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Abstract Recent advances indicate that biological ag-
ing is a potentially modifiable driver of late-life function
and chronic disease and have led to the development of
geroscience-guided therapeutic trials such as TAME
(Targeting Aging with MEtformin). TAME is a pro-
posed randomized clinical trial using metformin to af-
fect molecular aging pathways to slow the incidence of
age-related multi-morbidity and functional decline. In
trials focusing on clinical end-points (e.g., disease diag-
nosis or death), biomarkers help show that the interven-
tion is affecting the underlying aging biology before

sufficient clinical events have accumulated to test the
study hypothesis. Since there is no standard set of bio-
markers of aging for clinical trials, an expert panel was
convened and comprehensive literature reviews con-
ducted to identify 258 initial candidate biomarkers of
aging and age-related disease. Next selection criteria
were derived and applied to refine this set emphasizing:
(1) measurement reliability and feasibility; (2) relevance
to aging; (3) robust and consistent ability to predict all-
cause mortality, clinical and functional outcomes; and
(4) responsiveness to intervention. Application of these
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selection criteria to the current literature resulted in a
short list of blood-based biomarkers proposed for
TAME: IL-6, TNFα-receptor I or II, CRP, GDF15,
insulin, IGF1, cystatin C, NT-proBNP, and hemoglobin
A1c. The present report provides a conceptual frame-
work for the selection of blood-based biomarkers for use
in geroscience-guided clinical trials. This work also
revealed the scarcity of well-vetted biomarkers for hu-
man studies that reflect underlying biologic aging hall-
marks, and the need to leverage proposed trials for
future biomarker discovery and validation.
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Introduction

The geroscience hypothesis holds that a specific set
of shared biological mechanisms of aging increases
the susceptibility of aged individuals to several
chronic diseases and loss of function and that thera-
pies developed to target such shared Bdrivers^ have
the potential to delay the onset and progression of
multiple chronic diseases and functional decline. The
inter-related cellular biologic processes that drive the
biology of aging are known as Bpillars^ or
Bhallmarks^ of aging, and accumulating evidence
from mammalian animal models supports the pre-
mise that geroscience-guided interventions targeting
these processes can extend healthspan and lifespan
(Barzilai et al. 2016; Burch et al. 2014; Espeland
et al. 2017; Kennedy et al. 2014; Longo et al. 2015;
Sierra 2016a). A new generation of clinical trials is
being designed to test the geroscience hypothesis in
humans (Justice et al. 2016; Newman et al. 2016b;
Sierra 2016b). One example is the proposed multi-
center clinical trial, Targeting Aging with MEtformin
(TAME), which will evaluate whether metformin, a
commonly used diabetes drug that also targets the biol-
ogy of aging, can (1) prevent or delay the incidence of
multiple age-related chronic diseases, (2) help maintain
function, and (3) influence biological markers of aging
in older persons (Barzilai et al. 2016). To accomplish
this latter aim, a strategy to select the most appropriate
biomarkers of aging to be included in geroscience-
guided clinical trials is needed.

Hypothetically, a biomarker of aging should re-
flect the underlying biology, and a change in bio-
marker levels should have parallel changes that occur
in the susceptibility to disease and loss of function.
Thus, interventions targeting aging should result in
changes in biomarkers that will eventually delay the
incidence, accumulation, clinical evolution, and
functional consequences of chronic age-related dis-
eases. One of the critical roles played by biomarkers
could be that of surrogate endpoints reflective of risk
and progression of several major diseases. In support
of this role, the US Food and Drug Administration
(FDA) and the Institute of Medicine highlighted the
importance of biomarkers as surrogate measures in
drug development and trials involving chronic dis-
eases such as cancer and heart disease; however, few
existing biomarkers have sufficient clinical evidence
of association with the rate of development of aging
phenotypes and multi-morbidity ((IOM) 2010; Bio-
markers Definitions Working 2001). The FDA cur-
rently does not consider aging an indication for drug
development or labeling, which may also impede the
emergence of knowledge supporting discovery and
validation of geroscience-relevant biomarkers. As a
result, there are at this time no approved or common-
ly accepted biomarkers of aging for clinical trials, nor
is there a consensus set of validated biomarkers of the
biologic pillars or hallmarks of aging that would be
applicable to clinical research. This poses a major
translational gap that must be bridged in order to
facilitate scientific progress.

