary statistics (e.g., 
means or proportions) using UK Biobank data that are representa-
tive of the underlying population could consider using sampling 
weights that reflect the population distribution of the variables un-
der investigation, although such techniques have not been widely 
used. However, one research group found that standardization of 
the prevalence of lifestyle factors with those derived from national 
survey data did not substantially alter the magnitude or direction 
of the association of lifestyle factors with mortality from cardio-
vascular disease or cancer (28). The one notable exception was an at-
tenuation of the apparent protective association of alcohol with 
cardiovascular disease, which has been shown to be likely affected 
by bias (29).

There are circumstances where lack of representativeness may 
introduce bias, particularly if the risk factors of interest are re-
lated to study selection (an example of collider bias) (30). For 
example, UK Biobank participants are more likely to be nonsmok-
ers and to live in more affluent areas than the general popula-
tion in the same age range. Given that area- level socioeconomic 
deprivation is moderately inversely correlated both with partici-
pation in UK Biobank and lung cancer, this nonrepresentative-
ness may attenuate the observed association of smoking with lung 
cancer if the effects of smoking and socioeconomic deprivation 
are not independent of each other (31). Likewise, UK Biobank 
participants are more likely to use vitamin supplements and to 
have lower incident disease rates than the general population (at 
least in the early years of follow- up), leading to an apparent inverse 
association between glucosamine supplement usage and mortality 
(32). Analyses involving genetic variants that cluster by place of 
birth also have the potential to yield biased associations if standard 
variables, such as assessment center and ancestry- based principal 
components, cannot completely correct for this latent structure 
(33). However, for most genetic analyses where confounding from 
other risk factors is likely low, selection bias would typically be 
expected to be modest.

Consequently, in the interpretation of all research findings—
whether they arise from the UK Biobank study or other prospective 
studies—it is important to consider the extent to which they might 
be affected by selective participation (i.e., selection bias). Given that 
traditional methods of identifying and controlling for selection bias 
(and other types of bias) may not be adequate, graphical tools such 
as directed acyclic graphs may provide a useful visual representation 
of the underlying assumptions about the relationships among expo-
sures, potential confounders, mediators, and outcomes, as well as how 
they relate to study participation (34). Sensitivity analyses that in-
clude factors correlated with participation (and ongoing engage-
ment) as covariates in the exposure- disease model can be performed, 
and probability weighting, simulations, and multiple imputation can 

be used to explore the potential impact of missing values related to 
participation on effect estimates (31, 35).

The general consistency of research findings in UK Biobank with 
those in other studies (36–38)—particularly studies considered to be 
representative of the underlying population—suggests that many of 
the exposure- disease associations found in UK Biobank are largely 
generalizable to other populations. For example, the direction and 
magnitude of associations of genetic variants with osteoarthritis in 
UK Biobank are consistent with the associations observed in de-
CODE, which recruited more than half of Iceland’s adult population 
(39). Likewise, although the frequency of genetic variants may vary 
substantially in studies conducted in different populations (resulting 
in differing statistical power to detect associations), the direction and 
magnitude of genetic associations are typically similar across popula-
tions, e.g., the association of specific GPR75 gene variants with obe-
sity in United Kingdom, United States, and Mexico cohorts (40).

Nonetheless, there may be circumstances in which associations 
between an exposure and disease risk vary across different popula-
tions. For example, polygenic risk scores developed and tested in 
populations of European ancestry often perform less well when ap-
plied to African and South Asian populations, owing to differences in 
allele frequencies and linkage disequilibrium patterns between the 
ethnic groups (41). As such, other large population cohorts with bio-
logical samples are needed around the world to increase the hetero-
geneity of genetic and nongenetic risk factors for disease (42) (Table 2). 
For example, studies established in Mexico (150,000 participants) 
and China (500,000 participants) at about the same time as UK Bio-
bank have enabled reliable investigation into the association between 
the risk of hypertension with body weight above and below the West-
ern norm (43, 44). Large- scale studies established across Europe 
and China have also taken advantage of the heterogeneity of dietary 
and other exposures across different populations (45, 46). Genetic 
and other assays of stored samples in these studies are extending 
the range of genomic and other biological risk factors that can be in-
vestigated. New large- scale prospective studies are now established 
in the United States, e.g., All of Us (47) and the Million Veterans Pro-
gram (48), and are also being established in Asia and parts of Africa, 
e.g., Noncommunicable Diseases Genetic Heritage Study in Nigeria 
(49, 50). This will further increase the ability to assess associations 
with disease risk across a broad range of genetic (and nongenetic) 
factors as long as there is sufficient duration of follow- up.

Reliable assessment of a wide range of exposures
The inclusion of participants exposed to different levels of risk 
factors (e.g., ranging from low to high intake of different dietary 
factors, smoking, sun exposure, etc.) is of value in assessing the 
generalizability of findings, which is enhanced further by analy-
ses across studies established in different populations. However, 
all observational studies face challenges of exposure measurement 
error, in which risk factors and their potential confounders are 
measured imperfectly or incompletely, thereby introducing both 
random error (when measurements fluctuate randomly around 
their true value) and systematic error (when measurements 
vary in the extent to which they are higher or lower than their 
true value).

As a result, UK Biobank has put substantial effort into collecting 
comprehensive, accurate, and high- quality data for many different 
types of exposures. Repeated measures have also been conducted in 
subsets of participants to address random error in exposure levels 
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and thereby be able to correct for regression- dilution bias. However, 
there is also real value in being able to perform cohort- wide repeat 
measures that would allow the relevance of individual changes in 
exposures over time to be assessed.

Depth and breadth of exposure measurements
In UK Biobank, a wide range of questionnaires and physical devices 
(e.g., spirometer to measure lung function, sphygmomanometer to 
measure blood pressure, bioimpedance device to measure body 

Table 2. Sampling characteristics of selected general population prospective studies with at least 250,000 participants, containing genomic, 
behavioral, and health outcomes data. The international HundredK+ cohorts consortium (https://ihccglobal.org/) has details of other prospective studies of 
less than 250,000 participants.

Study name Recruitment dates 
(range) Location Sample size Sex; age at  

recruitment

Population from 
which the sample 

was recruited
Participation rate

23andMe 
(https://23andme.com)

2007–present Global (mainly 
United States)

6.8 million MF; 13+ customers of a 
personal genetics 

company

not known

45 and Up (93) 2006–2009 Australia 267,000 MF; 45+ new South wales 
residents enrolled in 
Medicare, recruited  

through direct 
invitations

19%

All of Us (47) 2018–present United States ongoing Aim:  
1 million

MF; 18+ varied approaches, 
many of which are 
targeted at under-

represented groups 
via direct and 

indirect means

not known

canadian Partnership 
for Tomorrow’s Health 
(canPath) (94)

2008–present canada 330,000 MF; 30–74 residents across 
canada recruited 

into seven regional 
cohorts using  

varied approaches

not known

china Kadoorie 
Biobank (46)

2004–2008 china 510,000 MF; 30–70 residents of 10 
geographically  

defined regions across  
china, recruited 
through direct 

invitations

30%

european Prospective 
investigation into 
cancer, chronic 
diseases, nutrition 
and lifestyle (ePic) 
(45)

1992–2000 10 european 
countries

520,000 MF; 35–70 residents from 23 
centers located 
in 10 european 

countries recruited 
through direct 

invitations

not known

Kaiser Permanente 
research Bank (95)

2007–2013 United States 400,000 MF; 18+ Members of Kaiser 
Permanente health 

plan recruited 
through direct  

invitations, in- person 
 communication, 
and via website

20–50% of each 
areas’ insured  

population

Million veterans 
Program (48)

2011–present United States ongoing Aim:  
1 million

MF; 18+ Members of the 
veterans Health  

Administration System  
recruited through 
direct invitations 

and indirect  
(promotional materials) 

methods

14%

UK Biobank (26) 2006–2010 United Kingdom 500,000 MF; 40–69 residents living 
close to 22 assessment  

centers in the 
United Kingdom, 

recruited via direct 
invitations

5.5%
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composition, dynamometer to measure hand grip strength, etc.) 
have been used to collect data that are reliable, valid, and of high 
scientific value (Fig. 1) (26, 51). Such data continue to be collected 
and extended. During recruitment, UK Biobank used touch- screen 
and computer- assisted personal interview direct data entry systems 
(instead of paper- based approaches that were routinely used at the 
time in such studies), as well as direct data transfer from measure-
ment devices. This strategy enhanced data accuracy and complete-
ness by supporting automated real- time consistency checks and 
data quality monitoring to identify and correct errors. Participants 
were also asked to bring certain information (e.g., medications, op-
erations, family history, and birth details) to reduce errors associated 
with memory recall. However, perhaps the greatest benefit of using a 
touch- screen data entry model was that it reduced the time taken to 
collect data and thereby enabled a greater range of potential risk fac-
tors for disease to be collected. For example, data on sociodemographic 
factors (income, education, and occupation), ethnicity, family his-
tory, lifestyle (diet, alcohol consumption, smoking history, physical 
activity, sleep, sun exposure, and sexual history), early life factors, psy-
chosocial factors, medical history, and cognition and environmental 

exposures were all collected via the touch- screen questionnaire in 
about 15 min.

A wide range of physical measurements were also taken for all 
500,000 participants, comprising blood pressure, anthropometry 
(sitting and standing height, weight, waist and hip circumference, 
and bioimpedance measures), hand grip strength, measures of vi-
sion, and lung function. Blood and urine samples were also col-
lected for long- term storage (Fig. 1). A proportion of the cohort also 
underwent a heel ultrasound for bone density, pulse wave velocity of 
arterial stiffness, a hearing test (180,000 participants), an eye exami-
nation (including refractive index), intraocular pressure measure-
ments, a retinal photograph and optical coherence tomography 
(120,000 participants), a cardiorespiratory fitness test with a four- 
lead electrocardiogram (78,000 participants), and collection of a 
saliva sample (~85,000 participants). Since the baseline assessment, 
UK Biobank continues to collect additional data from large subsets 
of the cohort. This has included data on physical activity using a 7- 
day accelerometer (in 100,000 participants, with 2500 undergoing a 
repeat assessment), a multimodal imaging assessment (in up to 
100,000 participants, with 60,000 undergoing a repeat assessment 

over the next few years), and a series of 
web- based questionnaires that cover 
specific exposures in more depth (e.g., 
diet, cognition, and occupational history).

Rigorous approaches have also been 
taken to sample collection, processing, 
retrieval, and assay measurement. Before 
the start of the UK Biobank, a series of 
pilot studies were conducted to deter-
mine the optimal method for sample col-
lection and processing (52), followed by the 
development of (at that time) a state- 
of- the- art robotic system and sample track-
ing software to ensure consistency of 
sample processing. Currently, genomic 
data (genome- wide genotyping and im-
putation, whole- exome and whole- genome 
sequence data, and telomere length) as well 
as hematological and biochemical data 
are available for the whole cohort (Fig. 1). 
UK Biobank’ s general policy of performing 
cohort- wide assays supports research 
into a wide number of conditions and 
helps to avoid measurement errors that 
would otherwise occur with different 
assay methods, reagents, and equipment in 
different laboratories used in different 
subsets of the cohort at different times. 
To facilitate quality control, algorithms 
were developed to retrieve sample ali-
quots in a sequence that avoided clus-
tering by recruitment location, date, or 
time of the day (53). Consequently, when 
assaying samples from participants in this 
quasi- random order, the mean biomarker 
concentration across batches and analyz-
ers should be constant, which allows 
correction for variation caused by labo-
ratory drift. Throughout the assay process, 

Fig. 1. Types of data in UK Biobank. Shown are the types of data collected in UK Biobank, including data collected 
at in- person assessments such as lifestyle factors, medical history, blood pressure and other physical measures, and 
imaging scans. other data include information from online questionnaires, data generated from biological samples, 
and data derived from electronic health care records.C
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the data are reviewed to identify issues and either address them in 
real time (e.g., if specific batches require remeasurement) or make 
any adjustments retrospectively. For example, after assay measure-
ments of blood biochemistry markers, these data were corrected for 
systematic error caused by unexpected dilution that occurred in 
some aliquots during sample processing (53). Moreover, highly ef-
ficient assay methods minimize sample depletion, with currently 
less than 10% of the baseline blood samples used so far. This will 
allow other types of assays (e.g., epigenetics, transcriptomics, and 
proteomics) to be conducted on a cohort- wide basis when techno-
logical advances make this possible.

