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SUMMARY
With the rapid expansion of aging biology research, the identification and evaluation of longevity interven-
tions in humans have become key goals of this field. Biomarkers of aging are critically important tools in
achieving these objectives over realistic time frames. However, the current lack of standards and consensus
on the properties of a reliable aging biomarker hinders their further development and validation for clinical
applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging,
including classification and potential clinical use cases. We discuss validation steps and highlight ongoing
challenges as potential areas in need of future research. This framework sets the stage for the development
of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.
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Table 1. Definition of terms utilized in this review, in order of

appearance in the text

Terma Definition

Aging The process of accumulation of

consequences of life, such as molecular

and cellular damage, that leads to

functional decline, chronic diseases, and

ultimately mortality

Healthspan The period of life prior to onset of chronic

disease and disabilities of aging, i.e., in

good health (extended from Kaeberlein12)

Biomarker of aging A quantitative parameter of an organism

that either alone or in a composite predicts

biological age and ideally its changes in

response to interventions

Biological age Conceptually, an individual’s age defined

by the level of age-dependent biological

changes, such as molecular and cellular

damage accumulation. In practical use, this

is often summarized as a number (in units of

time) matching the chronological age where

the average person in a reference

population shares the individual’s level of

age-dependent biological changes

Chronological age An individual’s age defined by time elapsed

since birth

Age acceleration

(age deviation)

The difference between biological age and

chronological age (originally defined by

Horvath13 and typically expressed in units

of time); we propose adoption of the term

age deviation (AgeDev) for this concept to

distinguish it from an increased rate of aging

and encompass changes in both directions

Geroprotector An agent or intervention that increases

healthspan or lifespan and ameliorates

[tested] biomarkers of aging (extended from

Partridge et al. and Moskalev et al.7,14)
aUnless otherwise noted, terms are consensus working definitions pro-

posed in the current work.
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INTRODUCTION

Organisms change in various ways with the passage of time.

Some of these changes reflect the execution of a genetic

program of development, while others reflect the accumulated

effects of experiences, exposures, and deleterious byproducts

of life: collectively, these changes comprise aging (definition

proposed by this work in Table 1). In the absence of a clear

consensus on the biological definition of aging prior to this

work,1 its detrimental effects are broadly thought to bemediated

by the negative consequences of biological, chemical, or phys-

ical processes, such as the accumulation of molecular damage.2

Together, these events lead to the cumulative breakdown of

physiological systems, loss of resilience, increased susceptibility

to disease, and ultimately mortality.3–5 Genetic, pharmacolog-

ical, dietary, and lifestyle interventions extend healthy lifespan

and/or attenuate age-related functional decline in animal

models,6 suggesting that the biological processes underlying

aging are amenable to modulation.7,8 The geroscience hypothe-

sis posits that targeting the aging process itself,9 rather than the

individual diseases of aging, may prevent, delay, or reduce the

severity of many age-related diseases in parallel.8 In turn, this

approach may modulate healthspan (Table 1).8 While the impact

of interventions on longevity can be readily investigated in animal

models with short lifespans, ethical, biological, and economic

considerations challenge the translation of these findings to

humans.10,11 Hence, alternative means to quantify the accumu-

lation of age-related molecular damage and clinical functional

decline are required to test interventions targeting aging.3,11

Moreover, lifespan (and its extension) alone may not be the

most informative parameter in evaluating anti-aging interven-

tions in humans; for instance, an intervention may significantly

extend healthspan without a large impact on lifespan. For these

reasons, the development of biomarkers that reflect the diverse

biological processes underlying aging and its consequences and

that are ideally also sensitive to interventions targeting aging are

critically needed. Hereafter, we refer to these biomarkers as bio-

markers of aging.

In the context of interventions, a biomarker is defined as a

biological feature that can indicate processes of interest in a

given individual. Such processes may be normal, pathologic,

or in response to a given treatment or exposure.15 The urgent

need for biomarkers of aging to identify longevity interventions

was recognized as early as the 1960s in response to the

earlier discovery that aging is modifiable16 (Figure 1). To

address this need, a series of U.S. National Institute on Aging

(NIA)-sponsored workshops and initiatives from 1981 to 2000

explored biomarkers of aging largely in animal models.17,18

While it was previously deemed too early to constitute

a definitive panel of biomarkers of aging for animal models

or humans,6,18 molecular and omic biomarkers of aging devel-

oped over the last decade represent promising candidates

(Figure 1).3,5,7,8,11 However, there is currently no consensus

on evaluation and validation methods for these bio-

markers,7,19 nor is there any standardization of how such bio-

markers are utilized, even in preclinical settings. To establish a

foundation on which we may build biomarkers of aging up to

their full potential, we formed the Biomarkers of Aging Con-
sortium (https://www.agingconsortium.org) to engage a multi-

disciplinary panel with diverse expertise related to different

aspects of aging biomarkers. Here, building on prior advances

in the field of aging and biomarker research, we propose a

framework for classifying and assessing biomarkers of aging

as tools to identify and evaluate longevity interventions

(Figure 2). We establish consensus on key terminology (Ta-

ble 1), the classification of biomarkers from a regulatory point

of view (Figure 3), the explanation of certain use cases based

on existing biomarkers (Table 2) and trials (Table 3), and

the assessment of biomarkers, for instance, using validated

geroprotectors (Figure 4). Our goal is to take steps to

address a critical unmet need3: the evaluation of biomarkers

to assess changes in biological age (see Table 1 for definition

and contrast to chronological age). Defining common

ground on these foundational issues will be key to systemat-

ically validating aging biomarkers and advancing them to the

clinic.
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Figure 1. Timeline of events related to biomarkers of aging
Landmark events related to biomarkers of aging.
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Terminology and conceptual considerations for
biomarkers of aging
Aging biology as a field suffers from a lack of consensus on the

biological nature of aging, and various scientists use the term

‘‘aging’’ to refer to different processes.1,11,43 The current evi-

dence suggests that aging involves deleterious changes associ-

ated with life and results in cumulative breakdown of multiple

physiological systems.11,44 However, the mechanisms underly-

ing these changes are not uniform across time, cell types,45 or-

gan systems,46 individuals,11,47 or populations.48 This renders

it challenging to define a single and highly generalizable mole-

cule, method, or assay that measures ‘‘aging,’’ because this pro-

cess involves multiple potentially discordant systems as well as

the loss of their communication and interactions. Moreover, ag-

ing may be influenced by individual variabilities, such as the

interplay of genetics, lifetime exposures, and other factors
3760 Cell 186, August 31, 2023
such as disease.11,49 Given these complexities, many definitions

of aging have been proposed. Crucially, multiple notions of bio-

logical aging may be valid for different aspects of this process.

