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Highlights 

• Large biobank studies should be leveraged with intrinsic capacity scores developed. 

• Factor analysis confirmed IC as one general factor and five specific factors. 

• Better goodness of fit observed with the bifactor model versus conventional structure.  

• The bifactor model IC score has a good construct and predictive validity. 

• The IC score can be used as a single reliable measure of IC.  
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Abstract  

Background: In 2015, the World Health Organization introduced the concept of intrinsic capacity 

(IC) to define the individual-level characteristics that enable an older person to be and do the things 

they value. This study developed an IC score for UK Biobank (UKB) study participants and 

validated its use as a tool for health outcome prediction, understanding healthy aging trajectories, and 

genetic research. 

Methods: Our analysis included data from 45,208 UKB participants who had a complete record 

of the ten variables included in the analysis. Factor adequacy was tested using Kaiser–Meyer–

Olkin (KMO), Barthelt’s, and the determinant of matrix tests, and the number of factors was 

determined by the parallel analysis method. Exploratory and confirmatory factor analyses were 

employed to determine the structure and dimensionality of indicators. Finally, the IC score was 

generated, and its construct and predictive validities as well as reliability were assessed. 

 

Results: The factor analysis identified a multidimensional construct comprising, one general 

factor (IC) and five specific factors (locomotor, vitality, cognitive, psychological, and sensory). 

The bifactor structure showed a better fit (comparative fit index = 0.995, Tucker Lewis index = 

0.976, root mean square error of approximation = 0.025, root mean square residual = 0.009) than 

the conventional five-factor structure. The IC score, generated using the bifactor confirmatory 

factor analysis has good construct validity, as demonstrated by an inverse association with age 

(lower IC in older age; beta = -0.035 (95%CI: -0.036, -0.034)), frailty (lower IC score in prefrail, 

beta = -0.104 (95%CI: (-0.114, -0.094) and frail, beta = -0.227 (95%CI: -0.267, -0.186) than the 

robust), and Charlson’s comorbidity index (CCI) for incident cases (a lower IC score associated 

with increased CCI, beta, = -0.019 (95%CI: -0.022, -0.015). The IC score also predicted incident 

CCI (a one-unit increase in baseline IC score led to lower CCI, beta = 0.147 (95%CI: -0.173, -

0.121)). 

Conclusion: The bifactor structure showed a better fit in all goodness of fit tests. The IC 

construct has strong structural, construct, and predictive validities and it is a promising tool for 

monitoring aging trajectories.  

Keywords: Intrinsic capacity, healthy aging, functional ability, physical functioning, mental 

functioning 
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Introduction  

In 2015, the General Assembly of the United Nations adopted the 2030 Agenda for Sustainable 

Development. Of the 17 sustainable development goals, the first was to ensure that all human beings 

are able to fulfill their potential. In the same year, the World Health Organisation (WHO) introduced 

the concept of intrinsic capacity (IC) to guide our understanding of the realization of that potential 

[1]. The conceptual roots of IC can be traced to the writings of the philosopher Martha Nussbaum [2] 

who defined health and wellbeing in terms of people’s capacities, i.e. their opportunity to do and be 

what they value. The concept has now found use in medicine, health, social, and behavioral science 

as a lens through which to anticipate and understand human behavior in all its manifestations[3-9].  

WHO experts defined IC as the composite of all the physical and mental capacities of the 

individual. It has since been proposed that this might be operationalized and measured using five 

critical domains — cognitive, sensory, locomotor, vitality, and psychological [10]. Personal traits 

in these domains are genetically determined[11-28]. However, over the life course, these are 

modified by complex and dynamic age-related biological changes which themselves are 

influenced by a range of environmental stimuli. Peak values are attained in early adulthood, but 

start to decline with increasing age[3, 29].  

Since the introduction of IC, extensive research has been conducted to measure and validate this 

construct, as well as to assess its relevance in medical, social, and behavioral sciences [3-5, 7-9]. 

These studies have established a relationship between IC and various factors such as biological 

biomarkers [30-32], lifestyle[33-36], socio-economic status[3, 31, 37], health outcomes[3-6], and 

functional abilities [3, 4, 38, 39]. However, many of these studies rely on relatively small sample 

cohorts, and comprehensive IC constructs are emerging in large global biobanks such as the UK 

Biobank, where extensive measurements of diverse biological and clinical characteristics are 

accessible to facilitate further investigations into the longitudinal health implications of IC 

changes. This research gap underscores the critical need for developing and integrating IC 

constructs in large-scale biobank studies and as well as validating their potential to predict 

longer-term health outcomes such as frailty, falls, and quality of life over time.  

Beyond its proposed applications in promoting health and well-being, IC scores have potential 

use to better understand the biological underpinnings of healthy aging, including the interplay of 
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genetic and environmental factors contributing to age-related health decline, as well as the 

origins of various diseases. For example, by identifying specific genetic factors associated with 

IC, researchers can gain a deeper understanding of the complex interplay between genetics, 

lifestyle, and aging, paving the way for more personalized and targeted interventions for older 

individuals.  

The aim of this study was to develop and validate an approach to estimating IC in one of the 

world's largest longitudinal repositories including genetic markers, the UK biobank (N = 

500,000). By generating an IC score using data from the UK Biobank, this research lays the 

groundwork for future investigations into the genetic basis of IC and its complex relationship 

with aging processes.  

Methods 

Study population 

The UK biobank is a large-scale, multicenter prospective cohort study that recruited participants 

aged 40-69 years, living in Scotland, England, and Wales [40, 41]. The baseline assessment was 

conducted between 2006-2010. Using a self-completed touch-screen questionnaire and brief 

computer-assisted interviews, several characteristics related to demographic, socioeconomics, 

environmental, lifestyle choices and health parameters have been collected. Moreover, 

comprehensive physical and functional assessments have been conducted, along with the 

collection of biological samples such as blood, urine, and saliva for subsequent biobanking and 

biochemical analyses. Further details on the measurements, study design, and data collection are 

available in the UK biobank online protocol (http://www.ukbiobank.ac.uk). After the exclusion 

of participants with missing data for variables relevant to IC measurement, the final analysis was 

conducted on a sample of 45,208 individuals.  

Steps of IC index development and validation 

Building on the structure originally proposed by the WHO [7], we implemented a stepwise 

process to develop the IC index (Figure 1). First, an extensive literature search was conducted to 

identify variables that represent and measure the five critical IC domains, namely cognitive, 

sensory, locomotor, vitality, and psychological capacities. Next, each of the identified variables 

was cross-checked for their availability in the UKB dataset, ensuring a reasonable sample size. 

Using this approach, we selected ten variables relevant to our study, including working memory, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 10, 2024. ; https://doi.org/10.1101/2024.01.09.24301076doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.09.24301076


6 

 

fluid intelligence, duration of moderate activity, duration of walking, anxiety, exhaustion, 

Haemoglobin concentration, forced expiratory volume in one second, hand grip strength and 

hearing difficulty. The detailed descriptions of how these variables were measured are provided 

in supplementary table 1.  

Third, factor analysis techniques were implemented, and IC scores were generated using the CFA 

within the structural equation modeling framework. Finally, we evaluated the construct validity 

of IC score by assessing its association with age, sex, and frailty and also examined the 

predictive validity of the IC score by testing its capacity to predict incident Charlson’s 

comorbidity index (CCI). Frailty was measured according to Fried frailty phenotype (FP) method 

[42]. Indicators for measuring frailty in the UK biobank were established in previous studies 

such as Hanlon et al., 2018 [43]. Details of how this variable was measured are provided in 

supplementary methods 1. The CCI was computed using standard statistical methods suggested 

by Jonas F. Ludvigsson and colleagues [44] that were based on ICD-10 disease codes for 17 

diseases [Myocardial infarction, Congestive heart failure, Peripheral vascular disease, 

Cerebrovascular disease, Chronic obstructive pulmonary disease, Chronic other pulmonary 

diseases, Rheumatic disease, Dementia, Hemiplegia, Diabetes without chronic complication, 

Diabetes with chronic complication, Renal disease, Mild liver disease, liver special, Moderate-

severe liver disease, Peptic ulcer disease, Malignancy, Metastatic cancer, HIV/AIDS]. In this 

study, the incident CCI score was generated taking into consideration diseases that were 

diagnosed in the period up until 31 December 2022 and after enrolment in the study.    
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Figure 1. Flow chart showing steps of variable selection, data management, IC index development, and 

validation. 