The collection of different types of data that describe the same 
(or highly related) exposures can also contribute to accuracy. In par-
ticular, a more precise assessment performed in a subset of partici-
pants could be used to correct for any random and systematic error 
inherent in the less precise baseline measures conducted in the full 
cohort (54). For example, data from an accelerometer device worn 
by 100,000 UK Biobank participants were used to calibrate self- 
reported physical activity estimates provided by all 500,000 partici-
pants at recruitment (55). Similarly, data on body fat composition 
available from dual- energy x- ray absorptiometry scans (56), which 
are being collected in up to 100,000 participants attending an imag-
ing assessment, can be used to calibrate the bio- impedance mea-
sures available from the full cohort. Detailed dietary data from 
web- based questionnaires collected from more than 200,000 partici-
pants can also be used to predict food and nutrient intake for the 
entire cohort, as demonstrated in other studies (54).

The collection of data on a wide range of measures enables re-
searchers to allow not only for more complete and accurate mea-
surement of exposures but also for potential confounders (extraneous 
factors that are associated with the exposure and outcome) and me-
diators (factors that are on the causal pathway between the exposure 
and the outcome). This is important, because random error in expo-
sure measures can cause systematic attenuation of any true associa-
tion, whereas random measurement error of confounders can result 
in an apparent exposure- disease association where none really exists. 
For example, the observed inverse association of fruit and vegetable 
intake with cardiovascular disease risk in UK Biobank is likely to be 
due largely to residual confounding by socioeconomic factors, which 
are difficult to assess and therefore subject to measurement error (57). 
The ability of UK Biobank to obtain more detailed information in 
the future about socioeconomic factors (such as education, occupa 
web- based questionnaires) would enable more precise characteriza-
tion and, hence, even better adjustment for these important factors.

Because all epidemiological studies suffer, to a greater or lesser 
extent, from imperfect measurement of exposures and their poten-
tial confounders, various analytical methods have been developed 
to quantify and control for this. Perhaps the simplest approach is the 
comparison of likelihood ratio statistics associated with the expo-
sure of interest in the models before and after adjustment for covari-
ates. Generally speaking, a large proportional reduction in the likelihood 
ratio chi- square (LRχ2) test after addition to the model of covariates 
indicates that the association likely remains affected by residual con-
founding, given that adjustment for confounders that are perfectly 
measured would be expected to reduce the χ2 even further (6). An 
increasingly popular approach to distinguish the likely causal effect 
of an exposure (from that of extraneous confounders) is the use of 
Mendelian randomization—facilitated in UK Biobank by the exten-
sive genetic information available on all participants—whereby specific 

genetic variants are used as proxies for exposures of interest or their 
confounders. For example, this approach has provided strong sup-
port for a causal role of body fat mass and interleukin- 6 in the de-
velopment of cardiovascular conditions (58, 59). Conversely, 
Mendelian randomization has not provided support for a protective 
effect of vitamin D against coronavirus disease (COVID- 19) (60), 
cancer, or cardiovascular outcomes (61), although it should be not-
ed that Mendelian randomization analyses may also be affected by 
bias in some circumstances (62). When associations of genetic vari-
ants with the relevant nongenetic risk factors are weak (such that 
Mendelian randomization may not be effective), the likely impact of 
residual confounding due to imprecision in measured variables 
included in the model can be assessed using other analytical ap-
proaches, such as probabilistic or multiple- bias analysis (34, 63). 
The use of different analytical strategies to triangulate evidence (e.g., 
comparing results from models that include traditional observa-
tional variables with those that use genetic instrumental variables) 
will enable researchers to assess different biases and their potential 
impact on causal inference in a more robust manner.

Repeated exposure measurements
Random errors in the measurement of risk factors can lead to sub-
stantial underestimation of the strength of their associations with 
subsequent health outcomes (regression dilution bias) (64, 65) and 
to substantial residual confounding when measurement error is pres-
ent in confounders (66). These biases may be increased further 
through random error in risk factor measurements that occur dur-
ing prolonged follow- up in prospective cohorts. For example, the 
true association of blood pressure and cholesterol with cardiovascu-
lar disease risk may be underestimated by about one- third in the 
first decade of follow- up and up to two- thirds in the third decade 
(64). However, despite regression dilution being one of the most im-
portant biases in exposure- disease associations, it is often over-
looked in analyses of prospective studies, including UK Biobank 
(with some exceptions) (67–70). It is possible to correct for regres-
sion dilution bias by using repeat measures from a relatively small 
subset of the cohort. UK Biobank performed a repeat assessment on 
20,000 participants in 2012–2013 to allow researchers to address 
this issue specifically. Remeasures collected during the imaging as-
sessment of up to 100,000 UK Biobank participants during 2014–
2024 and a repeat assessment of up to 60,000 during 2019–2029 can 
be used to make appropriate time- dependent corrections for the ef-
fects of regression dilution bias.

In addition to addressing error caused (largely) by random er-
ror in baseline risk factors, repeated measures would also enable 
correction for systematic intra- individual changes in exposures 
over time, which may lead to either overestimation or underes-
timation of associations depending on the nature and magnitude 
of misclassification. For example, secular trends in the reduc-
tion of smoking or exposure to environmental pollutants may 
lead to an underestimation of their association with disease risk 
if solely based on baseline measures. To help address this issue, 
UK Biobank is exploring opportunities to collect information 
on longitudinal changes in environmental exposures (e.g., from 
existing data on changes in participants’ residential location or 
future data collection using smartphone GPS tracking) to enable 
more accurate inferences to be made about how changes in 
environmental exposures affect health in the long term. It is also 
intended to repeat previous web- based questionnaires to 
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c ap t u r e  longitudinal changes in specific lifestyle factors, such as 
diet and sleep.

Whereas repeated measures of the baseline assessment are being 
captured during the imaging assessments in a subset of the UK Bio-
bank cohort, it would be desirable to perform a future repeat assess-
ment of a wide range of exposures in as many of the participants as 
possible. This would allow investigation of how lifestyle, physical, 
and biochemical changes over time influence disease risk and pro-
gression, thereby helping to determine the temporality of associa-
tions and their underlying mechanisms. Data collection for as many 
surviving participants as possible would also reduce systematic er-
ror caused by differential participation rates that are related to the 
exposures and outcomes under investigation. UK Biobank generally 
has excellent participant engagement with an ongoing series of re-
peated web- based questionnaires (with response rates of >50%), 
physical activity monitoring (45% for the first assessment, of whom 
63% also performed a repeat assessment), and imaging assessments 
(24% for the first assessment and 65% for a repeat assessment). 
However, researchers should be aware that participants who engage 
in ongoing data collection activities (including repeat assessments) 
might not be representative of the cohort as a whole. For example, 
genetic variants associated with completing UK Biobank online 
questionnaires and activity monitoring are correlated with several 
metrics of better health (31). Attrition bias has been documented in 
other prospective studies (71–73), suggesting that similar factors af-
fect ongoing participant engagement in many cohorts, regardless of 
their design, recruitment strategy, or study population.

Comprehensive ascertainment of health outcomes
To minimize bias in exposure- disease associations, it is important 
that health outcomes are identified in a comprehensive manner and 
in as much detail as possible. Linkage to routine electronic health 
records, supplemented with information from self- reported ques-
tionnaires and other remote methods, and in- person assessments 
focused on specific outcomes (such as dementia) will help to deeply 
characterize health outcomes that are of high priority. The ability to 
combine these data from disparate sources to generate “off- the- shelf ” 
outcomes that can be easily interpreted by nonspecialists will fur-
ther increase the usability and reproducibility of research using 
these data.

All cohort studies need a comprehensive and efficient way of fol-
lowing participants’ health over the long term to identify a wide 
range of disease outcomes. Unlike many countries (including the 
United States and most low-  to middle- income countries), the UK’s 
NHS collates and stores electronic health administrative records for 
clinical care. However, the data content, format, and governance re-
quirements may differ for England, Wales, and Scotland. To identify 
a wide range of health outcomes over a prolonged period, UK Bio-
bank has linked to these health administrative records for all par-
ticipants. This has the advantage of minimizing ascertainment bias 
and reducing loss to follow- up or attrition bias by providing cohort- 
wide follow- up information without the need for active participant 
recontact, which may be incomplete. Moreover, the low rate of UK 
Biobank participants requesting that all of their data and samples be 
withdrawn from the study (0.2%, most of which occurred soon after 
recruitment) also minimizes systematic bias associated with loss to 
follow- up from nonrandom subgroups of the cohort.

