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 Abstract 

 Identifying  and  validating  biomarkers  of  aging  is  pivotal  for  understanding  the  aging  process  and 

 testing  longevity  interventions.  Despite  the  development  of  numerous  aging  biomarkers,  their 

 clinical  validation  remains  elusive,  largely  due  to  the  lack  of  cross-population  validation,  which 

 is  hampered  by  disparate  biomarker  designs  and  inconsistencies  in  dataset  structures.  To  bridge 

 this  gap,  we  introduce  Biolearn,  an  innovative  open-source  library  dedicated  to  the 

 implementation  and  application  of  aging  biomarkers.  Biolearn  facilitates  (1)  harmonization  of 

 existing  aging  biomarkers,  while  presenting  a  structured  framework  for  novel  biomarkers  in 
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 standardized  formats;  (2)  unification  of  public  datasets,  ensuring  coherent  structuring  and 

 formatting,  thus  simplifying  cross-population  validation  studies;  and  (3)  provision  of 

 computational  methodologies  to  assess  any  harmonized  biomarker  against  unified  datasets.  By 

 furnishing  a  community-driven  platform,  Biolearn  significantly  augments  the  development, 

 assessment,  and  validation  trajectories  of  aging  biomarkers,  paving  the  way  toward  more 

 rigorous  clinical  validation  and,  ultimately,  application  in  clinical  trials  targeting  healthy 

 longevity.  The  Biolearn  package  is  open-source  and  freely  available  at 

 https://Bio-Learn.github.io/ 

 Introduction 

 The  quest  for  reliable  biomarkers  of  aging  (BoAs)  is  an  essential  focus  in  aging  research,  driven 

 by  a  growing  understanding  of  aging  as  a  fundamental  factor  in  chronic  diseases  and  mortality.  A 

 plethora  of  biomarkers  have  been  proposed  to  quantify  biological  age  or  the  pace  of  aging  and 

 elucidate  the  underlying  biological  intricacies;  however,  their  clinical  validation  remains  a 

 significant  challenge  due  to  varied  formulations  and  disparate  structures  in  validation  datasets 

 across  populations.  Since  the  introduction  of  composite  omic  biomarkers  of  aging,  epitomized  by 

 Horvath’s  seminal  work  on  DNA  methylation  aging  clocks  1  ,  subsequent  efforts  have  expanded 

 the  repertoire  of  aging  biomarkers,  which  now  span  a  wide  array  of  omic  modalities,  including 

 epigenomics, transcriptomics, and proteomics  2–7  . 

 DNA  methylation-based  clocks  are  currently  the  most  developed  class  of  omic  biomarkers  of 

 aging  and  represent  robust  tools  for  biological  age  estimation,  offering  insights  into  age-related 

 changes  at  the  molecular  level  and  their  implications  for  human  health  and  longevity  1,2,4  .  For 

 instance,  the  Horvath  multi-tissue  clock  and  the  subsequent  DNA  methylation-based  clocks,  such 

 as  DunedinPACE  3  ,  GrimAge  8  ,  causality-enriched  DamAge/AdaptAge  9  ,  PRC2  clock  10  ,  and 

 others,  have  shown  promising  correlations  with  various  age-related  conditions  and  mortality, 

 reflecting  the  intricate  interplay  between  epigenetic  modifications  and  the  aging  trajectory  4,8,11,12  . 

 However,  the  diverse  formulation  of  these  biomarkers  and  the  inconsistency  in  structure  across 

 different  validation  datasets  pose  substantial  hurdles  for  systematic  cross-population  validation 

 and benchmarking of these biomarkers, critical steps towards their clinical translation. 
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 Publicly  available  datasets,  such  as  those  from  the  Gene  Expression  Omnibus  13  ,  the  National 

 Health  and  Nutrition  Examination  Survey  (NHANES),  and  the  Framingham  Heart  Study  (FHS) 

 have  the  potential  to  greatly  accelerate  the  validation  of  biomarkers  of  aging.  However,  their  use 

 for  this  purpose  is  complicated  by  the  lack  of  a  standardized  framework  that  can  accommodate 

 the  heterogeneous  nature  of  their  datasets.  Thus,  there  is  a  clear  need  for  a  unified  platform  that 

 can  seamlessly  integrate  and  analyze  various  biomarkers  of  aging  across  datasets  with 

 harmonized  structures.  Such  a  platform  would  transform  the  validation  process,  foster  the 

 discovery  of  novel  biomarkers,  and  provide  a  structured  avenue  for  community-driven  efforts  in 

 advancing the field of aging biology. 

 To  address  this  need,  we  introduce  Biolearn,  an  open-source  library  designed  to  bridge  these 

 gaps  by  providing  a  unified  framework  for  the  harmonization  and  computational  analysis  of 

 BoAs  (Figure  1a).  Biolearn  serves  as  an  innovative  tool  that  harmonizes  existing  BoAs, 

 structures,  and  formats  human  datasets  and  offers  computational  methodologies  for  assessing 

 biomarkers  against  these  datasets.  By  fostering  a  community-driven  approach,  Biolearn  aims  to 

 propel  the  development  and  validation  process  of  BoAs,  ultimately  contributing  to  a  deeper 

 understanding  of  the  aging  process,  facilitating  the  discovery  of  interventions  for  age-related 

 diseases, and bringing BoAs to the clinic. 

 Results 

 Harmonization of Biomarkers of Aging 

 We  successfully  harmonized  22  well-established  epigenetic  aging  clocks  and  biomarkers  (Table 

 1),  as  well  as  two  phenotypic  biomarkers  (Phenotypic  Age  and  Mahalanobis  distance  metrics) 

 and  implemented  these  BoAs  in  Biolearn.  The  epigenetic  biomarkers  include  chronological 

 clocks  like  Horvath’s  multi-tissue  clock,  Hannum’s  blood  clock  1,14  ;  healthspan  and 

 mortality-related  clocks  like  GrimAge,  GrimAge2,  PhenoAge,  and  Zhang  clock  8,15–17  ; 

 biomarkers  of  the  rate  of  aging  including  DunedinPoAm38  and  DunedinPACE  3,18  ; 

 causality-enriched  clocks  including  Ying’s  CausAge,  DamAge,  and  AdaptAge  9  ;  as  well  as  many 

 other  clocks  and  DNAm-based  biomarkers  (Table  1).  All  of  the  biomarkers  were  formatted  into 

 standardized  input  structures,  allowing  for  consistent  application  across  disparate  datasets.  This 

 harmonization  process  involved  collecting  and  unifying  the  annotation  of  clock  specifications, 
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 such  as  tissue  type,  predicted  age  range,  and  source  references,  ensuring  transparent  and 

 reproducible  analyses.  To  further  support  ongoing  research  in  this  field,  we  developed  and 

 implemented  an  open-source  framework 

 (  https://github.com/bio-learn/biolearn/blob/master/biolearn/model.py  ).  This  framework  is 

 designed  to  provide  a  standardized  format  for  epigenetic  biomarkers,  facilitating  the  seamless 

 integration  and  comparison  of  any  future  aging  clocks  that  are  developed.  This  addition  aims  to 

 foster collaboration and innovation in the study of aging biomarkers. 

 Integration of Diverse Human Datasets 

 To  facilitate  cross-population  validation  studies  using  publicly  available  data,  we  harnessed 

 Biolearn’s  capabilities  to  integrate  and  structure  multiple  public  datasets  (Table  2).  The 

 structured  datasets  were  refined  to  enable  a  shared  analysis  platform,  addressing  the  challenges 

 of  data  heterogeneity  and  formatting  inconsistencies  13,19  .  With  this  capacity,  the  Biolearn  is  used 

 as  the  backend  of  ClockBase  for  epigenetic  age  computation  13  ,  enabling  the  systemic 

 harmonization  of  over  200,000  human  samples  from  Gene  Expression  Omnibus  (GEO)  array 

 data. 