The purpose of this report is to outline a conceptual
framework and evidence-based approach to the prioriti-
zation and selection of a panel of blood biomarkers for
use in randomized controlled clinical trials of a
geroscience therapy. A multi-disciplinary Biomarkers
Workgroup convened for a planning workshop and
met weekly by phone over an 8-month period. The
Biomarkers Workgroup defined biomarker criteria,
prioritized selection parameters, and provided guid-
ance for resource development and inclusion of
discovery-based platforms. The development of the
TAME trial served as an opportunity to apply the
selection criteria to putative blood-based biomarkers
identified through an exhaustive literature review.
The result is an evidence-based short list of proposed
biomarkers for the TAME trial, and a framework that
could be applied to next-generation clinical trials
targeting aging.
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Conceptual framework

Biomarker definitions According to consensus defini-
tions by Baker and Sprott (Baker III and Sprott 1988;
Sprott 1988, 2010), and the American Federation for
Aging Research (AFAR), biomarkers of aging are
measures of a biological parameter that, either
alone or as a multivariate composite, monitor a
biological process underlying aging rather than ef-
fects of a specific disease; predict the rate of aging
and mortality better than chronological age; can be
safely tested across repeat measures in the same
organism; and work in humans and in laboratory
animals such as mice. The Biomarkers Workgroup
adapted these definitions to develop selection
criteria tailored to the context of geroscience-
guided randomized clinical trials:

1. Measurement reliability and feasibility. The bio-
marker should be feasible to measure in a clinical
trial without incurring undue risk to human subjects,
and meet trial specific reliability requirements (see
BTrial Context^ below), with standardized
measurement.

2. Represent biologic aging processes. The biomarker
should have face validity such that it represents a
process or processes relevant to biologic aging hall-
marks, and changes in a measurable and consistent
manner with chronological age.

3. Robust and consistent association with risk of death,
and clinical/functional trial endpoints. Association
with risk. The biomarker should be consistently
associated with increased risk of clinical and func-
tional endpoints including all-cause mortality even
when controlling for chronological age. Ideally, the
biomarker would be involved in the causal pathway,
such that direct manipulation of the biomarker
changes the associated risk, but at minimum, the
biomarker level would move in a direction that
predicts the clinical or functional outcome. Robust.
The changes in biomarker level with age and asso-
ciations with risk should be robust across species,
datasets, or populations.

4. Responsive to intervention. A biomarker of aging
for geroscience-guided trials should be responsive
to interventions that affect the biology of aging
ideally over a relatively short period of time. A
quick response to intervention would allow for
shorter trials for fully vetted biomarkers.

The criteria above were developed for research stud-
ies in humans. Foundational efforts to identify and cat-
egorize the cellular and molecular Bhallmarks^ of aging
introduced a host of potential biomarkers for mammali-
an aging based on evidence in mouse models and some
simpler organisms such as Caenorhabditis elegans and
Drosophila melanogaster. Clinical translation of these
biomarkers can be problematic, with barriers such as
access to tissues, environmental or genetic control, and
use of resource and assays that are not feasible in clinical
research. However, reports often mix evidence from
animal models and humans indiscriminately, and aside
from a few thoughtful reviews and studies, relative-
ly, little work has emerged on measures of the
biologic Bhallmarks^ of aging specifically for hu-
man research (Burkle et al. 2015; Khan et al. 2017;
Rochon et al. 2011). Accordingly, the present
framework presented focuses solely on markers that
can be measured in humans. Though focused on
human research, analogous frameworks to reverse
translate for preclinical testing in mammalian spe-
cies such as rodent, dog, and nonhuman primate
can be envisioned.

Trial context This framework should be tailored to the
specific clinical trial design or investigational drug be-
ing used. It is broad enough to include biochemical
assays, clinical measures, imaging, and physiological
tests, such as gait speed, grip strength, cognitive assess-
ments, spirometry, and blood pressure. Specific bio-
markers selected or types of biomarkers considered
depend primarily on the context of the trial. Importantly,
the determination of the biomarker must be feasible for
the population, size, duration, budget, and logistical
constraints of the clinical trial. Trial context dictates:

& Feasibility within trial design:

– Acceptable additional risk to participants for bio-
marker determination

– Inclusion of proposed measures within clinical
visits and resource availability

& Reliability of assays:

– Accuracy of assay and agreement across technical
replicates

– Assay short-term test-retest reliability (correlation
≥ 0.7)
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– Reliability and reproducibility of measurement
across trial sites or laboratories

& Sensitivity to detect change:

– Assay detection limits in specific study population
– Within-subject variation over study duration (e.g.,

stability over months, years)
– Estimated intervention effects on biomarker

measure.

Changes in biomarker levels should be consistent-
ly related to changes in risk of mortality, disease, or
functional outcomes and should be reasonably robust
to confounders and common medical maneuvers in
those recruited. This requires careful consideration
of the specific population, including age and sex
specific biomarker reference ranges, effects of co-
morbid conditions, and concurrent use of common
medications. An example is low-density lipoprotein
cholesterol (LDL-C), which is a prominent biomark-
er of atherosclerotic heart disease, and in middle-
aged adults, elevated levels of LDL-C are associated
with greater risk of cardiovascular related events and
mortality. However, at advanced ages, the converse
is true, and low levels of LDL-C may be related to
higher risk. Moreover, commonly prescribed medi-
cations to control lipid levels could result in a
change in LDL-C and related biomarkers that are
independent of the investigational drug and not re-
flective of a change in underlying aging biology
(High and Kritchevsky 2015).

