Neurobiology of Hearing (Salamanca, 2012)

Auditory Cortex (2)

Prof. Xiaoqin Wang

Laboratory of Auditory Neurophysiology
Department of Biomedical Engineering
Johns Hopkins University

web1.johnshopkins.edu/xwang
Outline

Lecture 1: Tonotopic organization and stimulus selectivity
 a) Anatomical structure of the mammalian auditory cortex
 b) Tonotopic organization of auditory cortex
 c) Firing patterns and tuning to preferred stimulus

Lecture 2: Temporal processing
 a) Coding of time-varying signals
 b) Temporal-to-rate transformation in A1
 c) Temporal-to-rate transformation outside A1

Lecture 3: Spectral and intensity processing
 a) Spectral processing
 b) Intensity processing

Lecture 4: Spatial and auditory-feedback processing
 a) Spatial processing
 b) Auditory-feedback processing
Temporal processing:

• How does auditory cortex represent time-varying signals?
Spectral and Temporal Characteristics of Speech

Spectrum

Formant

Temporal

Fine structure ("carrier")

Coarse structure ("envelop")
Reduction of spike timing precision in CN:
Fine temporal structure

(Blackburn and Sachs, 1989)
Reduction of spike timing precision in CN: Envelope

(A) AN
(B) CN (primary-like cell)
(F) CN (chopper cell)

Sync. Coeff.

Modulation Frequency (Hz)
Further reduction of spike timing precision in IC: “Low-pass” to “band-pass”
Thalamus (MGB) spiking faster than auditory cortex (AC)

Increasing modulation frequency

10 Hz

140 Hz

Creutzfeldt et al. (1980)
Modulation Frequency Selectivity Independent of Spectral Contents

Liang et al. (2002)
Stimulus-locked responses are progressively “slowed down” along ascending auditory pathway

(AU: Johnson, 1980, CN: Blackburn and Sachs, 1990)
Distributions of tBMF in different auditory cortical areas of the cat

\[\text{tBMF: } R_{f_0} + R_{2f_0} \]
Awake versus Anesthetized Condition

Goldstein, Kiang and Brown (1959)
Click trains produce largely synchronized discharges in anesthetized condition

Anesthetized Cat A1

~ 80%

~ 20%

Lu and Wang (2000)
Click trains produce both synchronized and non-synchronized discharges in awake condition

Stimulus

Click Trains

10 Hz (100 ms)

100 Hz (10 ms)

333 Hz (3 ms)

Synchronized Responses

Non-Synchronized Responses

Lu et al. (2001)
Synchronized and non-synchronized responses are also observed for dynamically changing stimuli.

Cortical Representations in Different Time Scales:
A two-stage mechanism

- Perceptual boundary of discreteness
- VOT of speech
- Lower limit of pitch

Lu et al. (2001)
Greater extent of sustained firing in auditory cortex than in MGB

Bartlett and Wang (J. Neurophysiol., 2007)
Progressive increase of non-synchronized firing from brainstem to cortex

Bartlett and Wang (J. Neurophysiol., 2007)
Summary: A1 representations to sequential events

In awake condition:

- Synchronized population can *explicitly* represent slowly occurring sound sequences by their temporal discharge patterns.
- Non-synchronized population can *implicitly* represent rapidly occurring sound sequences by their firing rate.

In anesthetized condition:

- Discharge synchronization rates are lower than those observed in awake condition.
- Non-synchronized responses are largely absent.
Why are auditory responses “slowed down” in cortex?

For the purpose of multi-sensory integration.

Other sensory systems (visual, tactile) are much slower at the periphery, but discharge synchrony rates are similar across sensory cortex. This “slow-down” allows auditory information to be integrated with information from other sensory modalities at the same “clock rate”.

For the purpose of auditory object processing which requires temporal integration over longer time windows.
How does auditory cortex process sound sequences?

- Cortical processing of sound streams operates on a “segment-by-segment” basis rather than on a “moment-by-moment” basis as found in the auditory periphery.

- Auditory cortex neurons mark sparse acoustic events (or onsets) with precise spike timing and transform rapidly occurring acoustic events into firing rate-based representations.
What else can firing rate-based representations encode?

(There are always surprises …)
Temporal-to-rate transformation at longer time scales

Lu et al. (Nat Neurosci. 2001)
Stimulus synchronization in the range of acoustic flutter

Bendor and Wang (Nature Neuroscience 2007)
Firing rate-based representations of acoustic flutter

Bendor and Wang (Nature Neuroscience 2007)
Non-synchronizing firing also encodes low repetition rates

"Non-synchronous responses" (Lu et al. 2001)

Bendor and Wang (Nat Neurosci. 2007)
Transformation of firing rate-based representations from A1 to rostral fields

Bendor and Wang (Nature Neuroscience 2007)
Spectral/temporal integration pathways in primate auditory cortex

Bendor and Wang (J. Neurophysiology, 2008)
What is the implication of these experiments?

“Non-synchronized responses” are the results of temporal-to-rate transformations and represent processed (instead of preserved) information.

The auditory cortex transforms stimulus features into internal representations that are no longer faithful replicas of acoustic dimensions.
Challenges in understanding cortical processing of acoustical information:

1) Transformation from isomorphic (faithful) to non-isomorphic representation of acoustic signals

2) Transformation from acoustical to perceptual dimension
Temporal processing:

