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Abstract The exact mechanisms of spontaneous tumor remission or complete
response to treatment are phenomena in oncology that are not completely understood.
We use a concept from ecology, the Allee effect, to help explain tumor extinction in a
model of tumor growth that incorporates feedback regulation of stem cell dynamics,
which occurs inmany tumor typeswhere certain signalingmolecules, such asWnts, are
upregulated. Due to feedback and the Allee effect, a tumor may become extinct spon-
taneously or after therapy even when the entire tumor has not been eradicated by the
end of therapy. We quantify the Allee effect using an ‘Allee index’ that approximates
the area of the basin of attraction for tumor extinction. We show that effectiveness
of combination therapy in cancer treatment may occur due to the increased proba-
bility that the system will be in the Allee region after combination treatment versus
monotherapy. We identify therapies that can attenuate stem cell self-renewal, alter the
Allee region and increase its size. We also show that decreased response of tumor
cells to growth inhibitors can reduce the size of the Allee region and increase stem cell
densities, which may help to explain why this phenomenon is a hallmark of cancer.
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1 Introduction

Feedback control of cell growth and differentiation plays a central role in tissue devel-
opment and homeostasis (Buchmann et al. 2014; Freeman 2000; Lander et al. 2009).
It is increasingly recognized that in tumors, feedback regulation may also influence
cancer cell proliferation and differentiation through signaling pathways used in nor-
mal tissues via biochemical signaling factors and mechanotransduction. However, in
cancer, these feedback mechanisms are either abrogated or altered by the cancer cells
to help promote tumor growth (e.g., see Carracedo et al. 2008; Chen and Hughes-
Fulford 2001; Massagué et al. 2000). In the intestinal epithelium, for example, Wnt
proteins and their downstream effectors are critical regulatory molecules in devel-
opment and homeostasis of intestinal epithelial cells. Wnts are produced at the base
of intestinal crypts by intestinal stem cells and Paneth cells and act on the stem and
transit-amplifying cells to increase self-renewal and proliferation rates (Clevers et al.
2014; Pinto and Clevers 2005). These cells also produceWnt inhibitors such as Dkk in
response to Wnt signal (González-Sancho et al. 2005). Maintenance of tissue home-
ostasis is aided by production of bone morphogenetic proteins (BMPs), members of
the TGFβ superfamily, by differentiated cells at the top of the villi that promote differ-
entiation of the stem and transit-amplifying cells (Radtke andClevers 2005). In normal
physiology, this highly regulated program allows for maintenance of an intestinal lin-
eage hierarchy, whereas overactivation ofWnt signal occurs in amajority of hereditary
and sporadic colorectal cancers (Bienz and Clevers 2000; Reya and Clevers 2005).
Wnts, Wnt inhibitors and BMPs play similar roles in other tissues such as skin, breast
(Clevers et al. 2014) and the brain (Bayin et al. 2014; Caja et al. 2015), although other
members of the TGFb superfamily, such as TFGb-1 and TGFb-2, may upregulate
stem cell self-renewal and promote tumor invasiveness. Additionally, other signaling
factors such as notch, fibroblast growth factors, sonic hedgehog and epidermal growth
factors may also influence stem cell self-renewal (e.g., Ciurea et al. 2014; Matchett
and Lappin 2014; Mertins 2014).

Analogous to normal tissues, in many types of cancer, cells appear to be hierarchi-
cally organized. Examples include leukemias and solid tumors such as breast, brain,
prostate, ovarian and colon (Meacham and Morrison 2013; O’Connor et al. 2014). In
particular, a small fraction of tumor cells, called cancer stem cells (CSCs), seem to be
capable of initiating and maintaining cancer and are more resistant to therapy. CSCs
give rise to cells that do not have these capabilities.

Mathematicalmodels ofCSCs reveal a variety of surprising behaviors. For example,
agent-based model simulations by Enderling et al. (2009) identified a so-called tumor
growth paradox where tumors with larger death rates of non-stem cancer cells might
grow bigger than tumors with smaller death rates for non-CSCs. This effect results
from a competition for space between CSCs and non-CSCs, which can be interpreted
as a form of negative feedback. As soon as non-CSCs are removed, CSCs may divide
symmetrically to increase the number ofCSCs, thereby increasing the size of the tumor.
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InHillen et al. (2013) a basicCSCmodelwas used to explain the tumor growthparadox.
Further, mathematical models also predict that hierarchically organized tumors exhibit
a greater degree of heterogeneity and invasiveness than models that do not consider
CSCs (e.g., Poleszczuk et al. 2015; Scott et al. 2014; Sottoriva et al. 2010, 2011).

Intriguingly, using a continuum model of CSCs that accounted for biochemically
mediated feedback regulation of CSC dynamics, Youssefpour et al. (2012) showed that
therapies that exploit feedback regulation, such as therapies that combine radiation or
chemotherapy (that target differentiated cells) with differentiation therapy (that targets
cancer stem cells), are capable of fully eradicating a tumor even if each therapy applied
individually would not be successful. In the specific cases of metastatic brain cancer,
head and neck cancer and breast cancer, Bachman and Hillen (2012) investigated the
combination therapy proposed by Youssefpour et al. using a simplified mathematical
model similar to that studied here. Bachman and Hillen demonstrated that treatment
benefits can be achieved through a combination of a differentiation promotor and
radiation treatment for metastatic brain cancer and for head and neck cancer. The
effect of combination therapy on breast cancer was less clear.

One of the recently identified feedback mechanisms of CSCs involves the protein
survivin. Survivin is considered to promote dedifferentiation of non-stem cancer cells
into CSCs. In experiments of non-small cell lung cancer in mice (Iwasa et al. 2006)
it was found that survivin is expressed upon radiation treatment, leading to enhanced
dedifferentiation and to enhanced radio-resistance. The survivin effect is then con-
trolled by administration of YM155. In (Rhodes and Hillen 2016) a mathematical
model was developed to investigate the combination of YM155 administration and
radiation therapy on the CSC dynamics.

Motivated by these studies, we develop a simplified model of feedback-regulated
tumor growth to better understand the underlying mechanisms of how feedback in
tumors can contribute to treatment success or even to spontaneous regression, which
occurs in about 1/80,000–1/100,000 cases of cancer (Challis and Stam 1900).We show
that the feedback mechanisms can induce an Allee effect, which is a phenomenon,
studied in ecology,where there exists a positive correlation between population density
and individual fitness (Stephens et al. 1999). In the case of a tumor, the Allee effect
can manifest itself through treatment, which can cause the CSC count to fall below a
threshold such that the tumor cannot sustain itself and dies out, or in spontaneous tumor
remission when CSC numbers may naturally fall below the sustainability threshold
(Korolev et al. 2014). The existence of a sustainability threshold belies an important
conclusion: treatment does not need to kill all the CSCs to be successful in eradicating
a tumor. In our reduced system, we prove that such an Allee effect exists and we
analyze the dependence of the Allee region and the sustainability threshold on model
parameters and initial conditions.

2 Model Development

Our model focuses on the interplay between CSCs, represented by S(t), and a
self-renewal activator a(t), which represents the combined activity of self-renewal
promoters (e.g., Wnts) in a spatially homogeneous setting. This is a simplification of
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a more complicated model that includes S(t), a(t), and two other variables: the differ-
entiated cells, represented by D(t), and concentration of the differentiation promoter,
T (t). We begin by considering the more complex model, which itself is a spatially
homogeneous version of the model considered by Youssefpour et al. (2012).

The dynamics of S(t) and D(t) can be given by (e.g., Lander et al. 2009; Youssef-
pour et al. 2012)

Ṡ =
Stem cell self-renewal
︷ ︸︸ ︷

(2p(T, a) − 1)kS, (1)

Ḋ =
Differentiation of stem cells

︷ ︸︸ ︷

2(1 − p(T, a))kS −
Cell death
︷︸︸︷

dD , (2)

where the overdot denotes the time derivative, k is proliferation rate of CSCs and is
taken to be constant and nonnegative, and d is the death rate of differentiated cells,
which incorporates both apoptosis and necrosis. The variable p(T, a) denotes the
probability of self-renewal ofCSCs anddepends on concentrationofT, a differentiation
promoter (e.g., a member of the TGFβ superfamily), and on the activator, a. We can
take p to be (Youssefpour et al. 2012)

p(T, a) = pmin + (pmax − pmin)

(

ξa

1 + ξa

) (

1

1 + ψT

)

, (3)

where the minimum and maximum rates of self-renewal are pmin and pmax, respec-
tively, and ξ and ψ are the positive, by a, and negative, by T, feedback strengths on p.
In our reduced model we assume a linear relationship between T and S. Indeed, we
first consider a model for the dynamics of T as

Ṫ = νD − μT, (4)

where ν is the production rate of T by D, andμ is the effective decay rate of T (which
could include uptake by CSCs or differentiated cells). Assuming that T and D are in
a quasi-steady state we obtain

T = (ν/μ)D, (5)

D = (1/d)2(1 − p)S. (6)

The former can be justified since the diffusional dynamics of T occurs on a faster
timescale (minute) than that of cell proliferation (day), e.g., Youssefpour et al. (2012),
although here we neglect spatial variation. The latter assumes that differentiated cells
do not perpetually accumulate. Combining Eqs. (5) and (6), we obtain T∼S, and so
we simplify Eq. (3) to yield

p(S, a) =
(

ξ1a

1 + ξ1a

) (

1

1 + ξ2S

)

, (7)

where we have taken pmin = 0 and pmax = 1 and the parameter ξ2 has absorbed the
linear shift to S.
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Self-renewal promoters such as Wnts can have multiple downstream effectors
(Najdi et al. 2011) that can upregulate the production of the promoters. This can be
modeled as a positive feedback of the promoter on its own production (Crosnier et al.
2006). Further, cells with high self-renewal promoter activity (e.g., CSCs) can pro-
duce factors (e.g., Dkk) that inhibit the production of self-renewal promoters. Here, we
assume for simplicity that the level of inhibitor is constant. Accordingly, we consider
the production rate of a as β = γ /b, where γ is the production rate and b corresponds
to a constant level of inhibitor. To mitigate the blow-up of a that a model with constant
inhibitor levels can produce, we introduce the linear saturation term λ, which forces ȧ
to saturate to a linear rate. We note that since the effect of a on p is bounded by 1 (Eq.
(7)), forcing a to saturate to a high value would produce qualitatively similar results.
We thus study