For instance, a definition that focuses on the age-related loss

of health may be used by demographers and geriatricians but

is less useful for biologists studying the basic mechanisms un-

derlying aging. Similarly, different biomarkers may capture

diverse aspects of aging, as has recently been proposed in

cross-comparison studies investigating multiple molecular bio-

markers of aging.50–53 These issues highlight the need for further

research and systematic evaluation to provide insights into the

underlying mechanisms of aging and their relationships with

various biomarkers of aging.

Despite these complexities, it is necessary to establish common

working terminology for biomarker research. Relevant terms, def-

initions, and conceptual considerations are listed in Table 1.

CLASSIFICATIONS AND APPLICATIONS OF
BIOMARKERS OF AGING

Classifications of biomarkers of aging
Multiple principal categories based on the types of associated

measurements have been proposed for biomarkers of aging.

These include molecular, biological, functional, clinical, and

phenotypic biomarkers of aging.54–56 To increase consistency

with broader biomarker research, we propose to adapt and

extend definitions from the U.S. Food and Drug Administration

(FDA) that pertain to interventions, specifically the FDA-NIH Bio-

markers, EndpointS, and other Tools (BEST) classification for bio-

markers of aging. The FDA-BEST glossary was developed with

the aim of harmonizing terms used in translational medicine to

improve consistency and align expectations. This glossary

broadly classifies biomarkers as molecular, physiological, histo-

logic, or radiographic.15 Molecular biomarkers of aging, perhaps

the largest class of such biomarkers, can be based on omics

(e.g., epigenomics, proteomics, or metabolomics) or specific

individual molecules (e.g., circulating levels of interleukin-6 or in-

sulin-like growth factor 1 or composites of blood markers). Phys-

iological biomarkers of aging can be measures of functional per-

formance (e.g., cardiorespiratory fitness, VO2 max, gait speed,

timed walking distance, grip strength, or cognitive function) or

physical characteristics (e.g., body-mass index or weight-height

ratio).54 The FDA has accepted some of these surrogates, such

as 6 min walk distance,57 for approving therapies for disease indi-

cations. However, they are not currently included in the FDA’s

Table of Surrogate Endpoints, which are the basis of drug

approval or licensure (https://www.fda.gov/drugs/development-

resources/table-surrogate-endpoints-were-basis-drug-approval-

or-licensure). Presumably, surrogates accepted by the FDA and

other authorities for supporting disease indications could be

used as primary endpoints for disease prevention or healthspan

trials.

Other types of biomarkers are also being put forward for aging

applications (Figure 2). For instance, digital biomarkers have

recently been proposed. This type of biomarker is garnering

increased attention due to advances in digital health tech-

nologies (DHTs), including bothwearable and nonwearable tech-

nologies, that now allow individuals to directly collect data to

https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure
https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure
https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure


Figure 2. Common types and subtypes of

biomarkers of aging based on what they

measure
Gray-shaded regions are based on the broad
FDA-BEST types of biomarkers framework.
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explain, influence, and/or predict health- and aging-related out-

comes. DHTs may thus enable large-scale measurements of

biomarkers, such as longitudinal monitoring biomarkers (e.g.,

sleeping or moving patterns) in humans49 and animal models.58

Histologic and radiographic biomarkers comprise another class

of tools that have not been utilized as widely in aging research for

several reasons: (1) they can be more difficult to measure

because they depend on either tissue biopsies or specialized

equipment to visualize tissue in situ, both of which require exper-

tise and time; (2) they often measure the characteristics of only

specific tissues; and (3) computational methods for handling

these data are less developed. These biomarkers potentially

stand to become more widely used given recent advances ad-

dressing these issues.

Adapting the BEST framework, we propose a classification of

common types of biomarkers of aging (Figure 2). Note that a

biomarker could belong to multiple classes (e.g., molecular

and physiological or functional and digital). As they are the

most developed class of aging biomarkers to date, we focus

mainly on molecular biomarkers of aging.

Clinical applications of biomarkers of aging
In addition to classification by type, biomarkers may also be cate-

gorizedbasedon their clinical application.Suchcategories include

response, predictive, investigational, mechanistic/underlying

biology, surrogate, and disease outcomes.56,59,20 Again, we

propose an adaptation and extension of the FDA-BEST classifica-

tion, which defines the categories of clinical susceptibility/risk,

diagnostic, monitoring, prognostic, predictive, response, and
safety15 for application to biomarkers of

aging. Among the listed categories of bio-

markers, predictive and response bio-

markers are currently the most relevant in

the context of aging research, although it

should be noted that no aging biomarkers

of any category have been approved by

U.S. regulators for clinical applications.

Predictive biomarkers

In intervention studies or clinical care, a

predictive biomarker can enrich or identify

individuals who may be most likely to

experience beneficial or detrimental ef-

fects from a certain treatment or expo-

sure.15 The term is also occasionally used

in epidemiological research to describe

biomarkers that help to identify individuals

more likely to experience a certain event

(e.g., death) than others in the absence

of intervention (Figure 3A). In 2019,

the NIA Predictive Biomarkers Initiative

(https://www.predictivebiomarkers.org) was
launched to aid the development and validation of both existing

and novel predictive biomarkers for age-related disease, with

core goals of analytical validation of high-throughput assays

and evaluation of associations of outcomes in longitudinal

studies. Additionally, many recent studies have applied various

biomarkers of aging to predict healthspan, lifespan, or other

age-related conditions and diseases (see Table 2 for a selected

list with commercial applications). For an additional list of pro-

posed biomarkers of aging, we refer readers to the MARK-AGE

project,60 the Digital Aging Atlas (https://www.ageing-map.org/

), and the TAME Biomarkers Workgroup.59

Prognostic biomarkers

Recent studies have also explored the potential application of bio-

markers of aging as prognostic biomarkers of age-related dis-

eases.61,62 Prognostic biomarkers are similar to predictive bio-

markers but are applied in already diseased individuals to

predict disease course and/or future outcomes. For instance,

some biomarkers developed broadly in the context of aging

have been shown to be associated with progression of some

age-related diseases, such as Alzheimer’s disease30 and can-

cer.61,62 On the other hand, specific prognostic biomarkers of in-

dividual age-related diseases have been increasingly identified

and tested (e.g., plasma phosphorylated-tau181 as a prognostic

biomarker of Alzheimer’s disease63). However, few studies have

proposed or developed prognostic biomarkers of aging to

predict progression or outcomes of the aging process as a whole.