Biomarker categories The Biomarkers Workgroup
identified three primary biomarker categories consis-
tent with models proposed by NIH Biomarker Defi-
nitions Working Groups and FDA guidance, markers
of the (A) investigational drug, (B) underlying biol-
ogy, and (C) clinical disease outcomes. Biomarkers
of the investigational drug can contribute knowledge
about clinical pharmacology and inter-individual
variation in responses to treatments, and can include
circulating measures of levels of the drug or its
relevant metabolites, or known drug-specific effects
that could mediate effects on trial outcomes. Markers
of underlying biology provide proof of concept and
mechanistic insight, and may suggest future thera-
peutic candidates. Biomarkers of the clinical disease
(s) being targeted or population studied may provide

early indicators of drug effects on clinical disease
and could serve as surrogate trial endpoints. The
final selection of biomarkers addressing effects of
the investigational drug and clinical outcomes
should be matched to the unique features of each
individual trial, yet overarching features of bio-
markers linking the underlying biology to clinical
outcomes should have a degree of consistency across
all proposed geroscience-guided clinical trials. The
present report is focused on those features of blood-
based biomarkers of biologic aging or age-related
diseases that may be generalizable to other
geroscience-guided trials.

Case study: Targeting Aging with MEtformin
(TAME)

TAME is a proposed 6-year double blind placebo-
controlled randomized trial of metformin involving
3000 nondiabetic men and women aged 65–80 years to
be recruited across 14 US-based sites. Metformin was
selected based on its effects on biological hallmarks of
aging in cells and animal models: metformin inhibits the
mitochondrial complex I in the electron transport chain
and reduces endogenous production of reactive oxygen
species (ROS) (Batandier et al. 2006; Bridges et al. 2014;
Kickstein et al. 2010); activates of AMP-activated kinase
(AMPK) (Cho et al. 2015; Duca et al. 2015; Zheng et al.
2012), decreases insulin/insulin-like growth factor-1
(IGF-1) signaling (Barzilai et al. 2016; Nair et al. 2014)
(Foretz et al. 2010, 2014), reduces DNA damage (Liu
et al. 2011); inflammation and the senescence associated
secretory phenotype (Lu et al. 2015; Moiseeva et al.
2013; Saisho 2015). When administered in vivo in ro-
dents, the lifespan effects of metformin alone are either
not observed (Smith Jr. et al. 2010; Strong et al. 2016), or
relatively modest (~ 4–6% extension of median lifespan)
(Martin-Montalvo et al. 2013). However, the effects on
health are substantial, with improvements on tests of
physical and cognitive function, cataracts, oral glucose,
and insulin tolerance improved by up to 30% (Allard
et al. 2015; Martin-Montalvo et al. 2013). These findings
are coupled by observation that in persons with diabetes,
the use of metformin is associated with lower rates of
cancer (Landman et al. 2010; Lee et al. 2011; Libby et al.
2009), cardiovascular risk factors and events (Abualsuod
et al. 2015; Kooy et al. 2009), dementia (Luchsinger et al.
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2016; Ng et al. 2014), and all-cause mortality (Bannister
et al. 2014; Johnson et al. 2005; Roussel et al. 2010;
Schramm et al. 2011). TAME was conceptualized as a
prototype geroscience-guided trial using metformin
to target clinical outcomes of aging. Main trial out-
comes are the incidence of (1) death or any new age-
related chronic disease (myocardial infarction,
stroke, hospitalized heart failure, cancer, dementia
or mild cognitive impairment, multimorbidity) and
(2) major age-related functional outcomes (major
decline in mobility or cognitive function, or onset
of activities of daily living limitation). Biomarkers
of aging comprise an exploratory trial outcome, and
we hypothesize that metformin’s beneficial effects, if
observed, will be associated with markers of biologic
aging.

As there is currently no consensus on what
biomarkers of aging should be preferentially ad-
dressed in geroscience-guided trials, a Biomarkers
Workgroup was convened for a planning workshop
(NIA; Baltimore, MD) and met weekly by phone
for 8 months (Oct 2017–May 2018). The workgroup
consisted of experts in the basic biology of aging,
metformin pharmacology, gerontology, biostatistics,
epidemiology, endocrinology, and geriatric medicine
(see author list for participating workgroup mem-
bers). The workgroup led defined biomarker param-
eters and conducted an exhaustive search to pre-
specify biomarkers and rigorously apply the trial
biomarker criteria. An overview of the process of

biomarker identification, prioritization and selection,
and proposed list of biomarkers is shown in Fig. 1.

Candidate biomarker identification A total of 258 po-
tential biomarkers of aging were identified by input
from individual members of the Biomarkers
Workgroup. Additionally, literature was reviewed to
identify a set of biomarkers of biological aging: pub-
lished multi-assay composites (Belsky et al. 2015;
Belsky et al. 2017a; Fried et al. 2001; Howlett et al.
2014; Li et al. 2015; Mitnitski et al. 2013, 2015;
Mitnitski and Rockwood 2015; Sanders et al. 2014;
Sebastiani et al. 2017), consensus-derived panels
(Burkle et al. 2015; Engelfriet et al. 2013; Jylhava
et al. 2017; Khan et al. 2017; Lara et al. 2015; Wagner
et al. 2016; Xia et al. 2017), and large aging studies
(Martin-Ruiz et al. 2011; Rochon et al. 2011) were
consulted and 229 candidate biomarkers identified. An
additional 29 recognized biomarkers of TAME’s clinical
cardiovascular, cancer, and cognitive outcomes were
identified (Supplement Material 1).

Exclusions and prioritization Sixty-seven biomarkers
of aging that were not blood-based (e.g., imaging, phys-
iologic) were omitted from consideration as several
functional measures were already considered for deter-
mination of secondary trial outcome. Thirty-nine
markers were excluded based on participant or resource
burden, low feasibility, or assay reliability concerns
(Supplemental Material 2). For example, measures that

258 Candidate Biomarkers Identified
Biologic Aging (229) or TAME Clinical Disease Outcomes (+29)

Identification

86 Candidate Biomarkers Ranked 
Frequency of use, Expert knowledge, Clinical disease

Prioritization

Pre-Specified Biomarkers

Biomarkers Workgroup Comprehensive Reviews

36 Omitted from Selection Filter:
• 3 Glycemic & metformin markers
• 33 Routine clinical chemistries & 

Safety measures

106 Biomarkers Excluded:
• 67 Not blood-based or biochemical 

(e.g. imaging, function) 
• 39 low feasibility for n=3000, or 

low or unknown assay reliability

Selection

Highest Ranked Biomarkers Considered
1. Face validity: Marker of biological aging process or hallmark? Reliable 
and measurable change with age? (3 excluded of top 20)
2. Robust across datasets and populations? (5 excluded of top 20)
3. Associated with risk of mortality independent of age? Clinical and 
functional TAME outcomes? (2 excluded of top 20)
4. Responsive to intervention? (limited existing clinical evidence for many)

Fig. 1 Overview of process to
derive a pre-specified list of
candidate biomarkers for
geroscience-guided clinical trials.
Steps taken to identify, prioritize,
and select blood-based candidate
biomarkers for the proposed
multicenter clinical trial on aging,
Targeting Aging with MEtformin
(TAME)
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require access to cells derived from standard blood draw
(e.g., CD4/CD8 T cell ratio, T cell p16INK4a expression,
mitochondrial respirometry) may be ideal biomarkers of
aging, but have low feasibility for large trials due to
significant resource burden, need of skilled laboratory
personnel and specialized equipment that may not be
readily available or easily standardized across clinical
trial sites. Other biomarkers demonstrate uncertain assay
reliability or validity. These include circulating growth/
differentiating factor 11 (GDF11) assays using antisera
with cross reactivity issues (Rodgers 2016; Rodgers and
Eldridge 2015) or require a highly specific
immunoplexed LC-MS/MS assay which is reliable but
may not be feasible for large-scale trials such as TAME
(Schafer et al. 2016). Additionally, several cytokines
(e.g., interleukin-2, interleukin-1β, interferon-γ) dem-
onstrate inconsistent detectability resulting from analyte
degradation in long-term storage, or low assay sensitiv-
ity (McKay et al. 2017).

The remaining 86 candidate biomarkers were ranked
based on frequency of appearance in the literature and
weighted by strength of expert opinion and utility in
monitoring disease outcomes (see Supplemental
Material 1).

1. Frequency of use: appearance in 17 consulted pub-
lications was tallied.

2. Utility in diagnosing or monitoring disease: 48 bio-
markers of clinical importance for clinical disease
evaluation were noted from FDA guidance docu-
ments or disease association statements (e.g., Amer-
ican Heart Association). For the CVD endpoints
MI, stroke, and CHF, 33 total biomarkers were
identified (18 common to aging biomarkers list, 15
new) (Chow et al. 2017; Jickling and Sharp 2015;
Thygesen et al. 2012). Two FDA-recognized
markers for early AD or MCI were identified
(Administration 2018), and 11 for cancer prognosis,
staging, or disease monitoring.

3. Expert opinion: markers that appeared in the litera-
ture were weighted based on strength of Biomarker
Workgroup expert suggestion: suggested exclusion
(−), unmentioned (), consideration (+), recommend-
ed (++), and strongly recommended (+++).

Biomarker selection The top 20 ranked candidate bio-
markers were evaluated according to the Biomarker
Workgroup-identified criteria. The Biomarker

Workgroup evaluated face validity of biomarker, and
considerations related to feasibility and potential con-
found by common medical conditions or treatments.
Literature reviews using Pubmed were conducted for
each biomarker to evaluate association with risk, robust-
ness, and responsiveness to relevant interventions
(overview Table 1, and full listings in Supplemental
Material) with filters for (1) age (≥ 45 years), (2) prospec-
tive studies, and (3) human or clinical research. Direction
of associations and magnitude of effects across publica-
tions, datasets, and populations were tracked.

& Association with risk of clinical disease or function-
al decline/disability onset: PubMed search strategies
were used to evaluate association of each individual
candidate biomarker with risk of clinical events,
disease-related mortality, disability, or functional
declines and all-cause mortality (Supplemental Ma-
terial 3). In addition, separate searches for biomarker
with each clinical disease (CVD, MCI/AD, cancer)
and functional outcome (mobility, disability, frailty)
were also conducted and evidence of associations
noted. Studies in populations with acute or severe
diseases were excluded. Given wide differences in
outcomes, populations, and model adjustments, the
estimated effects sizes were not pooled or systemat-
ically summarized.

& Associations with risk of death: PubMed searches
used: <selected biomarker> AND Bmortality^ OR
Ball-cause^ OR Bdeath^ OR Blifespan.^ Publication
reference lists and the website MortalityPredictors.
org were consulted to identify additional relevant
publications. A detailed listing of studies is included
in SupplementalMaterial 3. Estimated effect sizes of
biomarker’s association with all-cause death were
summarized as age-adjusted hazard ratios (HR),
with range HRs, and number of studies age-
adjusted models considered listed (Table 1).

& Responsiveness to interventions: PubMed search
and published data from the Diabetes Prevention
Program (DPP) were consulted to determine wheth-
er the biomarker of interest was sensitive to change
in less than 6 years when exposed to interventions of
interest. Geroscience-identified interventions were
searched (e.g., metformin, caloric restriction). If data
were available, the percent change in the candidate
biomarker with metformin treatment was evaluated
compared to reference group or placebo control
(Supplemental Material 4).
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Based on this systematic process, 8 of the 258 pre-
specified blood-based biomarkers remained as candi-
date markers to use as an exploratory outcome:

& Inflammation: interleukin-6 (IL-6), tumor necrosis
factor α receptor II (TNFRII), high sensitivity c-
reactive protein (CRP)

& Stress response and mitochondria: growth differen-
tiating factor 15 (GDF15)

& Nutrient signaling: fasting insulin, insulin-like
growth factor 1 (IGF-1)

& Kidney aging: cystatin C
& Cardiovascular: N-terminal B-type natriuretic pep-

tides (NT-proBNP)
& Metabolic aging: hemoglobin A1c

Each biomarker and its role are briefly explained a
graphical table (Fig. 2). A few specific comments on
selections are provided here: TNFα and TNF receptors
(I, II) were examined; however, TNFα receptors (e.g.,
TNFRII) were workgroup recommended to minimize
analytic variability, given the fact that serum TNFα
serum levels tend to be low and unstable with storage
at − 80 °C (Barron et al. 2015; Cesari et al. 2003; Marti
et al. 2014). Moreover, IL-6, CRP, and TNFα are com-
monly used and are independently associated with mor-
tality risk (Bruunsgaard et al. 2003; Lio et al. 2003;
Penninx et al. 2004; Reuben et al. 2002; Roubenoff
et al. 2003; Stork et al. 2006), but the combination of
IL-6 and TNF receptor levels has been shown to per-
form particularly well when combined as a pro-

Blood-based biomarkers for geroscience-guided trials
Biomarker Underlying Biologic Process & Role

IL-6, CRP 
TNFRII

Inflammation & Intercellular Signaling
Interleukin 6 (IL-6) is a proinflammatory cytokine and Tumor Necrosis Factor-α RII is a TNF -α receptor 
involved in acute-phase response. C-Reactive Protein (CRP) is an acute phase protein produced in 
response to inflammation. Cytokine dysregulation is a driver of pathophysiologic processes leading to 
disease, functional decline, frailty, and death.

GDF15

Stress Response & Mitochondria
Growth Differentiating Factor 15 (GDF15) is a member of the TGF-β superfamily robustly associated 
with mortality, cardiovascular events, cognitive decline and dementia. GDF15 is increasingly 
recognized in mitochondrial dysfunction, and as a biomarker of aging.

IGF-1
Insulin

Nutrient Signaling 
Disruption of the insulin/ insulin-like growth factor (IGF-1) signaling pathway is implicated in longevity in 
animal models. In humans, IGF-1 and fasting insulin are responsive to caloric restriction, and low IGF-1 
in growth hormone receptor deficiency conveys disease protection.

Cystatin-C

Kidney Aging
Cystatin C, an extracellular inhibitor of cysteine proteases, is  a marker of renal disease and aging. It is 
an independent risk factor for all cause and CVD-related mortality, and multi-morbidity, and higher 
levels are consistently associated with poor physical function and cognition.

NT-proBNP

Cardiovascular Health
B-type natriuretic peptides (BNP, NT-proBNP) are secreted in response to cardiomyocyte stretching to 
decrease vascular resistance. NT-proBNP has a greater-half life and accuracy compared with BNP and 
is used to diagnose and establish prognosis for heart failure. 

HGBA1c

Metabolic Aging
Glycated hemoglobin (hemoglobin A1c, HGBA1c) is formed in a non-enzymatic glycation pathway and 
is a marker for 3-mo average plasma glucose. High HGBA1c reflects poor glucose control, and in older 
nondiabetics is strongly associated with death, chronic disease, and functional decline.

Molecular 
Signature

Epigenetic, Interdependent, Multi-Omic
Data intensive molecular platforms can explore global changes in epigenetic, transcriptomic, proteomic 
and proteostasis, and small metabolite signatures.  These approaches may better capture complex and 
multifactorial processes underlying aging. 

Fig. 2 Graphical table. IL-6, CRP, TNFRII: Giovannini et al.
2011; Kennedy et al. 2014; Lopez-Otin et al. 2013; Michaud
et al. 2013; Cameron et al. 2016; Fontana et al. 2006; Harvie
et al. 2011; Lettieri-Barbato et al. 2016. GDF15: Bauskin et al.
2005; Brown et al. 2002, 2006; Jiang et al. 2016; Kempf et al.
2007; Lankeit et al. 2008; Welsh et al. 2003; Wiklund et al. 2010.
IGF-1, Insulin: Bartke et al. 2001; Barzilai et al. 1998; Breese et al.
1991; Brown-Borg and Bartke 2012; Fontana et al. 2010; Kenyon
2001; Lee et al. 2001; Longo and Finch 2003; Masternak and

Bartke 2012; Rincon et al. 2005; Fontana et al. 2006; Harvie et al.
2011; Pijl et al. 2001; Guevara-Aguirre et al. 2011; Steuerman
et al. 2011. Cystatin C: Odden et al. 2010; Sebastiani et al. 2016;
Barron et al. 2015; Foster et al. 2013; Shlipak et al. 2006;
Svensson-Farbom et al. 2014; Wu et al. 2011; Hart et al. 2013,
2017; Newman et al. 2016a; Sarnak et al. 2008. NT-proBNP:
Braunwald 2008; Masson et al. 2006; Omland et al. 2007; Sanders
et al. 2018. Hemoglobin A1c: Dubowitz et al. 2014; Palta et al.
2017; Pani et al. 2008
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inflammatory cytokine score predicting the risk of mor-
tality and mobility disability is elevated (Varadhan et al.
2014). While the biomarkers above generally meet the
workgroup-derived criteria, IGF-1 does not: the rela-
tionship between IGF-1 and mortality/frailty is U-
shaped with both high and low levels associated with
all-cause mortality and adverse health outcomes
(Andreassen et al. 2009; Burgers et al. 2011; Cappola
et al. 2003; Doi et al. 2016; Friedrich et al. 2009; Hu
et al. 2009; Kaplan et al. 2007; Laughlin et al. 2004;
Leng et al. 2009; Maggio et al. 2007; Roubenoff et al.
2003; Saydah et al. 2007; van der Spoel et al. 2015),
which could complicate the interpretation of change
with intervention. However, ample evidence indicates
its importance to biological aging, including use as a
target for intervention to improve healthspan and
lifespan in mice (Mao et al. 2018). Hemoglobin A1c
(HbA1c, HGBA1c) was selected as a marker of
metformin’s potential glycemic effects in TAME and
therefore excluded from consideration as a biomarker
of aging. In TAME, diabetes was excluded as an inclu-
sion criterion or outcome measure, and even in a non-
diabetic population, the effects of metformin on glucose
metabolism may be difficult to separate from those on
biological aging. Nevertheless, HbA1c is a prominent
biomarker of aging and generally meets workgroup-
identified criteria; therefore, in other studies, its use
should be considered as a marker of metabolic aging
(Dubowitz et al. 2014; Palta et al. 2017; Pani et al.
2008). Innovative Bomics^-based approaches and epi-
genetic markers did not meet selection criteria, but the
Biomarkers Workgroup noted unique advantages as
biomarkers of aging and represent an area ripe for
development for future trials. For example, the stress
response and mitochondrial marker GDF15 did not
appear in literature searchers for biomarkers of ag-
ing, but was instead identified by experts on the
workgroup based on proteomic analyses, and ample
evidence as a marker of metformin (Gerstein et al.
2017), association with risk of mortality (Wiklund
et al. 2010), cardiovascular disease, and heart failure,
and biology of aging as a senescence-associated
secretory protein and marker of systemic energy
homeostasis (Chung et al. 2017; Kim et al. 2018).
This example underscores the importance of
sustained vigilance for developments from various
platforms for proteomics, metabolics, and other tech-
niques and store biologic samples for future assays
work in this area.

Discussion

Geroscience research has shown that aging has a distinct
biology and that this biology can be targeted in order to
extend health and longevity in animal models. As a
result, geroscience-guided clinical trials such as TAME
designed to test the geroscience hypothesis in humans
are being planned. This report presents a conceptual
framework for inclusion of biomarkers in such clinical
trials and uses TAME as the test case to apply this
framework. Exhaustive efforts were undertaken to arrive
at a concise list of well-justified biomarkers for use in a
clinical trial (Fig. 2), including markers of inflammation
(IL-6, TNFRII, CRP), stress response and mitochondrial
health (GDF15), nutrient signaling (insulin, IGF-1),
multisystem disease markers of kidney aging (cystatin
C), cardiovascular health (NT-proBNP), and metabolic
aging (hemoglobin A1c). The present review and dis-
cussion highlight the paucity of markers reflecting the
biologic hallmarks of aging validated for use in clinical
research, and the importance of including data-intensive
approaches to drive biomarker discovery and uncover
new potential therapeutic targets for next-generation
geroscience trials.