ȧ = a

(

βSa

1 + λa
− 1

)

, (8)

where we have taken the decay rate of a to be 1, without loss of generality (e.g.,
take the timescale to be the inverse of the characteristic decay rate of a). The reduced
model, which describes feedback-regulated stem cell dynamics, is given by

Ṡ = (2p(S, a) − 1)kS = f1(S, a),

ȧ = a

(

βSa

1 + λa
− 1

)

= f2(S, a),

p(S, a) = ξ1a

1 + ξ1a

1

1 + ξ2S
.

(9)

The variables and parameters for system (9) are summarized in Table 1.

3 Analysis of the Allee Effect

In this section, we demonstrate that the system (9) shows an Allee effect. To begin,
we calculate the following partial derivatives, which we will need in the analysis:

pS := ∂p

∂S
= − ξ1ξ2a

(1 + ξ1a)(1 + ξ2S)2
≤ 0 where pS = 0 only when a = 0,

pa := ∂p

∂a
= ξ1

(1 + ξ2S)(1 + ξ1a)2
> 0,

( f2)S := ∂ f2
∂S

= βa2

1 + λa
≥ 0 where( f2)S = 0 only when a = 0,

( f2)a := ∂ f2
∂a

= βSa(2 + λa)

(1 + λa)2
− 1.

where we use subscripts to denote partial derivatives. Note that the sign of ( f2)a
depends upon β, S, a and λ.
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Table 1 Variables and parameters for system (9)

Symbol Description Relative change in
more aggressive
tumors

Parameter profile

Pr1 Pr2
(less aggres.) (more aggres.)

Variables

S = S(t) Cancer stem cell (CSC) concentration – – –

a = a(t) CSC activator concentration – – –

p = p(S, a) Probability of stem cell self-renewal – – –

Parameters

ξ1 Positive feedback strength of a on p ↑ 1 5

ξ2 Negative feedback strength of S on p ↓ 1 0.5

λ Saturation term for ȧ ↓ 1 1

k CSC division rate ↑ 1 1

β Production rate of a ↑ 2 4

To model more aggressive tumors, parameters can be adjusted as indicated. The sample parameter profiles
Pr1 and Pr2 described in Sects. (4)–(6) are also shown, where the text (less aggres.) and (more aggres.)
indicates the relative aggressive profile of the tumor

Theorem 1 Existence of an Allee region.

(i) The domain Ω = [0,∞) × [0,∞) is positively invariant for (9).
(ii) The system (9) has two steady states in Ω , P1(0, 0) and P2(S2, A2), where P2 is

the unique intersection of the curves

{p(S, a) = 0.5} and { f2(S, a) = 0}.

(iii) P1 is asymptotically stable, and P2 is a saddle point.
(iv) There exists a separatrix that separates the basin of attraction of P1 from an

attractor with nonzero S when λ/β < 1/ξ2. This separatrix forms the threshold
between population extinction P1 and population sustainability.

Proof (i) We observe that Ṡ ≥ −kS and ȧ ≥ −a. Setting Ṡ+kS = l1 and ȧ+a = l2
and solving each differential equation under the condition that (l1, l2) ≥ (0, 0)
gives us the condition that (S(t), a(t)) ≥ (0, 0) for all initial (S, a) ≥ (0, 0).
Thus, Ω = [0,∞) × [0,∞) is positively invariant for (9).

(ii) We find Ṡ = 0 if and only if S = 0, p(S, a) = 0.5, or k = 0. The second equation
is in steady state if a = 0 or a = a∗(S) = (βS−λ)−1, S > 0. We note that when
S = 0, a∗(S) = −1

λ
< 0 since λ is assumed to be nonnegative. This cannot be a

steady state since a ≥ 0. Similarly, if a = 0, then p(S, 0) = 0. Hence, the only
steady state with S = 0 or a = 0 is P1(0, 0).
We next want to determine whether there exist, and if yes how many, pairs of
(S, a) such that p(S, a) = 0.5 and f2(S, a) = 0. This can be found by solving
the system:
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⎧

⎪
⎪
⎨

⎪
⎪
⎩

ξ1a

1 + ξ1a

1

1 + ξ2S
= 0.5

βSa

1 + λa
= 1

(10)

Solving the first equation for S, we obtain S = (ξ1a − 1)/(ξ2(1 + ξ1a)). We
first note that the function is monotone increasing in a, since S′ = (2ξ1)/(ξ2(1+
ξ1a)2) > 0 where the prime denotes the derivative with respect to a. Moreover,
we have

lim
a→0

(

ξ1a − 1

ξ2(1 + ξ1a)

)

= − 1

ξ2
and lim

a→∞

(

ξ1a − 1

ξ2(1 + ξ1a)

)

= 1

ξ2

Repeating the process for the second equation, we obtain S = (1+ λa)/(βa) =
1/(βa) + λ/β, S′ = −1

βa2
< 0; hence, the function is monotone decreasing, and

lim
a→0

(

1

βa
+ λ

β

)

= ∞ and lim
a→∞

(

1

βa
+ λ

β

)

= λ

β
.