Response biomarkers

A response biomarker indicates the biological reaction of an

individual to an exposure or intervention. Response biomarkers
Cell 186, August 31, 2023 3761
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Figure 3. Categories of common and potential biomarkers of aging

based on their application
(A) Classification of biomarkers of aging. Gray-shaded and green-shaded re-
gions are based on the broad categories of biomarkers proposed by FDA-
BEST and by this work, respectively.
(B) Relationships between biomarkers, interventions, and health outcomes,
extended from Cummings and Kritchevsky20 to include discovery biomarkers
and the information feedback loop.
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may indicate uptake or metabolism of a drug (pharmacodynamic

biomarker) or a change in a biological pathway caused by

the intervention.15 Such biomarkers may be used to establish

proof-of-concept, assist in dose selection, or measure the

response to medical products or environmental agents.15 While

being responsive to interventions is a key criterion for aging

biomarkers59 (see also discussion of "Response criteria" below),

few composite response biomarkers of aging have been identi-

fied. The Healthy Aging Index,64 a composite score of physio-

logic aging, could be considered as a candidate response

biomarker of aging as it not only predicts aging outcomes

(e.g., mortality) but also captures response to healthy aging inter-

ventions (e.g., weight loss by caloric restriction).59 Response

biomarkers in pathways associated with an outcome may

become candidate surrogate endpoint biomarkers predictive

of a clinical outcome.

Surrogate endpoint biomarkers

After appropriate validation, surrogate endpoint biomarkers may

be used in clinical trials as a substitute for a direct measure

of how a patient or participant feels, functions, or survives15

(Figure 3). In other words, they may serve as the primary efficacy

endpoints in large, well-controlled trials intended to support reg-

ulatory approval of an intervention. For instance, blood pressure
3762 Cell 186, August 31, 2023
reduction is an FDA-validated surrogate endpoint for reduction

in rates of stroke.15,65 Surrogate endpoints are particularly useful

when the actual desired clinical endpoint is difficult to measure

or expected to manifest long after an intervention is initiated.

For this reason, surrogate endpoints are highly relevant to aging,

where age-related disease(s) of interest or mortality would be

primary endpoints.11,15,20 However, FDA acceptance of a surro-

gate endpoint is considerably challenging. Based on how well a

potential surrogate endpoint is validated, U.S. regulation recog-

nizes ‘‘validated,’’ ‘‘likely,’’ or ‘‘candidate’’ surrogate endpoints.

Clinical trials are needed to show that surrogate endpoints are

predictive of or correlate with clinical outcomes. Establishing

that a biomarker is responsive to an intervention (response

biomarker) is the first step toward identifying a surrogate

endpoint biomarker. This is not the only requirement, and exam-

ples of failed surrogate endpoints exist.20 There are not yet any

formally validated or likely surrogate endpoint biomarkers of

aging—in part because they have only recently been

described. The challenge of validating surrogate endpoints is

compounded by the lack of consensus on interventions that

improve clinical outcomes relevant to healthspan or lifespan

(see "Response criteria"). The correlation of candidate surrogate

endpoints with clinical responses to effective interventions is

generally required for full validation. Nonetheless, the investiga-

tion of biomarkers of aging as response and potential candidate

surrogate endpoint biomarkers has rapidly increased over recent

years.59,66,67 In particular, epigenetic biomarkers commonly

termed ‘‘clocks’’ have been increasingly used as candidate bio-

markers of aging in clinical trials with a focus on longevity or reju-

venation. Table 3 lists recently completed or ongoing registered

clinical trials that evaluate epigenetic aging signatures as

response biomarkers either as predefined outcome measures

or during post hoc analyses. Further studies will be required to

confirm whether these biomarkers are associated with, or are

predictive of, later clinical outcomes and thereby represent

candidate surrogate endpoint biomarkers.

Discovery biomarkers

Biomarkers of aging that can be linked to biological pathways

may provide practical utility for the identification of novel thera-

peutic targets and longevity interventions (Figure 3B). Addition-

ally, it has been demonstrated that the use of large-scale omics

data in combination with artificial intelligence models can aid in

the identification of novel targets.68 Once validated, such discov-

ery biomarkers, possibly in combination with computational

models, may reduce the prohibitive cost and time of the drug dis-

covery process for diseases of aging.

CRITERIA FOR THE ASSESSMENT OF BIOMARKERS
OF AGING

Over the past decades, several criteria for ideal biomarkers

of aging have been proposed10,17,66,69: (1) measurement of

the biomarker should be minimally invasive and reliable, i.e., it

should be possible to conduct longitudinal measurements with

little technical variability; (2) the biomarker should be relevant

to aging; (3) the biomarker should predict functional aspects of

aging, e.g., mortality, better than chronological age; and (4) the

biomarker should be responsive to longevity interventions. We



Table 2. A select list of human predictive biomarkers of aging associated with various age-related conditions and their commercial

applications

Biomarker of aging Biomarker type Age-related conditions Commercial applicationa

DNAmAge (Horvath,13

Hannum21)

Epigenetic clocks, based on a

set of DNA methylation

measures associated with

chronological age

Associated with multiple aging

diseases and time-to-death,

based on meta-analyses22,23

Licensed for estimating

chronological age

GlycanAge24 A panel of molecular measures

based on glycans attached to

Immunoglobulin G (IgG)

antibodies associated with

chronological age

Associated with multiple

diseases25
Commercially used to track

responses to lifestyle changes

PhenoAge26 and GrimAge27 Epigenetic clocks, based on a

set of DNA methylation

measures associated with

‘‘clinical phenotypic age

measures’’ (a panel of age-

associated molecular and

physiological biomarkers,

measured in blood)

Higher association with multiple

aging-related diseases and

time-to-death, compared to

previous DNAm biomarkers, and

associated with healthspan;26,27

associated with multiple age-

related clinical phenotypes

(walking speed, frailty, and

cognitive functions)28

Licensed for optimizing life

insurance

DunedinPoAm and

DunedinPACE29

Epigenetic clocks, based on a

set of DNA methylation

measures associated with ‘‘pace

of aging measures’’ (a panel of

age-associated molecular and

physiological biomarker

measurements of different organ

systems)

Associated with the incidence

of multiple chronic diseases,

including dementia, disability,

and mortality29,30

Licensed for tracking

the rate of aging

Multi-omic biological age

estimation based on KDM

(Klemera-Doubal method)31

KDM applied to over 900

principal component

transformed biomarkers

(metabolites, proteins,

genomics, and clinical

measures)

