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Abstract 
Measuring the abundance of biological molecules and their chemical modifications in blood and tissues has been 
the cornerstone of research and medical diagnoses for decades. Although the number and variety of molecules 
that can be measured have expanded exponentially, the blood biomarkers routinely assessed in medical practice 
remain limited to a few dozen, which have not substantially changed over the last 30-40 years. The discovery of 
novel biomarkers would allow, for example, risk stratification or monitoring of disease progression or the 
effectiveness of treatments and interventions, improving clinical practice in myriad ways. In this review, we 
combine the biomarker discovery concept with geroscience. Geroscience bridges aging research and translation 
to clinical applications by combining the framework of medical gerontology with high-technology medical 
research. With the development of geroscience and the rise of blood biomarkers, there has been a paradigm shift 
from disease prevention and cure to promoting health and healthy aging. New -omic technologies have played a 
role in the development of blood biomarkers, including epigenetic, proteomic, metabolomic, and lipidomic 
markers, which have emerged as correlates or predictors of health status, from disease and exceptional health. 
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Geroscience and the rise of blood biomarkers 
The shift of attention from disease prevention and cure to promotion of health and, especially, healthy aging 
represents a fundamental change of direction in medical research, with important implications for the future of 
medical practice. This transition has arisen from both conceptual and technological advances over the past 15 
years. From a conceptual perspective, mounting evidence indicates that the phenotypic and functional 
manifestations associated with aging reflect biological processes that are both causal and consequences of 
chronic diseases highly prevalent in older individuals. The Geroscience Initiative takes this concept and posits that 
“since aging physiology plays a major role in many — if not all — chronic diseases, therapeutically addressing 
aging physiology will directly prevent the onset or mitigate the severity of multiple chronic diseases” [1]. This 
conceptualization of geroscience implies that diseases are not physiological anomalies that evolve through 
separate trajectories but rather a state of accelerated aging, and as such, it should be possible to define a metric 
of disease susceptibility that would place an individual on an evolving continuum of health, accumulation of 
pathology and frailty. This notion breaks from the traditional idea that the study of aging addresses changes that 
occur unavoidably in organisms independent of disease development and embraces an overarching approach for 
a mechanistic interpretation of all physiologic and functional changes over the lifespan. Indeed, the idea of a 
strong connection between aging and chronic disease is not a new formulation, as it emerged in the 1950s [2] 
when the concept of extending healthspan through aging intervention evolved [3, 4]. More recently, the concept 
has been formally stated [5, 6] offering Geroscience as an approach to investigating links between aging biology 
and susceptibility to aging-related chronic diseases [7]. The growth of the geroscience concept creates a bridge 
between aging research and its translation to clinical applications, which is becoming increasingly feasible mostly 
due to revolutionary advances in technology over the last few years. Measuring the abundance of biological 
molecules and their chemical modifications in blood and tissues has been the cornerstone of research and 
medical diagnoses for decades. Although the number and variety of molecules that can be measured have 
expanded exponentially, the blood biomarkers routinely assessed in medical practice remain limited to a few 
dozen, which have not substantially changed over the last 30-40 years. Rapid discovery of novel biomarkers could 
improve clinical medicine in several ways ranging from risk stratification to monitoring disease progression and 
the effectiveness of treatments and interventions. 
The critical role of new technology 
A key limitation to more extensive use of biomarkers in medical research has been the requirement to measure 
them one at a time, which is expensive and labor intensive, and requires a large amount of biological material. 
However, these limitations have been largely overcome by new technologies that yield thousands of biomarkers 
from just a few drops of biological material, although the use of such technology is still mostly limited to research. 
The motivation to use an expansive set of biomarkers reflects a growing awareness that different diseases and 
conditions may produce pathology-specific profiles in plasma or other biological fluids detectable at an early 
subclinical phase when classic symptoms are not manifest due to compensatory and/or resilience mechanisms. 
Technological advances that facilitate the assessment of different layers of molecular markers are outlined below. 
With advances in sequencing technology, gene expression can be assessed at unprecedented depth with long-
read RNA sequencing permitting identification of splicing variants that increase the number of gene products that 
can be identified beyond the estimated 20,000 human proteins. Indeed, RNAseq easily quantifies more than 
60,000 gene transcripts that include not only the protein-coding mRNA but also a large number of non-coding 
RNAs that drive essential biological mechanisms, many of which are important for aging and disease. Epigenetic 
biomarkers, especially but not exclusively DNA methylation, have garnered substantial attention in the study of 