Therefore, the nonnegativity constraints on (S, a) and the parameters guarantee
existence of a unique solution if

λ/β < 1/ξ2. (11)

In the linear stability analysis below, whenever we discuss P2(S2, A2), the steady
state corresponding to (9), we assume that the inequality (11) is satisfied.

(iii) The Jacobian of f = ( f1(S, a), f2(S, a)) in Eq. (9) is

J(S, a) =
(

2pSkS + (2p − 1)k 2pakS
( f2)S ( f2)a

)

(12)

For P1(0, 0) we have p(0, 0) = 0, pS = 0, pa = ξ2, ( f2)S = 0 and ( f2)a = −1.
Therefore, we have

J(0, 0) =
(−k 0

0 −1

)

,

which has two negative eigenvalues. Hence P1(0, 0) is an asymptotically stable
node.
For P2(S2, A2), where we denote p(S,2) = pS(S2, A2), p(a,2) = pa(S2, A2),
( f2)(S,2) = ( f2)S(S2, A2) and ( f2)(a,2) = ( f2)a(S2, A2), the Jacobian is

J(S2, A2) =
(

2p(S,2)kS2 2p(a,2)kS2
( f2)S,2 ( f2)a,2

)

We recall that pS < 0, pa > 0, and ( f2)S > 0. Since we also have (βS2A2)/(1+
λA2) = 1 by (10), we obtain
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( f2)a,2 = βS2A2(2 + λA2)

(1 + λA2)2
− 1 = 2 + λA2

1 + λA2
− 1 = 1

1 + λA2
> 0.

Therefore, we have ( f2)a,2 > 0, and hence the determinant of J(S2, A2) is

det J(S2, A2) = 2p(S,2)kS2( f2)(a,2) − 2p(a,2)kS2( f2)(S,2) < 0, (13)

which makes P2 a saddle point.
(iv) System (9) thus satisfies the assumptions of the Stable Manifold Theorem (SMT)

(see Theorem 2 in Appendix 1), which then guarantees existence of a separatrix,
M , separating the basins of attraction of P1 from a nonzero attractor when (11)
is satisfied. ��

4 Dependence of the Separatrix on Parameters

For the system (9) to have a steady state other thanP1(0, 0), the inequality λ/β < 1/ξ2
in (11) must be satisfied. Recall that λ is the saturation term for ȧ, and β is the rate of a
auto-activation, normalized by a constant level of stem cell-derived Wnt inhibitor, b.
Therefore, λ/β is increased when there is strong saturation and/or low self-activation
strength, and is decreased when the saturation strength is low and/or self-activation
strength is high. Inmore advanced cancers, it has been shown that theWnt cascademay
be constitutively activated and response to growth inhibitors is lowered (Hanahan and
Weinberg 2011; Krausova and Korinek 2014), which means that a-saturation strength
decreases and β increases; hence, λ/β tends to decrease as the cancer progresses.
Moreover, if the inhibitory effect of S on p, modeled by the parameter ξ2, is strong,
then 1/ξ2 will be small, and the inequality is less likely to be satisfied, thereby leading
to one steady state ofP1(0, 0). On the other hand, a low strength of p-inhibition (hence
giving a relatively large 1/ξ2) occurs withmore advanced cancers. Thus, we see that as
a cancer progresses, the inequality (11) is more likely to be satisfied, thereby altering
the long-term system dynamics toward a higher probability that (S, a) → (0, 0).

The Stable Manifold Theorem (SMT) allows us to iteratively approximate the sep-
aratrix, M , when the inequality (11) is satisfied. In Appendix 1, an approximation
to M is given, which we obtain by stopping at the second iteration. We refer to this
approximation as M∗. Since it is cumbersome to further improve the approximation
iteratively by the SMT, we check whether M∗ is a good approximation of M by com-
paring M∗ with the separatrix predicted for a given set of parameters by a numerical
ODE analysis program (here we have used pplane8 in MATLAB; Arnold and Polk-
ing 1999). We choose two sets of parameters, Pr1(ξ1, ξ2, λ, k, β) = (1, 1, 1, 1, 2) and
Pr2 = (5, 0.5, 1, 1, 4), where Pr2 represents a more aggressive tumor than Pr1. Using
pplane8, we observe that the separatrix for Pr2 is shifted southwest of the separatrix
for Pr1, with the result that the Pr2 system will have a nonzero steady state for a
lower threshold of (S, a) than Pr1 (Fig. 1a, b). We also plot the contour p = 0.5
and observe that even if (S, a) lies below the separatrix (in the Allee region), S can
increase in time transiently if p(S, a) > 0.5, with the amount of increase dependent
on the system parameters. The more aggressive tumor parameters can lead to a larger
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(a) (b)

(c) (d)

Fig. 1 The separatrix and its approximations for system (9). a, b pplane8 plots of (9) with parameters a Pr1
and b Pr2. The descending green curve in each graph is the pplane approximation of the stable manifold
(separatrix M), and the ascending orange curve is the pplane approximation of the unstable manifold, U .
The blue curves represent forward solutions of the system. The red curves represent the contours at which
the self-renewal probability p = 0.5. Note that solutions to the right of the separatrix tend to nonzero (S, a),
whereas solutions to the left tend to P1(0, 0). In each region, however, if the current values (S, a) are above
the p = 0.5 contour, then S increases in time. Analogously, if (S, a) lies below the p = 0.5 contour, then
S decreases. c, d The separatrices predicted by pplane8 (large dash, green) of c Pr1 and d Pr2 are plotted
along with the SMT approximation of the separatrix, M∗ (solid black), the quadratic approximation, M∗

q
(small dash, blue), and the linear approximation, M∗

l (cross, red) (Color figure online)

transient increase in S. In Fig. 1c, d we plot M∗ for Pr1 and Pr2, overlay these results
with the separatrix predicted by pplane8 and note that the shape and location of M∗
are close to the numerically predicted separatrix. We proceed to analyze M∗ in order
to establish a dependence between the parameters of the model and behavior of the
separatrix.

Due to the complicated dependence of M∗ on the parameters, we take linear and
quadratic approximations of M∗, which we call M∗

l and M∗
q , respectively, given in

Eqs. (42) and (44) in Appendix 1. We plot M∗
l and M∗

q for the two parameter sets, Pr1
and Pr2, in Fig. 1c, d. Noting that M∗

l gives an approximation of the tangent line to
the separatrix, we concentrate our analysis on the parameter dependence of M∗

l . To
quantify the Allee effect, we develop an ‘Allee index,’ which we refer to as AI , that
is given by the area below M∗

l , which is an estimation of the size of the Allee region.
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(a) (b)

(c) (d)

Fig. 2 The Allee index as a function of parameters. The Allee index (AI ), the area in the region bounded
above by M∗

l , is plotted for increasing ξ2 and for increasing ξ1 (a, b) or k (c, d) under less (β = 2, (a, c))
or more (β = 4, (b, d)) aggressive conditions. Insets in (c, d) show non-monotonic behavior of AI with
respect to k. Note that the range of ξ2 is dependent on β and λ, since for the system to have a non-trivial
attractor, the inequality λ/β < 1/ξ2 must be satisfied (Color figure online)

This ‘Allee region’ is the basin of attraction for the steady state representing tumor
extinction, P1(0, 0), and hence AI = AI (ξ1, ξ2, λ, k, β) is inversely correlated with
tumor sustainability. Indeed, the more aggressive tumor Pr2 has AI (Pr2) = 0.77,
which is just 14% of AI (Pr1) = 5.24 for the less-aggressive tumor. The dependence
of AI on various parameter regimes provides information on how parameter values
influence the susceptibility of the tumor to the Allee effect (Fig. 2). We find that
increasing ξ2, the strength of inhibition of p by S increases AI for all parameter
regimes. The increase in AI comes about due to a ξ2-dependent increase in the steady-
state value A2 and magnitude ofml , the slope of M∗

l (which is always negative) (Figs.
3, 4). Although the steady-state value S2 decreases as ξ2 increases, it does not tend
to zero; indeed, as ξ2 → β/λ, by (10), S2 → λ/β. Conversely, increasing ξ1, the
strength of activation of p by a, results in a decreased AI by the opposite mechanisms
as decreasing ξ2: there is an increase in magnitude of ml , a decrease of A2 and an
increase of the steady-state value S2 that cannot compensate for the decrease in AI

(Figs 2a, b, 3a, b, 4a, b). Generally, increasing β from 2 to 4 also decreases AI due to
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(a) (b)

(c) (d)

Fig. 3 The slope of M∗
l , ml , as a function of parameters. The slope of M∗

l , ml , is plotted for increasing
ξ2 and for increasing ξ1 (a, b) or k (c, d) under less (β = 2, (a, c)) or more (β = 4, (b, d)) aggressive
conditions (Color figure online)

the same mechanisms as when increasing ξ1, and the increase also extends the range
of ξ2 that satisfies (11) (Fig. 2). For smaller values of ξ2 and ξ1, increasing β from 2 to
4 decreases AI by a different mechanism. For example, at ξ2 = 0, λ = 1 and k = 1,
the ml increases in magnitude from approximately −15 to −35 (Fig. 3). The steady-
state value A2 does not change significantly, but S2 decreases from approximately
0.5 to 0.25 (indeed, lim(S2)ξ1→0 = λ/β) (Fig. 4). We also consider the dependence
of AI on k, the stem cell division rate. Unlike the other parameters, (A2, S2) is not
dependent on k. As k initially increases from 0, there is a drop in AI (except for very
small ξ2), but afterward there is a minor increase in AI with increasing k (Fig. 2c, d,
inset), indicating a non-monotonic dependence of AI on k. The slope, ml , decreases
in magnitude with increasing k (Fig. 3c, d).