Positively and negatively

modulated by ‘‘healthy’’ and

‘‘unhealthy’’ behaviors/health

conditions (e.g., type 2

diabetes), respectively31

Licensed for tracking

biological age

Aging.AI, Deep Transcriptomic

and Proteomic Clocks

AI-based blood clocks, based

on hematological parameters

and transcriptomic and

proteomic data

Associated with all-cause

mortality32 and muscle

wasting33

Commercially available

for use in clinical trials

aSee Table S1 for commercial application details.
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expand on these concepts below. Importantly, the criteria

explored here are, as a whole, neither necessary nor sufficient

for the validation of biomarkers of aging. Rather, they represent

a framework for the characterization and assessment of aging

biomarkers to assess the extent to which a candidate biomarker

may be feasible, valid, and useful for a specific context of use. As

mentioned above, it may be unrealistic to identify a single

biomarker that captures all aspects of biological aging and sat-

isfies all criteria. Each biomarker of aging has advantages and

limitations, which may be evaluated using this framework.

Feasibility and validity
To allow for repeated measurements in animals during studies of

longevity interventions and a subsequent translation to human

trials at later stages, the feasibility criteria state that themeasure-

ment should be (1) nonlethal to model animals and minimally

invasive to humans, (2) repeatable (to allow for monitoring in lon-

gitudinal studies), and (3) measurable during a short time relative
to the organism’s lifespan.10,17,70 The criterion of non-age-accel-

erating—i.e., the act of measuring the biomarker itself should not

accelerate biological aging—has additionally been proposed for

biomarkers of aging.18 Feasibility criteria are relatively straight-

forward to establish, as they relate to the practical aspects of

making biological/clinical measurements.

Criteria of validity comprise a more complicated set of consid-

erations, which we explore in detail below. Briefly, the first valid-

ity criterion posits that a biomarker of aging should be age-sen-

sitive.17 While this may appear trivial, some considerations are

warranted when applied to biomarkers of aging: for instance, a

biomarker perfectly correlated with chronological age would be

ideal for purposes such as forensics, but it may be less informa-

tive for assessment of longevity interventions (i.e., ‘‘paradox of

biomarkers’’).71 Furthermore, a recent study suggested that

when the performance of a biomarker of chronological age ap-

proaches near-perfect predictive accuracy, its association with

mortality attenuates.71 Therefore, a biomarker of aging suitable
Cell 186, August 31, 2023 3763



Table 3. A list of recently completed or ongoing registered clinical trials or post hoc analyses using epigenetic biomarkers of aging with a focus on longevity

Typea Study Intervention Title

Design, N, age

range, (m/f)

Primary outcome

measure Biomarker

Biomarker

outcome

measure Result

Lifestyle CALERIE Caloric restriction

for 2 years

Comprehensive

Assessment of Long-

Term Effects of

Reducing Intake of

Energy

RCT, 218,

21–50

Change in core body

temperature and

metabolic rate at

24 months compared

to baseline

DunedinPACE,

GrimAge, PhenoAge

(blood chemistry),

Horvath and Hannum

clocks

Post hoc

analysis

Significant reduction

of DunedinPACE and

PhenoAge (blood

chemistry), no

significant effects for

other biomarkers of

aging34,35

DAMA Plant-food-rich

diet, exercise

Diet Exercise and

Mammography Trial

RCT, 219,

50–69 (f)

Change in

mammographic

breast density

GrimAge Post hoc

analysis

Dietary intervention:

0.66 years Y

(GrimAge)36

MDL Diet, exercise,

stress management,

phytonutrient and

probiotic

supplements

Methylation Diet and

Lifestyle Study

RCT, 44,

50–72 (m)

Health-related

quality of life

Horvath clock Exploratory 3.2 years Y37

TirolGESUND Intermittent fasting or

smoking cessation

TirolGESUND:

General Exercise,

Smoking Undone,

and Nutrition Diet

BCS, 156,

30–60 (f)

Epigenetic

biomarkers of aging

and disease risk

WID-REA, -RIA,

pcgtAge, and

WID-SOLA

Primary Not yet reported

Pharma-

cological

Dasatinib/

Quercetin

Dasatinib and

quercetin

Safety and

Effectiveness of

Quercetin & Dasatinib

on Epigenetic Aging

BCS, 25*,

>40

Epigenetic clock DNAm (exact

biomarker

not defined)

Primary Not yet reported

RAPA Rapamycin Topical-RAPA Use in

Inflammation

Reversal and Re-

setting the

Epigenetic Clock

RCT, 50*,

65–95

Epigenetic clock Horvath clock Primary Not yet reported

SGLT2i Dapagliflozin SGLT2 Inhibition in

Older Obese Adults

With Pre-diabetes

RCT, 20*,

>60

Advanced glycation

end products in urine

DNAm (exact

biomarker

not defined)

Secondary Not yet reported

TRIIM-X Growth hormone for

1 year

Thymus

Regeneration,

Immunorestoration,

and Insulin Mitigation

Extension

RCT, 85*,

40–80

Epigenetic clock,

thymus regeneration

GrimAge Primary Not yet reported

(Continued on next page)
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https://clinicaltrials.gov/ct2/show/record/NCT00427193
https://www.isrctn.com/ISRCTN28492718
https://clinicaltrials.gov/ct2/show/study/NCT03472820
https://clinicaltrials.gov/ct2/show/NCT05678426
https://clinicaltrials.gov/ct2/show/NCT04946383
https://clinicaltrials.gov/ct2/show/NCT04946383
https://clinicaltrials.gov/ct2/show/study/NCT04608448
https://clinicaltrials.gov/ct2/show/NCT04401904
https://clinicaltrials.gov/ct2/show/NCT04375657


Table 3. Continued

Typea Study Intervention Title

Design, N, age

range, (m/f)

Primary outcome

measure Biomarker

Biomarker

outcome

measure Result

Plasmapheresis PLASMA Young plasma The Plasma for

Alzheimer SymptoM

Amelioration

(PLASMA) Study

BCS, 18, 60–95 Adverse effects as a

measure of safety

and tolerability

GrimAge, Horvath,

Hannum, and Skin

and Blood38 clocks,

PhenoAge,

DNAmTL39

Post hoc

analysis

0.86 years Y

(GrimAge), no change

in other clocks40

Plasma-

pheresis

Young plasma Effects of

Plasmapheresis on

Aging Biomarkers

O, 41*, 40–60 Epigenetic clock DNAm (exact

biomarker

not defined)