 Computational Analysis and Biomarker Assessment 

 Using  Biolearn’s  computational  methodologies,  we  conducted  extensive  evaluations  of  the 

 harmonized  biomarkers  of  aging.  As  an  example,  we  applied  several  models  to  two  GEO  dataset 

 GSE41169  (N  =  95)  and  GSE64495  (N  =  113),  with  DNA  methylation  profiles  across 

 approximately  480,000  CpGs  20  .  We  show  that  with  a  few  lines  of  code,  Biolearn  is  able  to 

 efficiently  compute  results  for  over  20  epigenetic  biomarkers  across  hundreds  of  samples  on  the 

 order  of  seconds  (Figure  1b-c).  Biolearn  also  allows  rapid  comparison  of  the  performance  of 

 different  biomarkers  in  independent  datasets  (Figure  1d).  For  example,  in  both  testing  datasets, 

 the  top  5  performing  clocks,  in  terms  of  R  2  with  chronological  age,  are  the  Zhang  clock,  Horvath 

 v2 and v1, Hannum clock, and YingCausAge (Figure 1d). 

 Beyond  aging  biomarkers,  we  also  integrated  several  common  epigenetic  predictors  in  Biolearn. 

 For  instance,  sex  can  be  inferred  (Wang  et  al.  21  )  from  DNAm  profiles  with  high  accuracy 

 (Figure 1e). 
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 Clinical Data Harmonization 

 To  provide  further  utility  in  handling  clinical  data,  we  implemented  the  blood-test-based 

 Phenotypic  Age  16  ,  and  Mahalanobis  distance-based  biomarker  in  Biolearn  22  .  These  clinical 

 biomarkers  may  be  combined  with  the  analysis  tools  built  into  Biolearn.  For  example,  we 

 calculated  Phenotypic  Ages  for  the  NHANES  2010  dataset  and  illustrated  the  relationship 

 between  biological  and  chronological  age  using  Biolearn.  We  further  performed  a  survival 

 analysis  that  distinguished  between  individuals  with  accelerated  versus  decelerated  aging  based 

 on  biological  age  discrepancies.  The  entire  analysis  was  completed  with  only  a  few  lines  of  code 

 (Figure 2a-b)  16  . 

 Discussion 

 Among  the  most  significant  challenges  in  aging  biomarker  research  is  the  cross-population 

 validation  of  proposed  biomarkers  23  .  To  take  steps  to  address  this  need  and  provide  an 

 open-source  tool  for  validation  efforts  across  the  field,  we  built  Biolearn  to  integrate  a  broad 

 range  of  datasets,  including  those  with  varied  formats  and  structures,  and  provide  a  suite  of 

 analysis  tools.  By  standardizing  data  inputs  and  modeling  approaches  across  multiple 

 populations,  Biolearn  has  demonstrated  its  potential  to  facilitate  more  extensive  and  robust 

 validation processes that are essential for the clinical translation of biomarkers of aging  4  . 

 With  Biolearn,  we  have  also  harmonized  and  evaluated  several  well-established  aging  clocks, 

 providing  the  opportunity  for  these  biomarkers  to  be  refined  and  potentially  for  new  ones  to  be 

 developed.  The  modular  design  of  Biolearn  encourages  the  addition  of  new  models  and  datasets, 

 making  it  a  living  library  that  will  grow  in  tandem  with  the  field  itself.  By  centralizing  resources 

 and  knowledge,  Biolearn  considerably  reduces  redundancy  and  accelerates  biomarker 

 development and validation efforts  3,7  . 

 Our  approach  emphasizes  transparency  and  reproducibility,  core  tenets  of  open  science.  By 

 making  Biolearn  publicly  available  and  maintaining  detailed  documentation  and  development 

 guidelines,  we  have  established  an  ecosystem  that  supports  open  collaboration  and  knowledge 

 sharing.  This  open-science  framework  ensures  that  findings  and  tools  can  be  widely  accessed, 

 providing  equitable  opportunities  for  researchers  globally  to  contribute  to  and  benefit  from  the 

 collective  advances  in  aging  research.  Moreover,  our  hope  is  that  the  open-access  nature  of 
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 Biolearn  will  promote  cross-fertilization  between  aging  researchers  and  scientists  currently 

 outside  of  the  field,  incentivizing  the  development  of  novel  and  innovative  biomarker  models 

 and validation approaches. 