aging and are fast approaching clinical application. Although the biological mechanisms that drive DNA 
methylation remain unclear, initial attempts to identify methylation patterns associated with specific diseases 
have shown promise [8, 9]. One exciting advancement in DNA methylation in aging research has been the 
development of various “epigenetic clocks” proposed to capture the pace of aging. Using range of machine 
learning and data reduction methods tuned to chronological age as well as other phenotypic manifestations of 
aging, these DNA methylation clocks have been found to predict disease outcomes and mortality. Conceptually, 
the deviation between DNA methylation predicted age and chronological age harbors information on biological 
age. Those predicted to be older than their biological age from methylation data are considered to be aging faster 
than those predicted to be younger. This suggests that measuring DNA methylation at multiple time points may 
be particularly important for measuring the rate of aging in observational studies and possibly clinical trials [10, 
11].  
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Several proteomics methods and assays have been developed over the years for the discovery of blood 
biomarkers (Shown in Table1). Perhaps the discovery/innovation with the greatest potential for clinical 
application encompasses technical advances in systems that combine Liquid Chromatography (LC) and Mass 
Spectrometry (LC-MS) to enable measurement of thousands of proteins in tissue and plasma specimens, including 
dozens of post-translational modifications (PTMs). Untargeted proteomic analyses of plasma and serum, the two 
most useful matrixes for clinical application, have been challenging because of the wide dynamic range of 
proteins in these biological fluids and interference of a handful of highly abundant proteins, including albumin 
(constitutes ~ 55% of plasma protein, on the order of 30 g/L) IgGs, transferrin, etc. [12]. Although many challenges 
continue to exist [13, 14], development of new approaches that address issues with reproducibility and 
quantitative accuracy [15], increased throughput [16-18], depth [16, 18, 19], and reducing interference [16] have 
greatly improved the utility of LC-MS based plasma proteomics as a clinically useful tool. Huge leaps in 
standardization have been made in increasing the adoption of data-independent acquisition (DIA/SWATH) 
protocols, which have been validated in clinical cohorts [20] and large multi-site consortium studies [15]. These 
and other targeted assays, including DIA, selected reaction monitoring (SRM) and parallel reaction monitoring 
(PRM/MRM) mass spectrometry assays, are now widely adopted and studied as clinical biomarkers [21, 22]. The 
Clinical Proteomic Tumor Analysis Consortium (CPTAC), in particular, has driven improvements in the 
standardization and technological application of mass spectrometry-based assays for clinical use, with the 
establishment of a proteomic assay repository with standardization criteria that include a response curve, 
validation of repeatability, selectivity, stability, and reproducibility (https://proteomics.cancer.gov/assay-portal). 
Two recent technological advancements substantially improve the depth of proteins measured in biological fluids 
without the need for the high-level expertise required for LC-MS. The SomaScan Assay (SOMALOGIC®) uses Slow 
Off-Rate Modified Aptamers (called SOMAmer reagents) to yield over 7,000 highly reproducible measurements of 
circulating proteins from a single sample of plasma, serum, or urine [23]. The Olink® platforms, use a Proximity 
Extension Assay (PEA) technology to recognize two protein-specific antigens located at a pre-specified distance 
and use a multiplexed DNA- sequencing methodology to identify up to 3000 proteins in a very small sample of 
biological fluids [24]. Extensive validation of specific proteins is still a work in progress, but both technologies 
have shown high reproducibility, and both have been used in large population studies where clear proteomic 
signatures of aging have been described in cohorts from different geographic locations [25, 26].  
Through these studies, several robust proteomic biomarkers of aging have been identified, including sclerostin 
(SOST), ADP ribosylation factor interacting protein 2 (ARFIP2) and growth differentiation factor 15 (GDF15) [26, 
27]. Many age-associated proteins predict age-related conditions such as multimorbidity and mortality [27]. As an 
example, relatively high IL-6, TNFAR2, IL-1RA and low DHEAS have been associated with greater co-morbidity (15 
candidate chronic conditions) in 1018 participants aged 60 years or older in the InCHIANTI study [28].  Tanaka et 
al. showed 247 aging protein biomarkers predicted multimorbidity and mortality. Of these, 17 proteins are core 
SASP factors including GDF15, MMP1, and STC1 – and other extensively reported classic SASP factors such as 
IGFBP2, 4, 5, and 7, TIMP1 and TIMP2. In community-dwelling men aged ≥65 years, 56 peptides (31 proteins) with 
absolute fold change >1.2 for 5-year all-cause mortality have been shown as biomarkers [29].  As 
knowledge/discovery of blood biomarkers continues to expand, new resources such as MortalityPredictors.org 
which provides a comprehensive list of published biomarkers of human all-cause mortality risk become 
increasingly essential. The mortality predictor database can also be used to compare aging-related all-cause 
mortality biomarkers, perform meta-analyses, and serve as a central resource for mortality and aging biomarker 
analyses. As of now, this manually curated database is derived from 589 all-cause mortality publications, with 
1,576 biomarker associations, involving 471 distinct biomarkers (including 365 blood type publications and 165 