Primary Not yet reported

RESET-YOUTH Young plasma Reversing Epigenetic

and Other Markers of

Senescence by

Transfusing Young

Plasma To Older

Human Subjects

BCS, 2120*,

>40 (m)

Epigenetic clock DNAm (exact

biomarker

not defined)

Primary Not yet reported

Supplement AC11 AC-11 supplement

for 2 months

AC-11 Supplement

and Biological Aging

BCS, 32*,

>55

Epigenetic clock,

telomere length

DNAm (exact

biomarker

not defined)

Primary Not yet reported

D-SUNNY Vitamin D for

4 months

Vitamin D

Supplementation in

Overweight/Obese

African American

Adults and Youth

RCT, 74,

13–45

Cardiovascular

phenotypes, dose-

response

Horvath and

Hannum age

deviation

Post hoc

analysis

1.85 years Y (Horvath

age deviation)

compared to

placebo41

NMN Nicotinamide

mononucleotide

To Evaluate the

Efficacy and Safety of

NMN as an Anti-

ageing Supplement in

Middle Aged and

Older Adults

RCT, 90,

40–65

Cellular NAD+ levels,

walking test, health

questionnaire

Aging.AI 3.0

calculator (https://

www.aging.ai)

Exploratory Maintenance of blood

biological age

compared to

placebo42

Rejuvant Alpha-ketoglutarate Rejuvant� Safety

and Biomarker Study

RCT, 100,

45–75

c-reactive protein

levels

DNAm (exact

biomarker

not defined)

Exploratory Not yet reported

aTable is ordered by intervention type (lifestyle, pharmacological, plasmapheresis, and supplement) and alphabetically. Most clinical studies to date have used epigenetic clocks such as the

Horvath Clock. N, number of participants; m, male participants only; f, female participants only; RCT, randomized controlled trial; BCS, baseline-controlled study; O, observational; *, estimated.
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https://clinicaltrials.gov/ct2/show/NCT02256306
https://clinicaltrials.gov/ct2/show/NCT05004220
https://clinicaltrials.gov/ct2/show/NCT05004220
https://classic.clinicaltrials.gov/ct2/show/NCT03353597
https://classic.clinicaltrials.gov/ct2/show/NCT03353597
https://clinicaltrials.gov/ct2/show/NCT05310123
https://clinicaltrials.gov/ct2/show/NCT01583621
https://clinicaltrials.gov/ct2/show/NCT04823260
https://www.aging.ai
https://www.aging.ai
https://clinicaltrials.gov/ct2/show/NCT04821401
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for the evaluation of longevity interventions is expected to show

a strong—but not perfect—correlation with chronological age.

The implicit assumption underlying this criterion is that a

biomarker of aging measures biological rather than chronolog-

ical age. This assumption was the foundation of the first formally

proposed definition of a biomarker of aging as a single or

composite parameter capable of predicting aging-associated

outcomes better than chronological age alone.10

Since the time of this original definition, advances in big

data and machine learning have facilitated the identification of

features, or composites thereof, that predict biological age.

However, these data-driven approaches create new challenges

in evaluating validity: in the absence of underlying biological or

interpretable models, algorithms are likely to detect a mix of

features that can cause aging or be caused by the aging process.

Among those features that are not directly causal, somemay still

be relevant to biological age, but some may simply be uninfor-

mative correlates of chronological age. Depending on factors

underlying study design and model development, models may

also include features that are specific to a given study population

but not generalizable and/or capture technical noise or batch

effects driven by measurement errors. The interpretation of any

composite biomarker of aging depends heavily on understand-

ing the contribution of individual features, and biomarkers of

aging that help to mechanistically understand the aging process

should ideally retain only features that cause or are directly

caused by aging.72 Despite such challenges, many existing bio-

markers of aging perform very well in predicting chronological

age, future mortality, and possible response to interventions,

but wemust remain cautious about extending their interpretation

as direct measures of biological aging.

Age-sensitivity criteria
Validity criteria may be further expanded into two related criteria:

a biomarker of aging should (1) correlate with multiple age-sen-

sitive features after adjusting for chronological age and (2) be a

good predictor of all-cause mortality.6,18 Adaptation of these

criteria for functional states during aging, i.e., functional aging,

has been formalized as predicting physiological, cognitive, and

physical function in an age-coherent way, doing so better than

chronological age, and predicting the years of remaining func-

tionality better than chronological age.18 While these criteria

are not quantitative, they provide additional features against

which a candidate biomarker may be assessed. At the heart of

these extended criteria is the observation that aging is a multi-

system process, and therefore a biomarker of aging should be

an indicator of biological processes or responses relating tomul-

tiple physiological systems or should encompass a combination

of various biomarkers of different physiological systems. Unsur-

prisingly, composite multisystem biomarkers are more robust

and show a stronger correlation with other features of aging

than single biomarkers of aging.51,73,74 This is likely for two rea-

sons. First, integrative biomarkers condense signal while mini-

mizing measurement error and noise. Second, integrative bio-

markers incorporate heterogeneous aspects of the aging

process and thus tend to arrive closer to some ‘‘consensus’’

signal.75 However, as mentioned above, the substance of the al-

gorithms, including weights assigned to different biomarkers/
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processes/systems, is not necessarily biologically informed,

and the results should accordingly be interpreted with caution.

Integrative biomarkers of systemic biological aging fall into two

broad categories: (1) measures of the progress of aging, i.e., the

extent of biological damage accumulation/deterioration and cor-

responding loss of integrity/resilience capacity of tissues and or-

gan systems, and (2) measures of the pace of aging, i.e., the

rate at which this progress accumulates. Biomarkers of the prog-

ress of aging typically estimate biological age. Variation in the

progress of aging between individuals of the same chronological

age is quantified as the differencebetween an individual’s chrono-

logical age and their biomarker-estimated biological age. This is

sometimes referred to as age acceleration,13 but we propose

the more informative and straightforward term ‘‘age deviation’’

(AgeDev; Table 1). The association of AgeDev and aging-associ-

ated outcomes such as morbidity, disability, and mortality is the

established criterion for evaluating proposedmetrics of biological

aging.76–79 Alternatively, biomarkers of aging could be designed

to directly correspond to AgeDev by controlling for chronological

age in the design process (e.g., GrimAge and DunedinPACE29).

Notably, the criterion of age sensitivity primarily applies to bio-

markers of biological age, where the biomarker should, on

average, exhibit higher scores with increasing chronological

age. By contrast, biomarkers of the rate of aging do not need to

correlate with chronological age, although they may be consid-

ered ‘‘age-sensitive by design.’’

