Preparation of electrocompetent cells

(Based on Protocol 26 from Molecular Cloning)

Day One: This step can be done at the end of a day.

1. Inoculate a single colony of *E. coli* from a fresh agar plate into a flask containing 50 ml of LB medium. Incubate the culture overnight at 37°C in a rotary shaker (250 rpm).

<u>Day two: It starts in the morning and takes about ~ hours. Have these solutions ready:</u> prewarmed 1 liter LB medium, pre-cooled 500 ml of Ultra-pure water, 10% glycerol, and GYT medium.

2. Inoculate two aliquots of 500 ml of prewarmed LB medium in separate 2-liter flasks with 25 ml of the overnight bacterial culture. Incubate the flasks at 37°C with agitation (300 rpm in a rotary shaker). Measure the OD₆₀₀ of the growing bacterial cultures every 20 min.

This density is usually achieved after \sim 2.5 hours of incubation for DH5a (or DH10B?). It is essential that the density does not exceed OD_{600} , 0.4.

- 3. When the OD_{600} of the cultures reaches 0.4, rapidly transfer the flasks to an icewater bath for 15-30 minutes. Swirl the culture occasionally to ensure that cooling occurs evenly. In preparation of the next step, place the centrifuge bottles in an ice-water bath, and pre-cool the rotor and chamber of centrifuge to 4°C.
 - For maximum efficiency of transformation, it is crucial that the temperature of the bacteria not rise above 4°C at any stage in the protocol.
- 4. Transfer the cultures to ice-cold centrifuge bottles (4X 250 ml). Harvest the cells by centrifugation at 1,000g (2,500 rpm in a Sorvall SLA 1500 rotor) for 15 min at 4°C. Decant the supernatant, resuspend the cell pellet in 500 ml of ice-cold pure H₂O (2X 250 ml bottle).
- 5. Harvest the cells by centrifugation at 1,000g for 20 min at 4°C. Decant the supernatant and resuspend the cell pellet in 250 ml of ice-cold 10% glycerol (1X250 ml bottle).

This should be done immediate after the centrifugation finishes. Take care when decanting because the bacterial pellets lose adherence in 10% glycerol.

- 6. Harvest the cells by centrifugation at 1,000g for 20 min at 4°C. Decant the supernatant and resuspend the cell pellet in 10 ml of ice-cold 10% glycerol. (Cells can be transferred to 50 ml Falcon tube and spun in a bench-top centrifuge).
- 7. Harvest the cells by centrifugation at 1,000g for 20 min at 4°C. Carefully decant the supernatant and use a Pasteur pipette attached to a vacuum line to remove any remaining drops of buffer. Resuspend the pellet in 1 ml of ice-cold GYT medium.

This is best done by gentle swirling rather than pipetting or vortexing.

8. Measure the OD_{600} of a 1:100 dilution of the cell suspension. Dilute the cell suspension to a concentration of 2 X 10^{10} to 3 x 10^{10} cells/ml (1.0 OD_{600} =~2.5 X 10^{8} cells/ml) with ice-cold GYT medium.

- 9. Transfer 40 μ l of the suspension to an ice-chilled electroporation cuvette (0.2-cm gap) and test whether arching occurs when an electrical discharge is applied. If so, wash the remainder of the cell suspension once more with ice-cold GYT medium to ensure that the conductivity of the bacterial suspension is sufficiently low.
- 10. Dispense 40- μ l aliquots of the cell suspension into sterile, ice-cold 0.5-ml microfuge tubes, drop into a bath of liquid nitrogen, and transfer to a -70° C freezer.

Solutions:

Glycerol (10% v/v)

GYT Medium

10% (v/v) glycerol

0.12% (w/v) yeast extract

0.25% (w/v) tryptone

Sterilize the medium by passing it through a prerinsed 0.22- μ m filter. Store in 2.5 ml aliquots at 4°C.