UKB: UK biobank, EFA: exploratory factor analysis, CFA: Confirmatory factor analysis, Det.Matrix: 

Determinant of matrix, ML: maximum likelihood, CCI: Charlson’s comorbidity index.  

Statistical Analyses 

In this study, we performed (a) EFA (both conventional and bifactor EFA) to examine the 

structure and dimensionality of selected variables, (b) CFA, within the framework of structural 

equation modeling (SEM), to test the goodness of fit of the structure and dimensionality 

identified in the EFAs, and subsequently compute IC composite scores, (c) regression analysis to 

validate the IC scores.  

The first step in the factor analysis was an assessment of factor adequacy, which included 

examining the KMO measure, Bartlett's chi-square test of sphericity, and determinant of matrix 

tests. A KMO value greater than 0.6, a significant Bartlett's chi-square test of sphericity (P<0.05), 

and a determinant value greater than 1x10-5 were considered indicative of good factor adequacy 
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[45]. Next, the number of factors was determined using the parallel analysis method and 

examination of the associated scree plot [46]. Eigenvalues greater than one (the number of scree 

points above the cut-off line on the parallel analysis scree plot) were counted to determine the 

number of factors. After testing factorability and determining the number of factors, the 

conventional EFA and bifactor EFA were applied to explore the structure and dimensionality of 

the dataset. The conventional EFA was performed using the "psych" package with the "factanal" 

function, employing the "ProMax" rotation method of an oblique type. For the bifactor EFA, the 

"bifactor" rotation method was selected. In both cases, the maximum likelihood (ML) method 

was considered as appropriate for factor extraction [47].  

The identified structures and dimensions from EFAs were tested using corresponding CFAs, 

conventional CFA and Bifactor CFA. The lavaan package was used for the CFA, employing the 

goemin rotation method. The goodness-of-fit of these models/structures was assessed using 

various statistical tests, including the Root-Mean-Square Error of Approximation (RMSEA), 

Comparative Fit Index (CFI), Tucker-Lewis index (TLI), and Root Mean Square Residual 

(RMSR) that were obtained from both conventional and bifactor CFAs. RMSEA value of <0.06, 

CFI >= 0.95 TLI >= 0.95, and RMSR < 1.0 were considered as indicators of a good fit [48]. 

The goodness of fit statistics obtained from both conventional and bifactor CFAs was used for 

model comparison, with the bifactor CFA ultimately chosen for constructing scores for the 

general IC factor and the five IC domains (cognitive, locomotive, psychological, vitality, and 

sensory). To evaluate the reliability of the general IC construct, we computed Omega 

hierarchical. A higher omega hierarchical value (>0.70) indicates a stronger association between 

the observed variables and the latent construct, indicating greater reliability[49].  

Lastly, the construct and predictive validities of the developed IC score were assessed. Construct 

validity was determined through linear regression analysis using IC as the outcome variable and 

age, sex, and frailty as independent variables, whereas predictive validity was examined by 

assessing how baseline IC predicts incident CCI. Here, the CCI index (outcome variable) was 

calculated for diseases diagnosed after baseline assessment (incident cases).  

All the above statistical analyses were performed using R-Studio version 4.2.2 and STATA V.17 

programs.  
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Results 

In this study, a total of 45,208 individuals, with a mean (SD) age of 55.9 (7.6) years, 54% 

females, were included. At baseline assessment of participants’ frailty status, the majority were 

categorized as robust (60.7%) or prefrail (37.9%), while only 584 (1.4%) were classified as frail. 

According to the morbidity data collected until December 31, 2022, most of the participants 

(71.1%) have no diagnosis of diseases that were included in the Charlson index calculation (CCI 

= 0). The maximum CCI recorded was 14 (range 0-14). There were 1013 (2.3%) deaths during 

the follow-up period (from baseline assessment up until December 31, 2022). The detailed 

characteristics of the participants can be found in Table 1. 