blood biomarkers) [30]. Comparison of results from studies of aging proteome has identified over 200 proteins 
consistently associated with age across different assessment methods and in different tissues (ie: blood vs 
muscle) [31-33]. These studies collectively support proteins as promising clinical biomarkers of aging that could be 
translated into clinical practice.  
An emerging area of interest for the development and future application of proteomics in aging is the 
identification of PTMs and proteoforms related to aging. There is little doubt that specific post-translationally 
modified or splice variants of proteins have functional differences that likely correlate with aging and disease 
changes. However, proteoforms are not quantified by most large-scale proteomic approaches, which generally 
provide an aggregate measurement of multiple variants of each protein measured. An advantage of MS-based 
assays in this respect is the ability to identify new PTM sites, peptidoforms, and proteoforms using existing or 
modified workflows specialized for PTM and proteoform detection [34, 35]. Also, MS-based assays have the 
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ability to inspect and confirm the peptide sequence information for any signal that is detected, enabling the 
localization of PTM sites and amino acid variants along the peptide/protein sequence, eliminating the need for 
developing new affinity reagents for new targets [36, 37]. Going forward, it will be important to expand the 
capabilities of all available proteomic technologies for detecting proteoforms, which will undoubtedly provide 
more sensitive and specific biomarkers than current approaches. 
Metabolomics technologies are extensively used in research to comprehensively quantify hundreds to thousands 
of metabolites, including amino acids, carbohydrates, nucleotides, and lipids that reflect metabolic profiles that 
may lead to, underlie or reflect disease or aging processes. Clinical applications of metabolomics in precision 
medicine have recently emerged [38, 39]. Because small metabolites have highly variable physical and 
biochemical properties, metabolomic platforms typically divide the metabolome into subsets of metabolites—
often based on compound polarity, common functional properties, or structural similarities. Detailed protocols 
for sample preparation and analytical procedures are optimized for each subset and then aggregated into a 
unique database. Lipidomics is a subfield of metabolomics dedicated to quantifying thousands of lipids from 
multiple classes. Despite substantial research in this field, especially in the area of neurodegenerative diseases, 
lipidomics remains exclusively used as a research tool. Aggregate clusters or indexes derived from metabolomics 
and lipidomic analyses have been strongly associated with prevalent chronic conditions as well as predictive of 
incident conditions and events including diabetes [40], cardiovascular disease [41, 42], Alzheimer's disease [43], 
cancer, inflammatory bowel disease (IBD) [44] and obesity [45]. In addition, metabolomic and lipidomic scores 
have been found associated with aging and similar to lipids and metabolites, relevant molecular patterns appear 
to differ between men and women [46-48]. Often, elucidating the relationship between metabolite profiles and 
diseases and biomarker identification requires prolonged and intricate analysis and reliable analytical platforms 
for isolating and characterizing metabolites/lipids. These studies provide an essential baseline for defining the 
metabolome and the main sources of variation as a measurable indicator of normal biological processes, as well 
as response to therapeutic interventions.  
Blood biomarkers as correlates or predictors of disease 
Results from several seminal studies highlight the potential for clinical applications of high throughput 
biomarkers. For example, blood transcriptomics has been associated with sporadic Alzheimer’s disease [49], 
coronary artery disease [50, 51] and cancer [52]. Of note, associations typically are not limited to protein-coding 
transcripts but to thousands of human non-coding RNAs (ncRNAs), including long ncRNAs (lncRNAs), microRNAs 
(miRNAs) and other ncRNA species that exert regulatory functions on protein expression, either through direct 
interaction with DNA or proteins or with other mRNAs. While transcriptomic analysis is a particularly powerful 
tool, several hurdles exist before clinical application becomes practical. Some issues to be addressed include 
inconsistency of transcriptomic data that leads to variable results with respect to identifying global biomarkers of 
chronic disease and aging. For example, Peters et al. generated transcriptomic aging clocks using RNA extracted 
from human peripheral blood in eight different cohorts which yielded a wide range of R-square from 0.121 to 
0.599 [53]. 
As noted above, DNA methylation has mostly been used to produce “epigenetic clocks”, that estimate the pace of 
aging and, at least theoretically, identify persons aging “faster” or “slower” than the general population. 
However, as some studies have found the pattern of DNA methylation associated with chronic pulmonary 
diseases [54], DNA methylation may also reflect pathology. The first generation of epigenetic clocks was 
generated using chronological age as the primary predictor (Horvath and others). However, second-generation 
clocks tuned on age-related risk factors have improved prediction of aging outcomes. For example, “PhenoAge” is 
tuned on a composite clinical measure of phenotypic age previously associated with lifespan, while “GrimAge” 
was constructed in part from DNAm-based estimators of plasma proteins considered risk factors for 
cardiovascular disease, including plasminogen activator inhibitor 1 (PAI-1) and growth differentiation factor 15 
[10]. Several efforts to build more accurate predictive clocks are ongoing, with the Dunedin pace of aging 
methylation (DunedinPACE) based on trajectories of aging traits as a leading example [11]. Lastly, mounting 
evidence indicates epigenetic scores for the circulating proteome show promise as tools for disease prediction 
[8]. 
Perhaps the most powerful biomarkers associated with chronic diseases are circulating proteins. Studies involving 
large populations have identified several circulating protein profiles associated with chronic disease [55], 
especially neurodegenerative diseases [56-58], cardiovascular disease, cardiorespiratory fitness, fatty liver disease 
and insulin resistance [59-61]. Specific circulating proteins and protein patterns have been found to predict the 
accelerated accumulation of multimorbidity [28, 27] as well as all-cause mortality and healthy life expectancy 
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[27]. A number of “proteomic clocks” have been developed that predict age and phenotypes of accelerated aging 
with similar or better accuracy than the epigenetic clocks published so far. Additionally, senescence-associated 
proteins are secreted into circulation and thus may have utility as predictors of age and other clinical outcomes. A 
subset of the senescence-associated secretory phenotype (SASP) biomarkers has been proposed as biomarker 
candidates for aging, multimorbidity, mortality, medical risk, and other clinical outcomes in proteomic and 
epidemiological studies [25, 62-64, 27]. Some of the most promising SASP biomarkers include GDF15, 
stanniocalcin 1 (STC1), matrix metallopeptidase 1 (MMP1), Inhibin Subunit Beta A (INHBA, also known as ACTIVIN 
A), TNF receptor superfamily member 1A (TNFRSF1A), and PAI-1 (also known as Serpine1). A unique strength of 
proteomics versus other -omics, including epigenetic clocks, is the high likelihood that select proteins more 
directly reflect or impact basic and/or essential mechanisms of biological aging. We anticipate this connection will 
become progressively more clear as data from multiple cohorts becomes available to facilitate large meta-
analyses [25-27].  
From disease prediction to exceptional health biomarkers 
We have provided a few examples of the rapidly growing literature demonstrating the potential of biomarkers for 
the diagnosis and tracking of pathological conditions. The potential for commercial application of these results 
motivates this line of inquiry; however, high throughput biomarkers have potential beyond the development of 
new disease diagnostics and therapeutics. As noted above, aggregate measures of biomarkers have the potential 
to track the rate or progression of damage accumulation as a function of age and/or pathologic processes. Clearly, 
several challenges remain before these molecular clocks can be applied in non-research settings. Currently, 
although the predictive associations of several clocks are statistically robust, the added value to conventional 
approaches remains modest. Yet, with near-constant and rapid updates of algorithms to improve clock 
performance, clinical applications may not be too far off. For example, while the reliability of epigenetic clocks has 
been challenged, new methods of estimation based on factor analysis have substantially improved their 
psychometric properties [65]. 
As described, rapid expansion of -omics research in aging has led to the development of different -omics clocks. 
Despite similar performance in predicting aging and age-related adverse health outcomes, the metrics that 
estimate the pace of aging or, more accurately, deviation of predicted from observed age have low to moderate 
correlation, both within -omic and across -omics platforms [66, 67, 11, 27]. This suggests that different -omics 
capture different dimensions of the pace of aging and implies that combining different -omics layers may provide 
a more comprehensive metric that is more powerful, predictive, and potentially translatable than a single -omics 
approach. While many “clocks” have been tuned on age or physiological parameters assessed cross-sectionally, a 
new generation of clocks tuned on trajectories of phenotypic and functional manifestations of aging will likely 
yield higher predictive validity and potential for clinical utilization [66, 11].  Although it is exciting for the scientific 
community to have these tools for help us better understand the aging process, we are also cautious about how 
these tools could be used commercially, and the social and ethical implications of aging/predictive biomarkers 
[68-70]. 
Importantly, most age-omics metrics are strongly correlated with aging and adverse health outcomes even in 
young- and middle-aged adults, who are largely free of chronic disease [71]. This suggests these tools have the 
potential to assess “health” status prior to the presentation of clinical symptoms and/or abnormal traditional 
clinical indicators but when pathology is already accumulating. With further development and validation of omics-
based clocks, we can begin to envision a new chapter of precision medicine where the pace of aging is regularly 
monitored over time. Early signs of “accelerated” aging and other information derived from a multi-omics 
evaluation may reveal susceptibilities that can be addressed before they manifest into a health outcome as well 
as the effectiveness of specific interventions aimed at “slowing” the aging process. Progress in research on 
circulating biomarkers and new technologies that drastically reduce the cost of measuring several -omics 
biomarkers remain important limiting factors to the broad application of this new revolution in health care.  
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Proteomic Biomarker Methods/Assays 
Proteomic 
Biomarker 