To date, UK Biobank has linked NHS health care data from cen-
tralized national cancer and death registries and hospital inpatient 

admissions for all participants. In contrast, primary care data are 
not centralized but instead are held by commercial electronic system 
suppliers under the control of individual general practices, so it has 
been more challenging to obtain the agreements necessary to obtain 
these data for all participants. Primary care data are currently avail-
able for 45% of the UK Biobank cohort for general research pur-
poses (which represents complete coverage from one primary care 
system supplier, up to 2016/2017) and for 80% of the cohort for 
COVID- 19 research (complete coverage from two system suppliers 
in England, up to mid- 2021, enabled by emergency legislation to 
facilitate COVID- 19 research). Whereas both subsets are broadly 
representative of the cohort with respect to the distribution of po-
tential exposures, researchers should be encouraged to check these 
underlying assumptions before analysis. Incorporation of primary 
care data for all 500,000 participants for all types of health- related 
research would be of enormous value because it will increase sub-
stantially the number of health outcomes that can be detected (there-
by increasing statistical power) and their diagnostic accuracy (thereby 
increasing specificity). For example, although addition of primary 
care data would increase the numbers of myocardial infarction cases 
identified by less than 5%, the numbers of cases identified of diabe-
tes and COPD would increase by about 40% (Fig. 2). Primary care 
data are also important for investigating risk factors associated with 
disease severity, where associations may differ between milder dis-
ease subtypes generally captured in primary care records and more 
severe disease captured in hospital admission records.

Whereas linkage to health records ensures comprehensive cover-
age, there is the possibility of “collider bias” if health outcomes are 
differentially ascertained based on participant characteristics (e.g., 
ethnicity), as reported by some researchers in the context of COVID- 19 
studies (74). However, there are a range of analytical approaches 
that can be used to investigate this type of bias (74–76), and the 
ascertainment of most health outcomes is not so strongly influ-
enced by these characteristics.

Specificity of health outcomes
Given that the prospective nature of cohort studies facilitates re-
search into many diseases, the challenge is not only how to identify 
probable cases of disease but also how to increase the precision and 
specificity of those diagnoses. The aim is to avoid a situation where 
insufficient data on health outcomes lead to misclassification of 
cases and noncases, thereby reducing statistical power to detect an 
association. As such, UK Biobank’s aim is to ascertain as many cases 
as possible (i.e., to achieve adequate sensitivity) while minimizing 
the number of false- positive cases (i.e., achieving a high positive 
predictive value). It is worth recognizing that it is not necessary to 
identify all cases of a disease because false negatives will be diluted 
by the much larger number of “true” controls and so will have lim-
ited impact. To help identify as many cases as possible, UK Biobank 
administers various web- based questionnaires, developed in close 
collaboration with relevant experts, to collect data on health out-
comes that are incompletely recorded in health records, such as 
depression and anxiety (77), as well as neurodevelopmental and 
gastrointestinal conditions.

It is also important to characterize disease subtypes because low 
biological specificity can limit interpretation of results. To address 
this, UK Biobank (78–80) and other open- access resources (81) 
have developed a number of algorithmically defined health out-
comes based on interoperable code lists from electronic health care 
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records. Diagnostic codes contained in these records have also 
been mapped to a common standard (ICD- 10) to facilitate broad- brush 
research. Whereas these coded health outcomes may be sufficient 
for most research purposes, they may lack specificity to identify 
disease subtypes. This could lead to materially biased estimates of 
associations if the determinants of these apparently similar, but 
etiologically different, disease subtypes differ. For example, where-
as blood pressure is strongly positively associated with the risk of 
both ischemic and hemorrhagic stroke (82), the association of cho-
lesterol and certain genetic variants with stroke differs substantial-
ly by subtype (83, 84), providing clues to the underlying etiology of 
this heterogeneous condition. To increase the specificity of health 
outcomes beyond the available coded data, UK Biobank intends to 
collect detailed data on disease subtypes over the next few years. 
For example, this could include disease- specific registers, such as 
the National Diabetes Audit, that collects data on diabetes sub-
types, clinical scans to identify stroke subtypes, digitized histopa-
thology slides to determine tumor morphological subtypes, and 
in- person assessments to characterize dementia subtypes.

It is possible to identify some disease subtypes using other data 
already available in the UK Biobank resource. For example, bio-
chemistry measures have been used to ascertain chronic kidney dis-
ease (85), MRI scans collected in up to 100,000 participants have 
been used to define dilated cardiomyopathy (86) and nonalcoholic 
fatty liver disease (87), and genetic data have been used to distin-
guish diabetes subtypes (88). However, researchers should be aware 
of the potential for generating misleading associations where the 
exposure of interest (e.g., genetic variants or biochemistry mea-
sures) has, in part, been used to define the outcome.