To analyze the dependence of AI onmodel parameters, we fit AI using linear, cubic
and exponential functions in the parameters ξ1,ξ2, β and λ individually. For each fit,
we then vary another parameter to obtain a distribution for the adjusted coefficient
of determination (R2, see Appendix 2) (Greene 2003), which we use to measure the
goodness of fit. The results are shown in Fig. 5. We observe that for all parameters,
the fit is best for an exponential function. We find that AI exponentially increases
with ξ2 and λ and decreases with ξ1 and β, indicating that therapy that changes these
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(a) (b)

(c) (d)

Fig. 4 The steady-state P2(S2, A2) as a function of parameters. The steady-state P2(S2, A2) is plotted for
increasing ξ2 and for increasing ξ1 (a, b) or k (c, d) under less (β = 2, (a, c)) or more (β = 4, (b, d))
aggressive conditions (Color figure online)

parameters in the indicated direction will incur exponential gains in effectivity (i.e.,
the probability to push the tumor into the Allee region) with a linearly increasing
dosage (see Sect. 6 for an example). We do not perform this fit with k due to the
non-monotonic dependence of A on k.

5 Long-Term System Behavior

We now consider how the system (9) behaves for longer time. Returning to our
two parameter sets, Pr1(ξ1, ξ2, λ, k, β) = (1, 1, 1, 1, 2) and Pr2(ξ1, ξ2, λ, k, β) =
(5, 0.5, 1, 1, 4), we consider two sets of initial conditions. We take IC1(S, a) =
(0.2, 3) and IC2(S, a) = (0.5, 5), noting that IC1 lies in the Allee region for Pr1,
but not Pr2 (Fig. 1). We plot the trajectories obtained from solving (9) numerically
(using the ode45 function in MATLAB) for initial conditions IC1 at Pr1 (solid lines)
and Pr2 (dashed lines) (Fig. 6a). For Pr1, (S, a) predictably tend to (0, 0), whereas
for Pr2, a continues to increase, while S stabilizes at S = 2. For initial conditions IC2
(Fig. 6b), a increases for both Pr1 and Pr2, but the rate of increase is higher for Pr1.
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Fig. 5 Estimating global dependence of AI on parameters. Fixing all parameters but one, AI is calculated
for increasing ξ2, ξ1, λ and β. A linear, cubic or exponential regression curve is fit to AI as a function of
each parameter. The adjusted coefficient of determination, R2, is plotted, with its color corresponding to
the curve type. The sign above the exponential curve R2 corresponds to the sign of the estimated curve
and represents whether AI , as a function of the respective parameter, decreases or increases with the
increasing parameter value. Error bars are calculated by varying one other parameter and re-fitting the
parametric functions (error bars may not be visible due to low variability of R2 with respect to the varied
parameter). Choice of the varied parameter does not alter the results in a qualitative manner. Ranges of
parameters used are: ξ1 ∈ [0, 5], ξ2 ∈ [0, 2], β ∈ [1, 4], λ ∈ [0, 4]. When fixed, parameters are taken to be
(ξ1, ξ2, λ, β) = (1, 1, 1, 2). k is set to k = 1 and not varied due to the non-monotonic dependence of AI
on k (see text)

Fig. 6 Sample trajectories for Pr1 and Pr2. Plotting the numerical solutions of (9) with initial con-
ditions IC1(S, a) = (0.2, 3) (left panel) and IC2(S, a) = (0.6, 5) (right panel) with parameters
Pr1(ξ1, ξ2, λk , β) = (1, 1, 1, 1, 2) (solid lines) and Pr2(ξ1, ξ2, λk , β) = (5, 0.5, 1, 1, 4) (dashed lines)
(Color figure online)

S stabilizes for both Pr1 (at S = 1) and Pr2 (at S = 2). When the initial conditions
are in the sustainability region, the limiting behavior on ȧ is a linear function in a
proportional to (βS)/λ.
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Fig. 7 Non-monotonic
trajectories in the Allee regions
for Pr1 and Pr2. Examples of
non-monotonic trajectories of S
for initial conditions in the
respective Allee regions for Pr1
(IC3(S, a) = (0.2, 7)) and Pr2
(IC4(S, a) = (0.1, 2))

The limiting behavior on S as a increases can be found by considering Ṡlima→∞ =
{(2p(S, a) − 1)kS}lima→∞ ,

Ṡlima→∞ =
(

2

1 + ξ2S
− 1

)

kS (14)

This is a separable differential equation with positive solution

S
(t) = 2ξ2 + e(−kt)−c(
√

4ξ2ekt+c + 1 + 1)

2ξ22
(15)

where c is an arbitrary constant and S
(t) is the solution to (14). We observe that
limt→∞ S
(t) = 1/ξ2, indicating that the long-term behavior of S in the sustain-
ability regime is inversely proportional to ξ2. We note that for Pr1, where ξ2 = 1,
limt→∞ S∗(t) = 1 and for Pr2, where ξ2 = 0.5, limt→∞ S∗(t) = 2.