Notable biomarker exclusions The Biomarker
Workgroup initially proposed to include a biomarker
from each of the 7 to 9 geroscience-identified biologic
Bhallmarks^ or Bpillars^ of aging, but soon concluded
that this approach was not practical or feasible at this
time. Many markers require access to tissues or re-
sources that are not feasible for large clinical trials.
Relatively, few markers can be directly measured from
samples obtained from blood draw, or have validated
and reliable blood-based surrogates. Several other puta-
tive biomarkers of aging were not proposed as candidate
biomarkers due to failure to meet workgroup-identified
selection criteria. For example, telomere length is fre-
quently used as a biomarker of aging, with in vitro and
in vivo research implicating telomere length in cellular
senescence and oxidative stress (Blackburn 2000;
Blasco 2007; Lopez-Otin et al. 2013; von Zglinicki
2002). However, telomere length is inconsistently or
not associated at all with clinical or functional outcomes
(Sanders and Newman 2013).

The epigenetic clock, a biomarker of aging strongly
associated with chronological age, consistently predicts
risk of mortality and key clinical outcomes (Chen et al.
2016; Horvath 2013; Horvath et al. 2016; Levine et al.
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2015; Marioni et al. 2015a; Marioni et al. 2015b). Pre-
clinical evidence suggest epigenetic aging signatures in
liver may be altered by interventions such as caloric
restriction and rapamycin (Wang et al. 2017), which
lends promise of epigenetic clocks for clinical trials in
the future. Though epigenetic clocks may detect cross-
sectional differences in diet and lifestyle, currently re-
sponsiveness to an intervention like metformin is not
well supported in epidemiologic literature (Kim et al.
2017; Quach et al. 2017). This coupled with relative
expense to quantify, tipped the balance of cost-benefit.
This may change in the future: costs will likely decline,
and ongoing efforts are underway calibrate epigenetic
clocks on physiologic age scores that may prove partic-
ularly useful as a biomarker for geroscience-guided
trials (Levine et al. 2018). Continued refinement and
validation of these clocks in human clinical trials are
needed, and geroscience-guided trials provide excellent
validation tools for biomarker development. Likewise,
hypothesis-free, data-intensivemolecular approaches do
not meet criteria for pre-specified trial biomarkers but
represent an important area for scientific development.
The molecular signatures derived from interdepen-
dent processes provide insight into the complex and
multifactorial processes underlying biologic aging
and responses to intervention. These platforms are
increasingly more attractive for clinical trials as new
technologies emerge and assay costs decrease. Such
biomarker discovery requires carefully planned col-
lections of sample materials and investigator engage-
ment for ancillary studies using new techniques to
evaluate novel, putative biomarkers.

Analytic considerations This review proposes a variety
of a priori suggestions for biomarkers for consideration
in the design of randomized controlled geroscience-
guided clinical trials, yet the analytic plan is intention-
ally minimal. This open approach is in accord with
recent FDA guidance for clinical trials on age-related
diseases without consensus biomarkers (e.g., early
Alzheimer’s disease). When inadequate information ex-
ists for hierarchical structuring of a series of biomarkers
as a supporting outcome, FDA encourages trial sponsors
to Banalyze the results of these biomarkers independent-
ly, though in a prespecified fashion, with the under-
standing that these findings will be interpreted in the
context of the state of the scientific evidence^
(Administration 2018). This is particularly relevant to
TAME, which was designed in a collaborative and

consensus building process with FDA guidance. This
open analytic strategy is also intended to encourage use
of the biomarker data to develop, refine, and validate
multi-assay biomarker composites for next-generation
geroscience-guided trials. Ultimately, the validation of
biomarkers of biological aging requires longitudinal
data because, owing to compensatory and resilience
mechanism; there is a temporal gap between the changes
that occur in biomarkers and the changes in clinical
outcomes, either disease related of functionally related.
Implementation of multiple biomarkers of the Bpillars^
or Bhallmarks^ of aging is a tantamount strategy to
develop the best set of measure to use in clinical trials.