 Previous  efforts  to  harmonize  biomarkers  of  aging,  notably  methylCIPHER  and  BioAge  24,25  , 

 have  been  limited  in  scope,  focusing  on  methylation  or  blood-based  biomarkers  only. 

 Furthermore,  being  R  packages  limits  their  scope  of  use  in  production.  Biolearn  supports 

 biomarkers  based  on  multiple  different  biological  data  modalities  and  is  written  in  Python,  which 

 has  a  much  broader  reach.  In  comparison  to  PyAging  26  ,  a  preliminary  contemporaneous  Python 

 biomarker  library,  Biolearn  is  focused  on  ease  of  use  and  reproducibility  through  automated 

 testing against reference data. 

 While  Biolearn  represents  a  significant  advance  for  the  field,  certain  limitations  remain. 

 Currently,  the  library  is  tailored  to  biomarkers  derived  from  biological  samples,  predominantly 

 DNA  methylation  data.  Moving  forward,  the  scope  of  Biolearn  will  continue  to  expand  to 

 encompass  diverse  biological  modalities—such  as  proteomics,  metabolomics,  and 

 microbiomics—broadening  its  applicability  5,10  .  Moreover,  integration  with  larger  and  more 

 diverse  population  datasets  will  be  vital  in  advancing  cross-population  validation  efforts.  As  new 

 datasets  emerge,  Biolearn  will  adapt  to  incorporate  these  resources,  ensuring  ongoing  robustness 

 and  scalability  27  .  Finally,  bioinformatics  tools,  including  Biolearn,  depend  on  a  user  base 

 proficient  in  programming  and  data  analysis.  Efforts  to  make  these  tools  more  accessible  to  a 

 wider  audience,  including  those  with  limited  computational  expertise,  will  be  crucial.  This  could 

 involve  the  development  of  graphical  user  interfaces  (GUIs)  or  web-based  platforms  to 

 streamline the user experience. 

 We  anticipate  that  Biolearn  will  become  a  key  resource  for  the  field  and  will  transform  many 

 facets  of  aging  biomarker  studies.  Our  preliminary  survival  studies  conducted  using  Biolearn 

 demonstrate  not  only  the  power  of  this  new  platform,  but  illuminate  the  real-world  implications 

 of  validated  biomarkers.  Biolearn’s  standardization  and  analysis  capabilities  stand  to  serve  as 

 pivotal  tools  for  researchers  seeking  to  bridge  the  gap  between  biomarker  discovery  and  clinical 

 implementation  23  . 
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 Methods 

 Overview of Biolearn Library 

 Biolearn  is  an  open-source  computational  suite  that  facilitates  the  harmonization  and  analysis  of 

 biomarkers  of  aging  (BoAs).  It  is  written  in  Python  and  is  readily  accessible  through  the  Python 

 Package  Index  (PyPI).  Biolearn  is  developed  using  modern  software  engineering  practices, 

 including  automated  testing  to  ensure  correctness  and  adherence  to  software  design  principles 

 that  ensure  the  safe  interchangeability  of  like  components.  The  library  is  designed  to  be 

 user-friendly  while  offering  robust  functionalities  for  researchers  across  various  disciplines 

 involved in aging studies. 

 System Requirements and Installation 

 Biolearn  requires  Python  version  3.10  or  newer.  It  can  be  installed  using  the  Python  package 

 manager,  pip,  with  the  command  pip  install  biolearn  .  The  successful  installation  of  the 

 library  can  be  verified  through  the  import  test  of  Biolearn’s  core  classes.  The  library  is 

 cross-platform  and  is  compatible  with  major  operating  systems,  including  Windows,  MacOS, 

 and  Linux.  The  more  detailed  instructions  can  be  found  here: 

 https://Biolearn.github.io/quickstart.html 

 Data Library and Model Gallery 

 Biolearn  incorporates  a  data  library  capable  of  loading  and  structuring  datasets  from  a  multitude 

 of  public  sources  like  Gene  Expression  Omnibus  (GEO),  National  Health  and  Nutrition 

 Examination  Survey  (NHANES),  and  Framingham  Heart  Study.  The  model  gallery  within 

 Biolearn  holds  reference  implementations  for  various  aging  clocks  and  biomarkers,  presenting  a 

 unified  interface  for  users  to  apply  these  models  to  their  datasets.  All  models  were  verified  to  be 

 correct  by  comparing  the  outputs  on  a  reference  data  set  against  their  original  implementations 

 where available. 