Table 1. Description of socio-demographic and outcome variables by intrinsic capacity score 

quartiles (UKB; n=45,208) 

Variables Category (n) Grouped by IC scores quartiles 
Q1  
 (< -0.44) 

Q2  
 (-0.44 to -0.03)  

Q3  
 (-0.03 to 0.41) 

Q4 
 (>=0.41) 

Sex Male (20731) 2347 (5.3)  3634 (8.1) 5638 (12.6) 8886 (19.9) 
Female (24477) 8914 (19.9) 7633 (17.1) 5423 (12.1) 2222 (5) 

Age category  
 (in years) 

40-49 (11817) 1085 (2.4) 2449 (5.5) 3404 (7.6) 4879 (10.9) 
50-56 (11698) 2281 (5.1) 3108 (7)  3253 (7.3)  3056 (6.8) 
57-61 (11362) 3566 (8) 3156 (7.1) 2584 (5.8) 2056 (4.6) 
62-72 (9820) 4329 (9.7) 2554 (5.7) 1820 (4.1) 1117 (2.5) 

Frailty  Robust (27168)  5870 (13.1) 6765 (15.1) 7063 (15.8) 7470 (16.7) 
Prefrail (16945) 5150 (11.5) 4348 (9.7) 3888 (8.7) 3559 (8) 
Frail (584) 241 (0.5) 154 (0.4) 110 (0.3)  79 (0.2) 

Charlson’s 
Comorbidity 
index 

Zero (31749) 7038 (15.8)  7894 (17.7) 8175 (18.3)  8642 (19.3) 
One (5230) 1747 (3.9) 1373 (3.1) 1135 (2.5) 975 (2.2) 
Two (4265) 1295 (2.9) 1088 (2.4) 1018 (2.3) 864 (1.9) 
Over two (3453) 1181 (2.6) 912 (2) 733 (1.6) 627 (1.4) 

Number of 
deaths in the 
follow-up period 

Deceased (1013) 338 (0.8)  283 (0.6)  204 (0.5) 188 (0.4) 

Alive (43,684) 10923 (24.4) 10984 (24.6) 10857 (24.3) 10920 (24.4) 

 

Development of IC score 

Using EFA and CFA, and reliability analyses, we developed and validated the IC score. The 

results from three tests assessing factor adequacy, including the KMO (measure > 0.6), Bartlett’s 

test of sphericity (P < 0.05), and the determinant of matrix test (<1x10-5), collectively indicated 

factorability and supported the presence of underlying patterns that can be effectively extracted. 
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The parallel analysis and examination of the associated scree plot identified five factors (Figure

2). In this parallel analysis scree plot, five scree points were above the cutoff horizontal line

indicating that the optimal number of factors that can be retained from the factor analysis is five.

These factors were previously labeled by WHO experts as vitality, locomotive, psychological,

sensory, and cognitive domains.  

Figure 2. The parallel analysis scree plot where the x-axis represents the number of factors, and

the y-axis represents the corresponding eigenvalues. PC: Principal component, FA: Factor

analysis  

 

The findings from the conventional EFA (Tables 2 and 3) showed a clear loading of the

indicators onto five factors with no significant cross-loading. The factor loadings underscored a

substantial correlation between the observed indicators and the underlying latent IC construct

and its five domains.  
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Table 2. Factor loadings from the conventional exploratory factor analysis (UKB; n=45,208). 

 Factor1  Factor2  Factor3  Factor4  Factor5 

Numeric memory    0.39    

Fluid intelligence    0.75    

Duration of moderate activity   0.95     

Duration of walks   0.41     

Anxiety     0.44  

Exhaustion     0.66   

Hemoglobin concentration  0.33     0.42 

Forced expiratory volume  0.78      

Hand grip strength  0.78     0.16 

Hearing difficulty    -0.10  -0.21 

 

Table 3. Factor loadings from the bifactor exploratory factor analysis (UKB; n=45,208). 

 Vitality  IC  Cognition  Locomotion  Psychology  Sensory  

Numeric memory  0.09  -0.19  0.32  0.05  -0.02  0.04  

Fluid intelligence  0.06  -0.23  0.78  0.00  0.00  0.00  

Duration of moderate activity  0.01  0.61  0.01  0.79  0.00  0.04  

Duration of walks  0.01  0.48  0.00  0.09  0.02  0.61  

Anxiety  -0.08  -0.02  -0.06  0.02  0.45  0.01  

Exhaustion  -0.08  -0.03  0.01  -0.01  0.63  0.01  

Hemoglobin concentration  0.57  0.18  0.03  -0.14  -0.04  -0.16  

Forced expiratory volume  0.73  -0.18  0.04  0.07  0.01  0.09  

Hand grip strength  0.85  0.00 0.02  0.00  -0.04  -0.01  

Hearing difficulty  -0.05  -0.13  -0.01  0.07  -0.10  0.09  

IC: Intrinsic capacity; labeled in bold in the table indicate the corresponding domain that each 

indicator loads to.  

The CFA tested the structure and dimensionality identified by the corresponding EFA, indicating 

a satisfactory fit across all goodness of fit statistics, with the bifactor structure a better fit than the 

five-factor structure. Specifically, for the conventional CFA, the model fit statistics were CFI = 

0.977, TLI = 0.959, RMSEA = 0.033 (95%CI: 0.031 - 0.034), and RMSR = 0.019. On the other 
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hand, for the bifactor CFA model, the goodness of fit values were CFI = 0.995, TLI = 0.976,

RMSEA = 0.025 (95%CI: 0.023, 0.028, and RMSR = 0.009. The final bifactor CFA model

revealed that the indicators were loaded into one general IC factor and five distinct latent factors

that represented the five IC domains (Figure 3). For instance, the variable grip strength had a

factor loading of 0.58 on the general factor (IC) and a loading of 0.80 on its corresponding

specific domain (vitality). Finally, the score of both the general IC and the five IC domains were

derived from the bifactor CFA under SEM framework. The IC scores (z-standardized scores) for

the general and domain-specific domains follow an approximately normal distribution, except for

the locomotion domain, which was slightly skewed to the right. The general IC score ranges

from -2.74 to 5.47 (Figure 4 and supplementary Figure 1). 

 

Figure 3. The bifactor model of intrinsic capacity (general construct and the five domains) 

GAD: Generalized anxiety disorder 
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Figure 4. A box plot showing the distribution of Z-standardized IC scores (y-axis) across the IC 

domains (x-axis). The data presented in the box and whisker plots ranged from the minimum to 

the maximum IC scores. The lower and upper boundaries of the box correspond to the 25th and 

75th percentiles, respectively, and the central line within the boxes represents the median value. 

Validation of the IC Score 

Results from the construct and predictive validities, as well as reliability checks, confirmed the 

validity of the IC score. Findings from the linear regression (construct validity) analysis using 

the general IC as the outcome variable revealed statistically significant relationships between IC 

and age, sex, frailty, and CCI for incident cases. Specifically, the results showed that with each 

year's increase in age, the IC score decreases by 0.035 units (95%CI: -0.036, -0.034). Men, on 

average, had a 0.623 higher IC score (95%CI: 0.614, 0.633) compared to women. Participants 

categorized as prefrail showed, on average, a 0.104 units lower IC score (95%CI: -0.114, -0.094) 

compared to robust individuals, while frail participants showed, on average, a 0.227 lower IC 

score (95%CI: -0.267, -0.186) compared to robust ones. Furthermore, the analysis indicated that 

lower CCI, was associated with higher IC, B = -0.019 (95%CI: -0.022, -0.015) (see Table 4). The 

scatter plot along with the linear regression line (Figure 5) showed that for both males and 

females, as age increases on average the IC score decreases consistently. Similarly, Figure 6 
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shows the finding that non-frail participants have on average higher IC scores than the prefrail. 

The frail and prefrail participants have lower IC than the non-frail participants (Figure 6) 

Table 4. Association of intrinsic capacity with age, sex, frailty, and CCI (crude and adjusted 

effect estimates and 95%CI)  

Variables Categories  Beta (95%CI) 
Crude Adjusted 

CCI Score  -0.049 (-0.053, -0.045) -0.019 (-0.022, -
0.015) 

Age (in years)  -0.032 (-0.033, -0.032) -0.035 (-0.036, -
0.034) 

Frailty Prefrail vs. Robust -0.154 (-0.166, -0.141) -0.104 (-0.114, -
0.094) 

 Frail vs. Robust -0.335 (-0.386, -0.283) -0.227 (-0.267, -
0.186) 

Sex Male vs Female  0.573 (0.562, 0.583)  0.623 (0.614, 0.633)  

CI: Confidence interval, CCI: Charlson’s Comorbidity Index 

 

 

Figure 5. Scatter plot showing the relationship between age and intrinsic capacity stratified by 

sex (UKB; n=45,208). The predicted regression line, shown in green for the overall sample, pink 
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for the males, and red for the females, illustrates the overall linear relationship between age and 

IC.  