Mechanistic criteria
Mechanistic criteria relate to the underlying biology of aging. An

improved understanding of the cellular andmolecular ‘‘hallmarks’’

or ‘‘pillars’’ of aging, as well as an improved understanding of the

nature of aging, suggests that underlying factors contribute to

age-associated physiological decline and together determine

aging phenotypes.56,80 Accordingly, a valid biomarker of aging

should reflect these underlying cellular and molecular pro-

cesses.81 A new generation of biologically informed (e.g., prelimi-

nary evidence from PRC2 clock82 and deconstructed clocks83) or

causally guided epigenetic clocks (e.g., preliminary evidence from

DamAgeclock84), aswell as biomarkers of aging based onplasma

proteomics (e.g., PROage85and theproteomicclock86), are exam-

ples of efforts toward more mechanistic biomarkers of aging. In

addition, some longevity interventions have been found to modify

omicbiomarkers of aging, suggesting that these biomarkers could

reflect the underlying mechanisms.82,87

Generalizability criteria
Generalizability broadly refers to the ability of biomarkers to

function across different applications. For instance, a biomarker

of aging may be specific to an individual cell type (e.g., naive

CD4+ T cells or oocytes), organ (e.g., liver or brain; for a recent

review, see88), organ system (immune or nervous system), spe-

cies (e.g., mouse or human), or human population or may be

more broadly applicable. In line with the cellular view of aging

promoted by the geroscience hypothesis and the hallmarks of

aging, biomarkers that measure underlying common molecular

processes of cellular aging might capture aging-associated mo-

lecular and cellular damage common tomultiple cell/tissue types

or species. Generalizability of biomarkers between different



Figure 4. Relationship between biomarkers of aging and ger-

oprotectors
(A) Biomarkers of aging and geroprotectors may appear to have a circular
relationship.
(B) However, development of each is useful to the other: evaluated ger-
oprotectors can be used to develop and benchmark biomarkers of aging, while
evaluated biomarkers of aging may be used to predict or test the response to
candidate geroprotectors.
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tissues and between in vivo and in vitro settingsmay therefore be

helpful to support mechanistic studies.

As many features of biological aging are conserved across

multiple species,89 aging biomarkers have also been developed

for model organisms. In fact, model organisms provide an op-

portunity to better understand various aspects of biomarkers,

including their development, validation, and application. Several

epigenetic biomarkers have been developed for mice, including

blood and multi-tissue epigenetic clocks.90–92 These biomarkers

were validated by analyzing dietary (e.g., calorie restriction), ge-

netic (e.g., growth hormone receptor knockout), and pharmaco-

logical (e.g., rapamycin) interventions.90–92 Recognizing the

value of cross-species biomarkers, the American Federation of

Aging Research has proposed an additional criterion of applica-

bility in both humans and model organisms for a ‘‘true’’

biomarker of aging.54,93 Examples of dual-species94 and pan-

mammalian95 epigenetic biomarkers of age have been reported.

The cross-species translatability criterion favors molecular,

cellular, or subcellular level biomarkers11 and disfavors organ-

ism-specific biomarkers such as the PhotoAgeClock, which is

based on changes in human eye corners,96 or the FRIGHT clock,

which uses measures of frailty in mice.97 However, the require-

ment for cross-species generalizability may not always be appli-

cable, as there are certain aspects of biological aging that may

differ between models/species. For example, telomere short-

ening is detected in human somatic tissues with aging but not
in most strains of laboratory mice60,98; similarly, higher fasting

blood glucose is associated with increased mortality in primates

but not in mice.99 Discarding potential biomarker candidates due

to a lack of translatability may therefore result in exclusion of

interesting human biomarkers.60 However, cross-species trans-

latability offers the advantage of applying the same biomarkers in

preclinical and clinical studies.

Moving to clinical considerations, a key aspect of human aging

biomarker generalizability is the ability of biomarkers to function

across different populations of humans. At the very least, it

should be understoodwhat limits thewider utility of a given aging

biomarker. It is thus critical to validate proposed biomarkers

across countries, sexes, ethnicities, and other demographic fac-

tors. Studies in non-industrialized populations100,101 are also

crucial to establishing biomarkers as being generalizable in

humans.

Response criteria
Generally, response criteria posit that a biomarker of aging

should be responsive to both accelerated and decelerated

aging.59 Biomarkers of aging are expected to indicate higher

age in models of accelerated aging.102 Likewise, known factors

with systemic negative effects on longevity such as chronic

stress103 are generally expected to increase scores of bio-

markers of aging. Societal effects such as poverty104 may simi-

larly affect biomarkers of aging, though such effects may be

nuanced or context-specific, which may prevent generalization

or complicate interpretation. As models of accelerated aging

are further developed and understood,105 biomarkers of aging

can be evaluated using these conditions. The association of

conditions negatively impacting longevity with biomarkers of ag-

ing could help to further characterize these biomarkers,106 for

instance, by linking them to known underlying pathome-

chanisms.

At the opposite end of the spectrum, geroprotectors are

agents or interventions that potentially slow, inhibit, or reverse

biological aging.7,14 For a subset of candidate geroprotectors,

sufficient scientific evidence supporting their efficacy has

accumulated to warrant the initiation of human clinical longevity

intervention trials, such as caloric restriction (CALERIE34), exer-

cise (DAMA,36 DO-HEALTH,107 and Generation-100108 trials),

mTOR inhibitors,109–111 and plasmapheresis.40 As geroprotec-

tive properties and mechanisms of certain agents and interven-

tions are becoming more evident, their effects on biomarkers of

aging are being evaluated. Geroprotectors with large effects on

multiple physiological systems are expected to reduce scores of

biomarkers of aging that predict biological age.

