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Abstract 

An accurate gene set for cellular senescence is crucial for identifying and studying senescent cells in 

single-cell RNA-seq datasets. We integrated nine existing senescence gene sets and identified a core 

senescence gene set comprising four genes: CDKN1A, CDKN2A, IL6, and CDKN2B. We found that 

these genes are ubiquitously associated with cellular senescence across human and mouse tissues. Using 

this gene set, we identified cell types enriched with senescent cells and cell-cell communication targets 

and pathways associated with cellular senescence in human and mouse single-cell datasets. 

 

Main 

Cellular senescence is a fundamental biological process in which cells enter a state of permanent cell 

cycle arrest, losing their ability to proliferate1,2. This state serves primarily as a defense mechanism 

against the uncontrolled cell division observed in cancer. However, the accumulation of senescent cells 

over time may contribute to the decline in physical and functional integrity of tissues and organs, playing 

a significant role in aging3,4. Additionally, senescent cells are implicated in the development of various 

age-related diseases, such as osteoarthritis, pulmonary fibrosis, and Alzheimer’s disease5-8. These cells 

release pro-inflammatory proteins that can alter the cellular microenvironment, affecting neighboring 

cells and contributing to chronic inflammation9. Given its profound impact on human health and potential 

as a therapeutic target, it is important to understand cellular senescence and identify its associated 

biomarkers.  

 

Single-cell RNA-sequencing (scRNA-seq) technologies hold enormous potential for studying the 

molecular characteristics of senescent cells and their interactions with other cells. However, classical 

biomarkers for cellular senescence, such as senescence-associated β-galactosidase (SA-β-gal), require 

cytochemical staining10 and cannot be directly applied to data from high-throughput sequencing. Instead, 

cellular senescence in scRNA-seq is often identified by examining whether genes in a senescence gene set 

(SnG) are highly expressed in a cell11,12. Therefore, the reliability of the SnG significantly impacts the 
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accuracy of identifying senescent cells. Several SnGs have been compiled in previous studies, including 

CSgene13, CellAge14, SeneQuest2, GenAge15, SenMayo12, the GO term “Cellular Senescence”16, the 

KEGG pathway “Cellular Senescence"17, and the Reactome pathways of “cellular senescence” and 

“Senescence Associated Secretory Phenotypes (SASP)”18. Strikingly, we found significant discrepancies 

across these SnGs. Larger SnGs such as CellAge and CSGene identify many more genes than smaller 

SnGs such as the GO term and SenMayo (Figure 1a). The Jaccard index, which measures the degree of 

overlap between two SnGs, is extremely low except for the one between two SnGs by Reactome 

pathways (Figure 1b). Out of the 1,855 senescence-related genes identified by any of the SnG, 1,115 

(60.1%) were reported only in one SnG, and only 44 (2.4%) were reported in at least five SnGs (Figure 

1c). A potential reason is that these SnGs were compiled mainly through literature curation by different 

research groups, and the discrepancy could result from varying scopes and inclusion criteria in the 

literature search process. The high level of discrepancy indicates limited reliability for a large proportion 

of genes in each SnG. Moreover, many senescence genes are specific to one tissue type19, and existing 

studies do not clarify if these SnGs can be applied generally across various tissue types. For instance, 

SenMayo12 was evaluated only in brain and bone marrow tissues. Additionally, senescence-associated 

genes can either induce or inhibit cellular senescence. This direction is crucial for accurately evaluating 

the level of cellular senescence but is not recorded by most SnGs. A reliable and tissue-ubiquitous SnG is 

still needed to facilitate the identification of cellular senescence in scRNA-seq datasets across various 

tissues. 

 

To address this issue, we performed a meta-analysis of the nine existing SnGs to identify a reliable and 

tissue-ubiquitous gene set for cellular senescence (Supplementary Table S1). Among genes reported by 

more than half of the nine gene sets, four genes were reported by eight out of the nine gene sets, including 

CDKN1A, CDKN2A, IL6, and CDKN2B (Figure 1d). These genes were reported to induce senescence 

by both CellAge and SeneQuest, two gene sets that recorded the direction of senescent genes. Among 

these, CDKN1A and CDKN2A, which encode the p21 and p16 proteins respectively, are well-known 

markers of senescence20. Although CDKN1A and CDKN2A were not included in the SenMayo gene set, 

they were treated as gold-standard senescence genes and excluded for evaluation purposes. For genes that 

appear in at least five gene sets, almost all show consistent directions across SnGs (Figure 1d).  

 

We then systematically evaluated the reliability and tissue ubiquity of senescent genes reported by 

different numbers of SnGs in human and mouse. While it is not possible to directly assess a gene’s 

association with cellular senescence across various tissues due to the lack of experimental techniques and 

data, we used the gene’s association with age as the primary evidence, given that cellular senescence is a 
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hallmark of aging4. We collected GTEx21 bulk RNA-seq data from 30 human tissues and performed a 

correlation analysis between gene expression levels and ages of samples within each tissue (Figure 1e, 

Methods, Supplementary Table S2). For each gene, we calculated the proportion of tissues with positive 

associations with age and the proportion with negative associations, and selected the greater of these two 

proportions. (Figure 2a). We also calculated the proportion of tissues with significant associations with 

age (Figure 2b). For genes with consistent senescence direction (induction or inhibition) across all SnGs, 

we calculated the proportion of tissues where the signs of age associations agree with the senescence 

direction reported by the SnGs (Figure 2c). Additionally, senescent cells are enriched with cells in the G1 

phase12 since senescence inhibits cells from entering the S or M phases of the cell cycle22. Therefore, as 

the secondary evidence, we collected scRNA-seq data from 24 human tissues from the Tabula Sapiens23 

and 23 mouse tissues from the Tabula Muris24, and calculated the enrichment of cells in the G1 phase, 

comparing cells expressing or not expressing a gene within each tissue (Methods, Figure 2d). Finally, 

since proteins with similar functions are more likely to interact with each other25, genes associated with 

cellular senescence are likely to have higher protein-protein interaction (PPI) scores in a PPI network. As 

the tertiary evidence, we calculated PPI scores for genes appearing in different numbers of SnGs for both 

human and mouse using the STRING PPI database26 (Methods, Figure 2e). 

 

Figures 2a-e demonstrate that genes reported by a greater number of SnGs have higher values in all five 

metrics, suggesting that genes with more substantial literature support exhibit greater reliability and tissue 

ubiquity for cellular senescence. Specifically, genes reported by at least eight SnGs, which are all 

senescence-inducing (Figure 1d), show positive associations with age in an average of 84.9% human 

tissues (Figure 2a,2c), are significantly associated with age in an average of 55.4% human tissues (Figure 

2b), have averaged log odds ratios for G1 cell enrichment of 0.659 in human and 0.601 in mouse (Figure 

2d), and have PPI scores of 5 in both human and mouse (Figure 2e). These values are significantly higher 

than those for genes reported by no or one gene set (Figure 2a-d). In comparison, genes reported by fewer 

than eight SnGs do not always show significantly higher values in these metrics (Figures 2a-d). Such 

evidence suggests that the four genes reported by at least eight SnGs, namely CDKN1A, CDKN2A, IL6, 

and CDKN2B, constitute a core senescence gene set that can be broadly applied to different tissue types 

in both human and mouse.  

 

Using this core senescence gene set, we systematically identified and studied senescent cells (SnCs) in the 

Tabula Sapiens and Tabula Muris scRNA-seq data. We defined SnCs as cells expressing at least three of 

the four core senescence genes, since CDKN2A is expressed at low levels in single-cell data, even in 

senescent cells12. The proportion of SnCs within each cell type is highly conserved between human and 
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mouse (correlation=0.804, Figures 2g-h) and are relatively low (Supplementary Table S3). In human, 

79.2% of tissues and 80% of cell types have SnC proportions below 5%. In mouse, 95.7% of tissues and 

100% of cell types have SnC proportions below 5%. SnCs are most enriched in fibroblasts in both human 

and mouse27, with senescent fibroblasts present in 77.8% of human tissues and 75% of mouse tissues. 

Other cell types, such as epithelial cells and stromal cells, were also reported in the literature as being 

associated with senescence12,27. We then analyzed cell-cell communications between SnCs and other cell 

types with CellChat28. Figure 2i-j show example interaction plots in the human trachea tissue. T cells and 

epithelial cells are among the top interaction targets of SnCs12,29 (Figure 2k), consistent across human and 

mouse (correlation=0.417, Figure 2l, Supplementary Table S4). Several key pathways known as 

hallmarks of cellular senescence are consistently enriched across tissues (Figure 2m), including 

COLLAGEN, which is responsible for extracellular matrix remodeling and enlarged phenotypes of 

senescent cells30-32; LAMININ, corresponding to the loss of laminin B1 that compromises nuclear 

integrity in senescent cells1,33; MHC-I, which is elevated in senescent cells34,35; and MIF, which is 

involved in senescence-associated inflammation and oxidative stress response pathways36,37. These 

pathways are again consistent across human and mouse (correlation=0.816, Figure 2n, Supplementary 

Table S5).  