 Harmonization Process 

 We  used  Biolearn  to  harmonize  several  aging  clocks.  Clock  definitions  were  standardized, 

 specifying  the  name,  publication  year,  applicable  species,  target  tissue,  and  the  biological  aspect 

 they  predict  (e.g.,  age,  mortality  risk).  We  provided  sources  for  both  the  original  publications  and 

 the  coefficients  necessary  for  clock  applications.  Coherence  across  biological  modalities  and 
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 datasets  was  assured  through  Biolearn’s  systematic  approach  to  data  preprocessing, 

 normalization, and imputation procedures. 

 Integration with Public Datasets 

 Biolearn’s  ability  to  interface  seamlessly  with  public  datasets  was  tested  by  integrating  and 

 formatting  data  from  GEO  and  NHANES.  Preprocessing  pipelines  were  developed  to  convert 

 raw  data  into  a  harmonized  format  suitable  for  subsequent  analysis.  Particular  attention  was 

 given  to  metadata  structures,  variable  normalization,  and  missing  data  treatment,  ensuring 

 consistent input formats required by the aging models. 

 Statistical Analysis 

 All  statistical  analyses  were  performed  using  tools  embedded  within  the  Biolearn  library  or 

 through  integration  with  renowned  Python  statistics  libraries  such  as  statsmodels  and  seaborn  for 

 visualization.  The  robustness  and  reproducibility  of  the  analysis  were  ensured  through  the  use  of 

 randomized  cross-validation  techniques  for  model  assessment  and  bootstrapping  methods  for 

 estimating confidence intervals where applicable. 

 Acknowledgments 

 We  thank  all  the  members  of  the  Biomarkers  of  Aging  Consortium  for  their  valuable  feedback 

 and  suggestions.  This  work  was  heavily  inspired  by  methylCIPHER,  an  R  package  for  DNA 

 methylation  clocks  24  .  Supported  by  grants  from  the  National  Institute  on  Aging,  Hevolution 

 Foundation, Methuselah Foundation, and VoLo Foundation. 

 8 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.02.569722doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Sc7uuK
https://doi.org/10.1101/2023.12.02.569722
http://creativecommons.org/licenses/by-nd/4.0/


 Tables and Figures 

 Table 1.  Harmonized biomarkers of aging in Biolearn. 

 Name  Year  Species  Tissue  Predicts 

 Horvathv1  1  2013  Human  Multi-tissue  Age (Years) 

 Hannum  14  2013  Human  Blood  Age (Years) 

 Lin  28  2016  Human  Blood  Age (Years) 

 PhenoAge  16  2018  Human  Blood  Age (Years) 

 Horvathv2  29  2018  Human  Skin + blood  Age (Years) 

 PEDBE  30  2019  Human  Buccal  Age (Years) 

 Zhang_10  17  2019  Human  Blood  Mortality Risk 

 GrimAge  8  2019  Human  Blood  Age Adjusted by Mortality Risk (Years) 

 GrimAge2  15  2022  Human  Blood  Age Adjusted by Mortality Risk (Years) 

 DunedinPoAm38  18  2020  Human  Blood  Aging Rate (Years/Year) 

 DunedinPACE  3  2022  Human  Blood  Aging Rate (Years/Year) 

 AlcoholMcCartney  31  2018  Human  Blood  Alcohol Consumption 

 BMI_McCartney  31  2018  Human  Blood  BMI 

 DNAmTL  32  2019  Human  Blood, Adipose  Telomere Length 

 Knight  33  2016  Human  Cord Blood  Gestational Age 

 LeeControl  34  2019  Human  Placenta  Gestational Age 

 LeeRefinedRobust  34  2019  Human  Placenta  Gestational Age 

 LeeRobust  34  2019  Human  Placenta  Gestational Age 

 YingCausAge/DamAge/AdaptAge  9  2022  Human  Blood  Age (Years) 

 SmokingMcCartney  31  2018  Human  Blood  Smoking Status 
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 Table 2.  Harmonized datasets in Biolearn. 