Long duration of follow- up
For any prospective study, a long duration of follow- up (i.e., decades or 
more) is needed for sufficiently large numbers of health outcomes to ac-
crue for reliable investigation. It also allows for the identification of re-
curring events and factors associated with disease progression. Although 
the incidence of common health outcomes during the early years of 
follow- up in UK Biobank was somewhat lower than in the general pop-
ulation due to the “healthy volunteer” effect, which is typical of such 
studies (89), its impact is now reduced because the cohort has aged. With 
prolonged follow- up, large numbers of incident cases of a wide range of 
conditions have already occurred. Over the next 5 to 10 years, there will 
be thousands of incident cases of common outcomes (Table 1), enabling 

reliable investigation of their genetic, life-
style, and environmental determinants.

The rationale for recruiting middle- 
aged participants was to collect risk factor 
data many years before the development of 
any given condition, thereby minimizing 
reverse causation bias. However, condi-
tions that have a long prodromal phase 
(e.g., dementia or diabetes) or that can exist 
for years before a clinical diagnosis is made 
(such as prostate cancer) may affect the lev-
els of risk factors measured at recruitment 
and create spurious associations. For ex-
ample, associations observed between high 
insulin- like growth factor- I (IGF- I) con-
centrations and increased risks of cataract 
and diabetes were substantially attenu-

ated after excluding the first 5 years of follow- up in UK Biobank 
(90), suggesting that baseline IGF- I concentrations may be altered 
as a result of early pathophysiological processes. Other large- 
scale longitudinal studies have also shown that apparent inverse 
associations between lifestyle factors and dementia risk are also 
likely to be due to reverse causation bias during the first 10 to 
15 years of follow- up (91). Consequently, researchers should con-
sider the impact of exclusion of participants with prevalent dis-
ease before analysis and perform sensitivity analyses to assess 
exposure- disease associations across different periods of follow- 
up to determine whether the first years of follow- up should be 
excluded (92).

CONCLUSIONS
The success of UK Biobank has been due, in large part, to not only 
the altruism of the 500,000 volunteers but also the global research 
community who have been—and continue to be—involved in ex-
panding the range of exposures and outcomes available for research. 
Such enhancements (e.g., sample assays, linkage to specific health 
care datasets and environmental sources, etc.) help to ensure that 
this resource fulfills the needs of researchers and remains at the fore-
front of scientific discovery.

UK Biobank’s large- scale prospective design and easy access 
to a wealth of genetic, phenotypic, and health data provide a 
powerful resource to help address previously unanswerable 
questions of the determinants of incident disease and enabling 
research into risk prediction and identification of early bio-
markers of disease. Whereas the UK Biobank study has attempt-
ed to minimize random and systematic errors in the measurement 
of exposures and outcomes with good study design, researchers 
need to use the data in ways that best answer the questions 
posed and to be aware of and, where necessary, to use analytical 
methods to take account of potential biases when interpreting 
research findings.

Easy accessibility of UK Biobank data and research results (in-
cluding the underlying analytical code) is enabling the community 
to directly peer review research by undertaking replication analyses 
or to apply different methods to the same research question to con-
firm or refute the findings of others. In particular, investigation of 
approaches used to identify and quantify the uncertainty of the re-
sults based on sensitivity analyses that examine systematic bias will 

Fig. 2. Incident disease cases since recruitment. Shown is the proportion of incident cases for three common dis-
eases (myocardial infarction, diabetes, and coPd) ascertained since recruitment of these participants into UK Bio-
bank. disease cases were identified through hospital inpatient admissions, primary care (i.e., data from general practitioners) 
data, and death data available in electronic health care records.
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provide transparency in the interpretation of findings that have, un-
til now, generally been underreported.

Whereas UK Biobank is well suited to address a wide range of 
health- related research questions, similar studies in other popula-
tions with different ranges of exposures and outcomes are needed. 
Together, they will enable a greater range of risk factors and diseases 
to be analyzed and allow for replication of associations, which is es-
sential before determining the extent to which any specific research 
findings are generalizable to different populations. Scientific discov-
eries benefit from the availability of data from diverse populations 
that cover a wide range of the many different genetic, ancestral, eth-
nic, lifestyle, and environmental factors that may influence risk of a 
broad range of diseases.

Supplementary Materials
This PDF file includes:
Table S1
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