As one of the proposed criteria for a candidate geroprotector

is reduction in biological age assessed with biomarkers,7,14,69

the relationship between biomarkers of aging and geroprotec-

tors may seem circular (Figure 4A). There exist many candidate

biomarkers of aging and many proposed geroprotectors, and

the accumulated evidence supporting either could be leveraged

to validate the other (Figure 4B). Candidate geroprotectors may

be evaluated by examining their effect on healthspan, lifespan, or

evaluated biomarkers. In turn, candidate biomarkers of aging

could be assessed based on their response to evaluated gero-

protectors (Figure 4B). Indeed, this is currently the common
Cell 186, August 31, 2023 3767



Figure 5. Analytical and clinical validation
Expanded from Dobbin et al.114 by including details on individual validation steps.
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practice for analogous biomarkers developed for use in model

organisms where numerous lifespan-extending interventions

have been unequivocally identified.92
Cost considerations
To implement biomarkers of aging in large-scale settings,

including investigations of large biobanks, large clinical trials, pop-

ulation studies, or genome-wide screens, the cost of measure-

mentmust be relatively low.Most established biomarkers of aging

currently remain cost-prohibitive for such purposes. Recent ad-

vances in cost reduction for measuring biomarkers of aging

involve the development of probabilistic statistical frameworks

and low-pass sequencing approaches applied to single cells

and bulk samples (e.g., scAge112) and targeted high-throughput

analyses of subsets of established biomarker loci (e.g., DNAm

profiling of epigenetic clock CpG sites only, rather than unbiased

or genome-wide profiling, as in preliminary evidence from TIME-

seq113). The development of ultrahigh-throughput sequencing

technologies is also expected to lead to reduced sequencing

costs in the future, thus enabling the application of these and other

methods in a cost-effective manner.
VALIDATION OF BIOMARKERS OF AGING

Biomarkers must undergo both analytical and clinical validation

to ensure they are adequate for their intended use114 (Figure 5).

Validation is an intensive process with many factors that must be

carefully considered. Here, we outline some of the key consider-

ations for such validation efforts.
Analytical validation
It is imperative that a biomarker meets technical specifications

and standards. Analytical validation seeks to determine that

the biomarker and potential resulting test exhibit adequate pre-

cision.15 Quantification of precision can be performed under

repeatability (same laboratory, operator, and equipment) and

reproducibility conditions (different laboratory, operator, and

equipment) and can assess the agreement of independent test

results.115 These analytical aspects are essential to ensure that

the error is minimal and within an acceptable range. Ultimately,

this should enable test performance with high signal (biological

variation) but low noise (technical variation), which is particularly
3768 Cell 186, August 31, 2023
important for longitudinal studies evaluating changes in bio-

markers of aging in response to longevity interventions. Here,

technical variability affects both the treatment and control

groups, as well as both baseline and follow-up measurements.

Thus, if technical variability is high in such studies, detection of

biological variation may be limited.29,116

Additionally, analytical validation seeks to determine the accu-

racy of the measurement, i.e., how close the measured value is to

the true value.15,115,117 For instance, sensitivity and specificity are

two common measures of accuracy,15 but applying them to bio-

markers of aging poses several challenges: there is as of yet no

consensus as to how thresholds for positive or negative results

could be set or how onewould determine whether the true biolog-

ical age was ‘‘correctly’’ determined. The existing analytical vali-

dation framework based on sensitivity and specificity most

frequently supposes that the target information is dichotomous

(e.g., old vs. young), which is not appropriate in the context of a

continuous process such as aging. Further work to form a clear

consensus on how to establish analytical validation of accuracy

for continuous biomarkers of aging is needed.

Ultimately, for clinical implementation of a molecular biomarker

of aging as a test, three essential practical components need to be

considered during analytical validation118: (1) sampling and

source materials, including biological sample collection, storage,

andprocessing conditions (pre-analytical); (2) assays for obtaining

the measurement, for instance, methylation microarrays or next

generation sequencing; and (3) methods and criteria for interpret-

ing the measurements, such as algorithms including simple

thresholding, linear models, or more complex models based on

deep learning. These factors must be considered as a whole

and should be standardized. In the context of omic biomarkers

of aging, it has been shown that individual components (e.g.,

DNA methylation levels for epigenetic clocks) may carry relatively

high technical noise,119 but this could potentially be overcome via

computational approaches to bolster reliability116 or judicious

choice of reliable probes.29
Clinical validation
Clinical validity and utility are established through application in

human clinical trials. Clinical validation seeks to establish

whether a biomarker can indeed identify the outcome of interest

and determine how useful it is for clinical decision making.15
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Validation of a biomarker as a surrogate endpoint requires clin-

ical evidence that a change in the surrogate endpoint predicts

a specific clinical benefit.15 For instance, a reduction in epige-

netic age is only meaningful if it is indeed associated with a pos-

itive clinical change, such as a reduction in the risk of age-related

diseases, frailty, mortality, or similar changes.

The process of clinical validation depends on the intended

purpose of the proposed biomarker.15 For example, predictive

or prognostic biomarkers could help to estimate the magnitude

of the potential benefit of a geroprotective treatment or an

individual’s risk of developing a specific age-related clinical

outcome or death. A response biomarker of aging provides

proof-of-concept that a longevity intervention has an expected

biological effect. Select candidate biomarkers, such as methyl-

ation-based biomarkers, have performed well as predictive

and prognostic biomarkers (Table 2) and demonstrated respon-

siveness to geroprotective interventions (Table 3). However,

further validation is needed to establish robust associations

of these biomarkers with clinical endpoints to enable their

consideration as surrogate endpoint biomarkers for longevity in-

terventions. A key step along this road is validation of biomarkers

acrossmultiple cohorts of humans. Several efforts have begun to

address this need, but challenges in accessing human data while

maintaining participant privacy remain and should be ad-

dressed. Nevertheless, it is increasingly clear that validated bio-

markers of aging have the potential to become effective tools for

clinical trials and practice.

ONGOING CHALLENGES AND DIRECTIONS FOR
FUTURE RESEARCH

Biomarkers of aging have revolutionized preclinical aging

biology research and stand to similarly impact clinical trials. To

realize this potential, several key challenges require ongoing col-

lective attention. These range from fundamental conceptual

challenges rooted in the basic biology of aging to technical

and clinical considerations, such as harmonizing terminology,

classification, potential use cases, and validation steps.

At the most fundamental level, the biological nature of aging

remains incompletely understood, and there is debate on which

molecular, cellular, physiological, or clinical changes are causal

to aging rather than simply associated with it. Disease, cumula-

tive impacts of industrialized lifestyles, or other features—

perhaps unrelated to aging entirely—underlying the sampled

population may confound biomarker measurements. Sex and

gender differences and their potential underlying factors must

also be addressed: for instance, females tend to live longer but

may experience worse health at the end of life.120 Similarly,

ethnicity as a determinant of aging should also be considered,

both for people of different ethnicities within the same society

and for people of the same ethnic background across different

societies.121 Finally, a host of environmental conditions and in-

teractions between any of the aforementioned factors also likely

contribute to aging. As we continue to develop our understand-

ing of what aging is and what it is not, measurement of parame-

ters such as vitality or resilience, which are being increasingly

considered in aging studies,122 may represent a pragmatic,

complementary health-focused rather than disease-focused
strategy for biomarker development. Regardless, these consid-

erations speak to the significant need for further research aimed

at understanding the biological nature of aging at a very funda-

mental level.