Figure 6. Scatter plot showing the relationship between age and intrinsic capacity stratified by 

frailty status (UKB; n=45,208). 

The results from predictive validity analyses demonstrated that the baseline IC significantly 

predicted the incident CCI. As the baseline IC score increased, the CCI index for the incident 

cases decreased, and the vice versa (Figure 7). Controlling for the effects of age, sex, and frailty 

status, a one-unit increased IC score resulted in a 0.147 unit decreased CCI (95%CI: -0.173, -

0.121) (Table 5) 

Table 5. The linear relationship between CCI for incident cases and intrinsic capacity (crude and 

adjusted effect estimates and 95%CI) 

Variables Categories  Beta (95%CI) 
Crude Adjusted 

IC   -0.248 (-0.268, -0.227) -0.147 (-0.173, -0.121) 
Age  0.038 (0.036, 0.039) 0.031 (0.029, 0.033) 
Frailty Prefrail vs. Robust  0.210 (0.183, 0.238) 0.154 (0.127, 0.181) 
 Frail vs. Robust 0.823 (0.706, 0.940) 0.739 (0.625, 0.854) 
Sex  Male vs Female 0.134 (0.107 0.160) 0.177 (0.146, 0.208) 
CI: Confidence interval, IC: intrinsic capacity 
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An omega hierarchical coefficient of 0.96 from the CFA also indicated that the composite IC

score was highly reliable and can be used as a single reliable measure of capacity.  

Figure 7. A scatter plot of IC score against CCI with average linear regression line (red); UKB

(n=45,208). 
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Discussion 

The main outcome of this research is the development of a robust IC construct for use within the 

UK biobank study to enable the subsequent exploration of how genetic markers and gene-

environment interactions contribute to the variability of capacity in humans. Five IC domains 

emerged following EFA, with confirmation using CFA. The bifactor structure had better 

goodness of fit indices than the correlated factors (conventional) factor structure. Also, the IC 

score generated using the bifactor structure had good reliability, predictive and construct 

validities.  

In this study, the bifactor structure outperformed the correlated five-factor structure across all 

computed goodness-of-fit statistics, confirming earlier research [3, 29, 36, 50]. This could be 

mainly because of the added explanatory power when having a general factor loaded onto the 

indicators, in addition to specific domains. The concept behind the bifactor structure is such that 

the general construct (IC) explains variability in the indicators and each of the domains also 

explains part of the variability in the indicators [51]. Additionally, the high omega hierarchical 

coefficient (0.96) from the bifactor model suggests that the IC general construct can be used as a 

single reliable measure of IC.  

In the conventional as well as bifactor structures, the vitality domain loads as the first factor. This 

implies that variations in the vitality domain explain a higher portion of the shared variance than 

other domains of IC. This could be because it encompasses a wide range of physiological 

functions and the physiological systems and processes within the body have a substantial impact 

on an individual's overall functional abilities and health over time. This finding is consistent with 

the recent WHO working definition of vitality capacity, which has defined vitality as the 

underlying physiological determinant of IC, including cardiovascular health, respiratory 

function, musculoskeletal integrity, metabolic processes, immune function, and other 

physiological aspects [52]. 

The IC score generated using the bifactor CFA from SEM has an approximate normal 

distribution with the z-score ranging from -2.74 to 5.47. The distribution for the domains was 

approximately normal except for the locomotion domain which had a positively skewed 

distribution to some extent. This could be because of the sample itself that the UK biobank 
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includes middle-aged adults starting from age 40 years and likely the sample was skewed 

towards robustness. [53]. The specific questions related to locomotor capacity may also have 

ceiling effects. The rest of the domains have close to normal distribution with only some slightly 

outlying observations on either or both sides of the distribution. The sensory domain has outliers 

only to the negative side (some participants with lower sensory capacity far from others) which 

implies that sensory capacity, specifically hearing capacity in our case decreases earlier in some 

people when compared to other domains. Studies show that compared to other functions, sensory 

functions often exhibit more gradual declines, starting in early adulthood or even before that and 

becoming more noticeable in later adulthood. However, it's important to note that the rate and 

extent of decline can vary among individuals due to other factors too [54, 55]. Consistent with 

previous research, our analysis revealed a statistically significant relationship between the IC 

score and age as well as sex. Specifically, it was found that, on average, as age increases, IC 

tends to decrease, and the vice versa [3, 8, 29, 31, 36, 37, 39, 50, 56-59]. Also, men have on 

average better IC than women which is also consistent with previous findings [3, 29, 31, 36, 39, 

50, 56, 59].  