We make another observation with regard to behavior of system (9) in the Allee
region. In Fig. 1, we note that the sample trajectories in the respective Allee regions
for Pr1 and Pr2 can show a transient increase in S before tumor extinction if the initial
conditions lie above the p = 0.5 curve. Indeed, taking IC3(S, a) = (0.2, 7) for Pr1
and IC4(S, a) = (0.1, 2) for Pr2, there is a transient increase in S, although at longer
times the tumor is extinguished (Fig. 7). These non-monotone trajectories that reside
in the Allee regions of tumors may help to explain some cases of spontaneous tumor
regression (see Sect. 6).

6 Therapy, Spontaneous Regression and the Allee Effect

Classical chemotherapeutic drugs against cancer are cytotoxic drugs that target rapidly
dividing cells (Malhotra and Perry 2003; Mathijssen et al. 2014). In our model, such
drugs would correspond to lowering the k and S values of a system.We have observed
that lowering k decreases the slope of M∗

l without changing (A2, S2). Following a
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Fig. 8 Example of dependence
of system (9) on k. We consider
the system (9) with Pr1 =
(ξ1, ξ2, λ, k, β) = (1, 1, 1, 1, 2)
(solid lines) and Pr∗1 =
(ξ1, ξ2, λ, k, β) = (1, 1, 1, 2, 2)
(dashed lines) and plot M
(green) and M∗

l (red). R1
represents the tumor
sustainability region in the phase
space for Pr∗1 , but the Allee
region for Pr1. Conversely, R2
represents the tumor
sustainability region for Pr1, but
the Allee region for Pr∗1 (Color
figure online)

sample parameter scheme (Pr1), we find that lowering k from 2 to 1 changes region
1, R1, which has high a and small S values, from a sustainability regime to a regime
that is susceptible to the Allee effect (Fig. 8). Thus, our model predicts that cytotoxic
chemotherapymaymake the tumormore susceptible to extinction even in the presence
of high levels of activator. Moreover, while the region 2, R2, which has large S and
small a values, changes from an extinction regime to a sustainability regime, the tumor
is less likely to be in this region after cytotoxic chemotherapy since the level of S will
be reduced. Since chemotherapy is often administered alongside radiation and surgery,
both therapies that reduce S (see below), our system shows that these types of therapy
may cause tumor extinction not only by lowering S until the (S, a) values lie in the
Allee region, but also by expanding the Allee region to be more inclusive of tumors
with high levels of activator. This is an important consideration, since in addition to
an overactive Wnt cascade, which occurs in a majority of colon cancers (Bienz and
Clevers 2000; Reya and Clevers 2005) and may allow for high a levels even after
reduction of S due to very high production rates, Wnt activity is further increased
in colon tumor cells due to stromal-produced HGF (Hanahan and Weinberg 2011;
Nakamura et al. 1997).

Another major modality in cancer treatment is what is known as targeted therapy,
which acts by interfering with proteins involved in carcinogenesis (Kwak et al. 2007).
A number of Wnt pathway inhibitors are currently in preclinical development and
have shown promise in slowing growth and inducing cell death in both in vitro and
in vivo experimental systems (Anastas and Moon 2013). In our model, targeted Wnt
therapy may move the system into the Allee region by decreasing a directly and/or by
decreasing ξ1, the strength of a-dependent positive feedback on p, which will increase
AI . We use the system (9) to model how radiation, surgery and targeted therapy can
impact tumor growth and how combination therapy can either move a tumor into
or increase the Allee region (Fig. 9a). We begin with the parameter set Pr1 and the
initial condition T0(S, a) = (0.8, 8). We note that T0, which represents an untreated
tumor, is in the sustainability region forPr1. Wemodel different therapies by grouping
them by the effect they have on S, a, or the model parameters. Radiation, surgery and
cytotoxic chemotherapy all reduce S and can be modeled by shifting T0 to the left
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(a)
(b)

Fig. 9 Impact of therapy on tumor behavior. a The separatrix for Pr1(ξ1, ξ2, λ, k, β) = (1, 1, 1, 1, 2)
is plotted in solid green, and for (ξ1, ξ2, λ, k, β) = (0.5, 1, 1, 1, 2), the separatrix is plotted in dashed
green. T0 represents an untreated tumor, and Ts, Ta and T(S,a) represent tumors where treatment reduces
S, a or both S and a, respectively, by 50%. Different treatments are in italics: CC refers to cytotoxic
chemotherapy, R to radiation, Sur. to surgery, T T1 to targeted therapy that reduces a and T T2 to targeted
therapy that reduces ξ1. b The effect of T T2 on AI follows an exponential curve. The two plotted points
AI (ξ1 = 1) and AI (ξ1 = 0.5) indicate the respective AI of the system in (a) corresponding to no therapy
(solid green separatrix) and T T2 therapy (dashed green separatrix) (Color figure online)

in the phase space. As discussed above, cytotoxic chemotherapy also increases the
magnitude of the slope of M∗