 ID  Title  Format  Samples  Age 
 Present 

 Sex Present 

 GSE40279  Genome-wide Methylation Profiles Reveal Quantitative Views o…  Illumina450k  656  Yes  Yes 

 GSE19711  Genome wide DNA methylation profiling of United Kingdom 
 Ovar… 

 Illumina27k  540  Yes  No 

 GSE51057  Methylome Analysis and Epigenetic Changes Associated with 
 Me… 

 Illumina450k  329  Yes  Yes 

 GSE42861  Differential DNA methylation in Rheumatoid arthritis  Illumina450k  689  Yes  Yes 

 GSE41169  Blood DNA methylation profiles in a Dutch population  Illumina450k  95  Yes  Yes 

 GSE51032  EPIC-Italy at HuGeF  Illumina450k  845  Yes  No 

 GSE73103  Many obesity-associated SNPs strongly associate with DNA 
 met… 

 Illumina450k  355  Yes  Yes 

 GSE69270  Aging-associated DNA methylation changes in middle-aged 
 indi… 

 Illumina450k  184  Yes  No 

 GSE36054  Methylation Profiling of Blood DNA from Healthy Children  Illumina450k  192  No  No 

 GSE64495  DNA methylation profiles of human blood samples from a sever…  Illumina450k  113  Yes  Yes 

 GSE30870  DNA methylomes of Newborns and Nonagenarians  Illumina450k  40  Yes  No 

 NHANES  National Health and Nutrition Examination Survey  Phenotypic  2877  Yes  Yes 

 FHS  Framingham Heart Study  Phenotypic  4434  Yes  Yes 
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 Figure  1.  a.  Overview  of  Biolearn’s  functionalities.  b.  The  code  snippet  showing  that  the  DNAm 

 age  can  be  calculated  with  a  few  lines  of  code  using  Biolearn  library.  c.  Scatter  plot  of  predicted 
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 age  (y-axis)  vs. chronological  age  (x-axis)  for  the  GSE41169  (N  =  95)  and  GSE64495  (N  =  113) 

 datasets.  The  top  7  clocks  with  the  smallest  mean  absolute  errors  are  shown  in  the  plot.  Pearson’s 

 R  and  unadjusted  P-values  based  on  two-sided  tests  are  provided.  d.  Bar  graph  showing  the 

 R-square  (x-axis)  of  methylation  biomarker  prediction  vs.  chronological  age.  The  color  indicates 

 the  overall  rank  of  the  clock  based  on  the  R-square  value.  The  unadjusted  P-values  based  on 

 two-sided  tests  are  shown  on  the  bar.  e.  Stacked  bar  graph  shows  the  actual  vs.  predicted  sex 

 distribution  in  four  different  datasets:  GSE51057,  GSE42861,  GSE41169,  and  GSE64495.  The 

 accompanying table provides the sex prediction accuracy for each dataset. 
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 Figure  2.  a.  Overview  of  Biolearn’s  phenotypic  biomarker  functionalities.  The  code  snippet 

 shows  that  the  DNAm  age  can  be  calculated  with  a  few  lines  of  code  using  the  Biolearn  library. 

 b.  Scatter  plot  of  chronological  age  vs. phenotypic  age  for  the  NHANES  2010  dataset.  c,  d. 

 Survival  analysis  of  the  NHANES  2010  dataset  (N  =  2877),  stratified  by  biological  age 

 discrepancies  (marked  by  different  colors)  based  on  Phenotypic  Age  (c)  and  Mahalanobis 

 distance  metrics  (d).  Individuals  with  biological  age  higher  than  chronological  age  are  marked  as 

 biologically  older  and  vice  versa.  For  the  purpose  of  demonstration,  the  result  is  not  adjusted  by 

 chronological age. The shadow shows the standard error. 
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