 

In summary, we compiled a tissue-ubiquitous gene set associated with cellular senescence and extensively 

evaluated it across 41 tissues from both human and mouse. We identified cell types enriched with 

senescent cells and cell-cell communication targets and pathways associated with cellular senescence, 

with conservation observed across human and mouse tissues. This gene set offers a convenient tool for 

identifying senescent cells in scRNA-seq data, particularly in tissues and cell types with limited prior 

knowledge of cellular senescence. 

 

 

Methods 

 

Curation of senescence gene sets 
Gene sets of CSgene and SenMayo were downloaded from the original publications. Gene sets of 

CellAge and GenAge were downloaded from the Human Ageing Genomic Resources (HAGR)38. GO 

term of Cellular Senescence was downloaded from MSigDB39,40. Reactome terms of Cellular Senescence 

and Senescence Associated Secretory Phenotype were downloaded from R package 

ReactomeContentService4R version 1.10.041. KEGG pathway of Cellular Senescence was downloaded 

from R package KEGGREST version 1.42.042. Gene set of SeneQuest was downloaded from the 
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SeneQuest database4, and a gene was retained if it had at least 15 publication records and at least 80% of 

the publication records had an agreeing direction of senescence induction or inhibition. The complete 

assembly of SnGs can be found in Supplementary table S1. To apply these gene sets to mouse bulk and 

single-cell RNA-seq analysis, genes were converted to their mouse homologs by the Mouse Genome 

Informatics database (MGI)43. 

 

GTEx bulk RNA-seq analysis  

Gene expression matrices of Genotype-Tissue Expression (GTEx) bulk RNA-seq were downloaded from 

GTEx portal21. Tissues with less than 100 samples were filtered out. Age information of each sample, 

which was provided as an interval by GTEx, was converted into a numerical value by averaging the two 

end points of the age interval. Within each tissue, genes with >1 log2(TPM + 1) values in at least 10% of 

the samples were retained. Linear regression was performed within each tissue using R package limma 

version 3.54.244. The response variables were the gene expression raw counts, and the independent 

variables were age and sex of samples. P-values were adjusted for multiple testing by the BH procedure45, 

and adjusted p-values less than 0.05 were considered to be statistically significant.  

 

Single-cell RNA-seq analysis 
Single-cell RNA-seq datasets of Tabula Sapiens23 and Tabula Muris24 dataset were downloaded from the 

original publications. Single-cell data were analyzed using Seurat version 4.3.0. Specifically, raw counts 

were log-normalized by the “NormalizeData” function. The original cell type annotations of both datasets 

were reannotated to have a matching level of annotations (Supplementary Table S6). Cell cycle was 

determined using the “CellCycleScoring” function. Genes expressed in less than 5% of the cells were 

filtered out in each human or mouse tissue.  

We defined the G1 score for a gene as follows to account for the possibility that a gene can either induce 

or inhibit senescence. 

 

𝐴	 = 	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑖𝑛	𝐺1	𝑐𝑒𝑙𝑙	𝑐𝑦𝑐𝑙𝑒	𝑎𝑛𝑑	𝑤𝑖𝑡ℎ	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑔𝑒𝑛𝑒 

𝐵 = 	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑖𝑛	𝐺1	𝑐𝑒𝑙𝑙	𝑐𝑦𝑐𝑙𝑒	𝑎𝑛𝑑	𝑤𝑖𝑡ℎ	𝑧𝑒𝑟𝑜	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑔𝑒𝑛𝑒 

𝐶	 = 	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑛𝑜𝑡	𝑖𝑛	𝐺1	𝑐𝑒𝑙𝑙	𝑐𝑦𝑐𝑙𝑒	𝑎𝑛𝑑	𝑤𝑖𝑡ℎ	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑔𝑒𝑛𝑒 

𝐷	 = 	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑛𝑜𝑡	𝑖𝑛	𝐺1	𝑐𝑒𝑙𝑙	𝑐𝑦𝑐𝑙𝑒	𝑎𝑛𝑑	𝑤𝑖𝑡ℎ	𝑧𝑒𝑟𝑜	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑔𝑒𝑛𝑒 