Tools/Assay 

Method # 
Measurabl

e Blood 
Biomarkers 

Quantita
tive 

Analytical 
Measurem

ents 

Advantages/ 
Disadvantages 

Level of 
Experti

se 

LC-MS 
based 
Proteomics 
(Untargeted) 

Data Dependent 
Acquisition 
(DDA) 

300-350018 Relative AUC, 
Spectral 
count, peak 
intensity 

High throughput but 
low dynamic range 
(linear range of 2-3 
order magnitude) [16] 

High 

LC-MS 
based 
Proteomics 
(Targeted) 

Data 
Independent 
Acquisition (DIA) 
Swath 

300-3000 Relative AUC, 
Spectral 
count, peak 
intensity 

High accuracy, high 
throughput, medium 
dynamic range (linear 
range of 3-4 order 
magnitude) [16-17] 

High 

LC-MS 
based 
Proteomics,  
(Targeted) 

Targeted 
Dependent 
Acquisition 
(TDA) 
MRM/SRM/PRM 

1-100 Quantita
tive 

molar High sensitivity, high 
precision, high 
accuracy, and large 
dynamic range [20-
21] 

High 

SomaScan 
Assay 
(Targeted) 

Aptamers 7,000 Relative RFU High precision, high 
reproducibility, 
scalability, and 
dynamic range [23] 

Low 

Proximity 
Extension 
Assay 
(PEA) 
(Targeted) 

Oligonucleotide 
antibody-pairs 

3,073 Relative NPX/RFU High precision, high 
reproducibility, 
scalability, high 
specificity, and 
dynamic range [18] 

Low 

Table 1. Current proteomic methods and assays for measuring blood biomarkers. 
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