Moving to the development of aging biomarkers, a key consid-

eration for any biomarker needs to be addressed: what assump-

tions are made to identify its feature(s)? Many biomarkers of ag-

ing are developed to estimate biological age by training a

statistical model to predict the chronological age of the sample

donor; the difference between biomarker-predicted biological

age and chronological age is then referred to as the age deviation

(AgeDev). However, reliance on chronological age in biomarker

development may be a less than ideal strategy, as discussed

above. Inclusion of relevant age-related functional parameters

and outcomes to train prediction models, as implemented in

recent epigenetic biomarkers (e.g., PhenoAge, GrimAge, or

DunedinPACE), could improve biomarkers of aging.11

An important conceptual distinction needs to be made be-

tween biomarkers of biological age and biomarkers of the rate

of aging. The former aim to capture the extent of aging that

has occurred in an individual to date, while the latter estimate

how fast aging processes are occurring at a given point in

time.123 Biomarkers of the rate of aging relate to markers of bio-

logical age as speedometers (which measure speed in distance

per time) relate to odometers (whichmeasure total distance trav-

eled)124,125; thus, they may be complementary. For instance, a

high AgeDev could indicate that the individual is currently aging

faster and therefore has an increased biological age, or it could

reflect downstream ramifications of faster aging earlier in life,

even though the sampled individual is currently aging at a normal

or even slower pace. Speedometer biomarkers could directly

inform on the aging rate at a given point in time and may also

be more sensitive to intervention-induced changes in aging pro-

cesses, particularly over short follow-up intervals.126 However,

speedometer biomarkers on their own do not provide the whole

picture, as they do not give an indication of the baseline biolog-

ical age of the subject. These biomarkers may also be oversen-

sitive to short-term perturbations. Hence, simultaneously

measuring both AgeDev (‘‘odometer’’) and the pace of aging

(‘‘speedometer’’) could improve prediction of future outcomes,

and future research may consider their dual evaluation.

Moving tomore practical considerations, the biological sample

used for measuring aging is critical. For instance, biomarkers

measured in blood that depend onmaterial from cellular sources

(e.g., blood cell DNA methylation or gene expression profiles)

could primarily reflect changes in the hematopoietic system but

not in other organ systemswith lower turnover rates and different

cell types. Studies have suggested that cell-type-specific aging

may occur,45,46,127,128 and hence choosing the appropriate sam-

ple type and biomarker is needed. In this regard, cell-type- and

tissue-specific biomarkers may prove valuable. Moreover, the

temporal dynamics, including ‘‘normal’’129 and stress-induced

fluctuations,130 of many biomarkers of aging remain to be stud-

ied, as we are only beginning to understand how to separate

signal from noise in these biomarkers. For potential clinical

biomarkers of aging, these challenges may be addressed by

standardizing measurements of the biomarkers and clinical out-

comes, banking samples using protocols focused on preserving
Cell 186, August 31, 2023 3769



ll
Perspective
quality for futuremeasurement, and reducing barriers to data ac-

cess while preserving patient privacy. Furthermore, investigators

should aim to apply multiple biomarkers within the same cohort.

In addition to improving our understanding of fundamental as-

pects of aging, this would also enable further validation of bio-

markers of aging and ultimately advance their clinical use.

Validation of biomarkers of aging for use as surrogate out-

comes in clinical trials is highly desirable to reduce sample

numbers and trial duration. An essential aspect requiring

further consideration within the community will be establishing

consensus on acceptable clinical outcomes for aging trials.

Although a detailed discussion is beyond the scope of this

perspective (for a recent review, see Cummings and Kritchev-

sky20), endpoints must be linked, in part, to the fundamental

biology of aging, must be objectively quantifiable, and should

evaluate the effect of an agent or intervention on how the pa-

tient or participant ‘‘functions, feels, or survives’’ in a manner

inherently meaningful to participants (or patients), clinicians,

and regulatory officials.20 In the context of aging research,

both broad (e.g., disability-free survival or incident frailty) and

specific (e.g., age-related diseases or conditions) potential end-

points have been proposed to meet this definition. Total mortal-

ity is generally not considered a candidate clinical endpoint for

modern trials given issues of feasibility (e.g., sample size, dura-

tion), ethics, and the conceptual challenge of disentangling all-

cause vs. cause-specific death as a clinical indicator of aging

as a process.20 The latter point is important, as many bio-

markers of aging are developed to predict total mortality,

even though it is unlikely to serve as a primary outcome for ger-

oprotector trials. Notably, most of the above clinical outcomes

primarily occur in later life and are not ideally suited to preven-

tion trials in young populations with low incidence of any of

these outcomes. However, validated biomarkers of aging may

one day enable the prediction of responsiveness to geroprotec-

tive interventions applied years before the clinical manifesta-

tions of aging.

Conclusion
Recent decades have seen considerable progress in our under-

standing of the aging process and how we research and quantify

it. While insights into biological hallmarks of aging continue to

expand,89 it is vital to characterizewhat specific biomarkers of ag-

ing measure and in what settings they might find suitable applica-

tions. Biomarkers of aging offer great potential for enabling human

longevity intervention trialsandpersonalizedclinicaldecisionmak-

ing. Longevity interventions may prove to be useful when applied

early in life,126,131 but given the relatively longhuman lifespan, trials

with lifespan-focusedoutcomeswouldbe impractical.Biomarkers

of aging could therefore serve several important roles in aging

research: (1) to give an early indication of whether an intervention

increases healthspan and/or lifespan; (2) to identify individuals

whomight benefit froma treatment; (3) toprioritizecandidate inter-

ventions for longer-term assessment; and (4) as validated surro-

gate endpoints for regulatory and clinical purposes if short-term

changes in aging biomarkers are shown to be predictive of

longer-term outcomes. Althoughwe have approached the regula-

tory aspects of aging biomarkers in thiswork from the viewpoint of

United States approval agencies, the broader considerations we
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have outlined are applicable to efforts to advance biomarkers

across the globe. To facilitate validation and ultimate clinical appli-

cation of biomarkers of aging, a robust framework for their evalua-

tion is needed. Our hope is that the consensus terminology, clas-

sification, evaluation criteria, and identified challenges and future

directions for researchpresented in thiswork represent a solid first

step toward achieving this goal.
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