𝐺1	𝑠𝑐𝑜𝑟𝑒	 = 	𝑙𝑜𝑔(𝑚𝑎𝑥{	!/#
$/%

	 , $/%
!/#

	})	  
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We used CellChat version 1.6.128 to perform cell-cell communication analysis between SnCs and other 

cell types. The interaction strengths between cell types and the interaction strengths of signaling pathways 

for SnCs were calculated using the standard CellChat pipeline in each tissue. To compare across different 

tissues, the interaction strength between a cell type and SnC was divided by the sum of interaction 

strengths of all cell types outgoing from SnCs. Similarly, the interaction strength of a signaling pathway 

outgoing from SnCs was divided by the sum of interaction strengths of all significant signaling pathways 

outgoing from SnCs. 
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Supplementary Information 

Supplementary Table S1: Integrative results of nine existing SnGs. The first column “Gene_symbol” 

shows the human gene symbols. The following nine columns indicate whether a gene was reported by an 

SnG. The column “number of occurrences” counts the number of SnGs reporting a gene. The following 

three columns show the senescence directions reported by the three SnGs that have direction information 

(“up” stands for inducing senescence and “down” stands for inhibiting senescence). If an entry is empty 

in the last three columns, it indicates that the gene's direction was not reported. 

Supplementary Table S2: Differential gene expression results in GTEx bulk-RNA-seq with respect to 

age. Each sheet corresponds to the analysis results for a tissue specified by the sheet name. The first 

column in each sheet represents gene symbols, followed by logFC (log 2 fold change), AveExpr (average 

expression levels), t (t statistics), P.value (p-values), adj.P.Val (p-values adjusted by the BH procedure), 

and B (B-statistics). 

Supplementary Table S3: Proportion of SnCs in each pair of tissue (columns) and cell type (rows) in the 

Tabula Sapiens (human) and Tabula Muris (mouse) single-cell dataset. “NA” indicates the cell type is not 

present in the corresponding tissue. 
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Supplementary Table S4: Interaction strengths from SnCs towards other cell types (columns) in each 

tissue (rows). “NA” indicates the cell type is not present in the corresponding tissue. 

Supplementary Table S5: Interaction strength of each signaling pathway (columns) for interactions 

where SnCs were senders in each tissue (rows). 

Supplementary Table S6: Cell type annotation conversion for the Tabula Sapiens (human) and Tabula 

Muris (mouse) single-cell datasets. Column “ct_ts” and “cleaned” in the first sheet indicate the original 

cell_ontology_class annotations in the Tabula Sapiens and the cleaned cell types; Column “ct_tm” and 

“cleaned” in the second sheet indicate the same for the Tabula Muris dataset. 
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Fig.1: a, Numbers of genes in each SnG. b, Jaccard index between each pair of SnGs. c, Number of genes reported by different numbers of SnGs. d, SnG 

memberships and senescence directions of 44 genes that are reported by at least five SnGs. e, Association between gene expression and age in GTEx bulk RNA-seq 

data for the 44 genes. Colors indicate the directions of age associations. Transparency levels indicate statistical significancy. Sizes of dots indicate log2 fold changes. 
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Fig2. a-e, Propor&on of &ssues with the same signs of associa&ons with age (a), propor&on of &ssues with sta&s&cally significant associa&ons with age (b), 

Propor&on of &ssues with agreeing signs of age associa&ons and SnG senescence direc&ons (c), log odds ra&os for G1 cell cycle enrichment in human (le>) and 

mouse (right) (d), and PPI scores in human (le>) and mouse (right) (e). “*” means p-value < 0.05 and p-value > 0.01. “**” means p-value < 0.01 and p-value > 0.001. 

“ns.” means not sta&s&cally significant. Dots stand for averaged numbers. f, Human PPI network of the core senescence gene set. g, Propor&on of SnCs in each 

&ssue and cell type in human (le>) and mouse (right). Overall propor&on is calculated as SnC propor&on across all cell types within a &ssue (rows) or across all 

&ssues within a cell type (column). h, Overall SnC propor&ons of each cell type in human and mouse. Top five cell types are highlighted in red. i, CellChat interac&on 

targets of SnCs in human trachea &ssue. j, CellChat interac&on pathways in human trachea &ssue. k, SnC interac&on target strengths in each &ssue and cell type in 

human (le>) and mouse (right). l, Averaged SnC interac&on target strengths of each cell type in human and mouse. Top five cell types are highlighted in red. m, SnC 

interac&on pathway strengths in each &ssue and cell type in human (le>) and mouse (right). n, Averaged SnC interac&on pathway strengths of each pathway in 

human and mouse. Top five pathways are highlighted in red.  
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