Composites can be developed using combinatorial
techniques such as factor analysis or principal compo-
nent analysis (Karasik et al. 2012; Sebastiani et al. 2017)
or weighted and summed based each markers’ predic-
tion of death (Sanders et al. 2018). Such composites
should be demonstrated to predict aging outcomes, in-
cluding death and disability, independently of chrono-
logic age and should also be superior to age itself in the
strength of the association with these outcomes (Sanders
et al. 2012a). Moreover, multi-assay composites and
deficit accumulation indices are likely to outperform
single-biomarkers as an index of biological age
(Belsky et al. 2017b; Cohen et al. 2017; Evans et al.
2014; Li et al. 2015; Mitnitski et al. 2002; Sanders et al.
2014, 2018; Sebastiani et al. 2016; Sebastiani et al.
2017). Limitations of individual clinical biomarkers in
epidemiological research are well known, including risk
of conditional associations, misidentification of aging
biomarkers, oversimplification of the basic biology/
physiology of the aging organism, and poor generaliz-
ability and reproducibility (Cohen et al. 2017). Of inter-
est, a systematic evaluation of 11 markers of aging,
including telomere length, epigenetic clocks, and clini-
cal biomarker composites, confirms that biomarker
composite measures were most consistently related to
physical and cognitive function compared with any one
biomarker (Belsky et al. 2017b; Newman et al. 2008).
Additionally, multi-assay biomarker indices are respon-
sive to interventions targeting the biology of aging, such
as caloric restriction (Belsky et al. 2017a). For example,
the Healthy Aging Index (HAI), a composite score of
physiologic aging that predicts mortality (O'Connell
et al. 2018; Sanders et al. 2014, 2018; Wu et al. 2017),
cardiovascular disease (McCabe et al. 2016), and dis-
ability (Sanders et al. 2012b), is improved with weight
loss by caloric restriction in older adults (Shaver et al.
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2018). The effect of caloric restriction on the HAI was
greater than any individual component or candidate
biomarker, and reflects a meaningful difference: the
net reduction of HAI by 0.63 points translates to an
approximate 9% reduction in mortality risk. In sum,
accumulating evidence supports the utility of multicom-
ponent biomarker scores and deficit accumulation indi-
ces for future geroscience-guided clinical trials.

Biomarker discovery and resource development A pan-
el of a priori defined biomarkers has inherent utility for
geroscience-guided trials but may not capture the com-
plex and multifactorial processes underlying aging. This
gap can be addressed by high-throughput Bomics^ tech-
nologies. Technologies used in sequencing are dramat-
ically reshaping research and drug development, and
powerful discovery and screening technologies permit
the assessment of biological parameters to permit the
molecular and cellular basis for variation in response to
therapy and to explain the clinical response to interven-
tion in clinical trials (Biomarkers Definitions Working
2001). Data-intensive technologies for biomarker dis-
covery are increasingly common and include combina-
torial chemistry, mass spectrometry, high-throughput
screening, cell- and tissue-based microarray, proteomic,
and microbiome platforms. Biomarker strategies for
geroscience-guided clinical trials are recommended
to leverage such technologies as part of the overall
biomarker plan. Given the cost, specialization, and
invasiveness often required, it may not be feasible to
include within large multicenter or multi-year trials,
but opportunities for smaller sub-studies or ancillary
investigations involving biomarker discovery and
cell/tissue collections could be conducted at special-
ized sites or with lower collection frequency.

Rigorous procedures for biospecimen collections and
repository curation are central to future biomarker dis-
covery and resource development for next-generation
geroscience-guided trials. The specifics of the plan are
almost entirely dependent on the context of the trial, but
at a minimum serum and plasma (EDTA and citrated)
should be aliquoted and archived, and DNA/RNA iso-
lated if resources warrant. To gain mechanistic insight,
isolated and cryopreserved human peripheral blood
mononuclear cells (PBMCs) and specialized collections
are often required. Specialized collections that pose
minimal additional risk to study participants should be
prioritized (e.g., urine, stool, peripheral blood cells,
saliva), while more invasive tissue biopsies (e.g.,

adipose, muscle, skin) should only be considered if
benefit of knowledge to be gained is warranted and
efforts to minimize risks are acceptable. Biospecimen
repositories provide a unique for emerging basic re-
search and biomarker studies. For example, the endog-
enous peptide apelin has recently been identified as a
biomarker associated with risk of age-related functional
decline and sarcopenia, and a potential drug target to
prevent or restore physical function, at least in mice
(Vinel et al. 2018). Apelin and other markers of interest
emerging from basic research could be examined using
repository samples and underscore the utility of a well-
cultivated repository and importance of continued sur-
veillance for emerging biomarkers.

Conclusion

With recent growth in the field of geroscience, consen-
sus definitions and conceptual frameworks for bio-
markers of aging to be used as part of a supporting
outcome in clinical trials are imperative. The Bio-
markers Workgroup report presents a conceptual frame-
work for inclusion of biomarkers in gerosicence-guided
clinical trials and uses TAME as the test case. Conser-
vative application of selection criteria using clinical and
epidemiological literature returns a concise list of
b lood -based b iomarke r s . The Biomarke r s
Workgroup also identified several key considerations
and areas in need of development. First, selection
criteria are designed for inclusion of individual bio-
markers, yet analytic approaches based on multi-
assay composites or deficit accumulation/frailty in-
dices are likely to outperform any one individual
marker as trial biomarker outcomes. Second, current-
ly, there is a striking paucity of markers that could
adequately reflect the biologic hallmarks of aging in
the context of human research in general and large
clinical trials in particular. There is a critical need for
biomarker and resource development to discover
novel biomarkers and therapeutic targets, and to
validate existing biomarkers, including composites
of several markers for use in clinical trials on aging.
Finally, data-intensive and multi-omic approaches
are likely to drive biomarker discovery and uncover
new potential therapeutic targets for next-generation
geroscience trials.
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