 Adding to the growing body of literature on this association [4, 39, 56, 60-64], phenotypic frailty 

was inversely related (longitudinal and cross-sectional) to IC in this study. Frail participants had 

on average lower IC than the prefrail and robust ones, and the prefrail participants had lower IC 

scores than the robust participants. Very recently, a study by Tay et al., 2023 [64] that assessed 

the association of IC with frailty has found that higher composite IC reduced risk for frailty 

progression in robust community dwelling adults > 55 years, even after adjusting for age, co-

morbidities and social vulnerability. This implies that there is a promise that monitoring for IC 

decline can help earlier detection of future frailty risk, enabling timely intervention to improve 

IC that in turn could lead to a delay in the onset of frailty. Opportunity exists within longitudinal 

studies to identify cut-off scores for IC where risk for future frailty might be increased as this 

would then allow for interventions to be developed and tested. 

Our analysis also demonstrated the potential of IC to predict the likelihood of developing CCI 

for incident cases. The finding from this analysis showed that there was a statistically significant 

inverse relationship between the baseline IC and CCI for incident cases in the follow-up. Those 

participants with lower baseline IC had a higher incident co-morbidity. This finding agrees with 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 10, 2024. ; https://doi.org/10.1101/2024.01.09.24301076doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.09.24301076


19 

 

evidence from other studies which depict inverse cross-sectional and longitudinal associations 

between IC and multimorbidity [3, 8, 29, 36, 39, 50, 56, 59]. The relationship with incident CCI is 

consistent with the “geroscience hypothesis” that age related biological changes increase the risk 

of most chronic diseases chronic diseases [65]. As with frailty, IC may be an early marker of 

these changes, identifying those individuals with the highest risk of subsequently developing 

these conditions.  

Strengths and limitations of the study  

One strength of our study lies in the comprehensive assessment of IC. In contrast with previous 

research on IC within the UK biobank which derived estimates from 4 of 5 domains (missing the 

cognitive domain) our assessment considers all 5 domains that are generally considered critical 

components of IC [66]. The downside, however, is that the sample size available for investigation 

reduced from 443,130 to 45,208, although this remains a large sample size. Another strength of 

our research was that in contrast to most previous studies of IC which have included older adults 

only, this research included middle-aged participants (40 to 70 years) thus moving us closer 

towards a life course approach to IC. Imputation was not used in this study as the number of 

missing variables was very large and imputation would result in the findings being simulative in 

nature. It is also important to acknowledge that because the UK biobank Study was not designed 

as an aging study, important variables that could be included in the IC measurement such as gait 

speed, self-rated hearing, and vision capacity could not be explored. The UK Biobank may also 

not represent the entire population due to its volunteer-based recruitment. Participants may be 

more health-conscious or have specific demographics, potentially leading to selection bias. 

Conclusion and implications 

IC is a multidimensional construct, one general domain and five domains emerged from the 

CFA. The construct generated using the bifactor solution revealed good structural, construct, and 

predictive validities and is, therefore, suitable for implementation in the UK biobank study to 

support research relating to IC with that dataset. The conventional correlated five factors solution 

also showed a satisfactory goodness of fit though the bifactor indices performed better. This 

research describes an approach as to how IC could be developed and tested using data from 

existing longitudinal studies. The result of this research, along with a high volume of biological 
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data within the UK biobank, will contribute to building the evidence base towards a better 

understanding of the genetics and gene-environment interactions underlying IC and healthy 

aging. The next phase of this research program involves the analysis of longitudinal datasets 

from global biobanks to understand the biological basis of the interindividual variations in IC 

and other healthy aging attributes. 
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