l , but for this discussion we neglect this effect. Targeted
therapy that lowers a shifts T0 downward in the phase space. Let us take Ts to be the
tumor T0 after treatment with a therapy that reduces S by 50% and Ta to be the tumor
T0 after treatment with a targeted therapy that reduces a by 50%. While both Ts and
Ta are still in the sustainability region, for a combination therapy that reduces both S
and a by 50%, the resulting tumor,T(S,a), is now in the Allee region. Additionally, we
find that targeted therapy that reduces ξ1 by 50% (from 1.0 to 0.5) increases AI , such
that now a therapy which reduces S or a by 50% canmoveT0 into the Allee region. As
discussed in Sect. 4, this increase in AI is exponential with respect to a linear decrease
in ξ1 (Fig. 9b), indicating that targeted therapy, especially in combination with other
treatment modalities, can have a significant impact on the probability that the tumor
will reside in the Allee region post-treatment.

The spontaneous regression of cancer has been defined as ‘the partial or complete
disappearance of a malignant tumor in the absence of all treatment, or in the presence
of therapy that is considered inadequate to exert a significant influence on neoplastic
disease’ (Everson and Cole 1968). Although difficult to ascertain, the incidence rate
is estimated to be approximately 1/80,000–1/100,000 cases (Challis and Stam 1900).
Reviews of such cases have shown that a primary coincidental event in the personal
history of a patient with spontaneous regression is an acute/feverish infection, which
stimulates acute immune activity that is able to target the cancer in addition to the
infection (Hobohm 2001; Jessy 2011). In our model, such acute immune stimulation,
and associated cancer cell death, corresponds to a reduction in S that may push the
system into the Allee region of the tumor. For example, if we again considerT0 in Fig.
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9 with system parameters (ξ1, ξ2, λk, β) = (0.5, 1, 1, 1, 2) (the separatrix is dashed
green), a shift to Ts by acute immune stimulation would be sufficient to induce tumor
regression. Moreover, our model also shows how cases of spontaneous regression
can arise without acute infection. In Sect. 5, we found that, given a parameteriza-
tion for system (9), a subset of the Allee region has non-monotone trajectories in S.
Specifically, while S is eventually extinguished, there is a transient increase in S at
early times. If such a tumor is thus initially clinically evaluated during the transient
increase phase, the long-term behavior follows the classical definition of spontaneous
regression.

One can also use our model to consider why the occurrence of spontaneous regres-
sion is so low by examining three scenarios: (1) The tumor is in the Allee region,
(2) the tumor is deep in the sustainability region, and (3) the tumor is in the sustain-
ability region but near the separatrix M . The first scenario can occur when the tumor
is observed to be of non-negligible size but will eventually go extinct via either a
monotonic or non-monotonic trajectory, without additional external inputs (such as
an increased immune response). Since neither of these situations is a steady state, the
probability that the tumor will be detected at a non-negligible size before it becomes
extinct is small; otherwise, such caseswould be reportedmore often. Indeed, the preva-
lence of spontaneous regression may be higher than reported since many monotonic
and non-monotonic extinction events can go undetected either because the maximum
tumor size reached is too small for detection or that the temporal course of the trajectory
is too fast to be frequently observed or cause symptoms. In the second scenario, where
the tumor is deep in the sustainability region, an immune response that would move
it to the Allee region would have to be significant. Since cancer cells employ immu-
noevasive techniques to successfully evade both specific and non-specific immune
responses (Dunn et al. 2002), one would expect the number of cases where this occurs
to be extremely low as well. Finally, for the third scenario, where the tumor lies near
the sustainability region, there are a number of considerations. First, due to hetero-
geneity and noise in the system, part or all of the tumor may actually be or move into
(and out of) the Allee region. It is in this scenario that an immune response, which
would push the system more deeply into the Allee region, would be most likely to
result in spontaneous regression of the tumor. But for this to occur, ‘the stars must
align’ for the system, i.e., it would have to be near M , which may not be likely if it is
large enough to be detected and/or not expected to respond to therapy, and an immune
response would have to occur that propels it into the Allee region.

7 Discussion

It has recently been suggested that exploitation of the Allee effect in tumor growth
should be considered for therapy development (Korolev et al. 2014). We have
simplified a model of tumor growth in order to understand the principles under
which a tumor can die out at low density, i.e., exhibit an Allee effect. In our
system, the Allee effect occurs due to the following reasons: low level of acti-
vator, a, will lower the probability of stem cell self-renewal, p. A low p will
result in lower stem cell production and hence less a production. For low enough
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S and a, the system will thus tend toward tumor extinction. Using the Stable
Manifold Theorem, we have shown that there can exist a separatrix which distin-
guishes between trajectories of (S, a) tending to (0, 0) and trajectories that tend
to nonzero solutions. The location of the separatrix depends on the various para-
meters in the model, which are the strength of a-dependent activation (ξ1) and
S-dependent inhibition (ξ2) of the probability of self-renewal p, the stem cell divi-
sion rate (k) and the strength of a self-activation (β) and saturation (λ). A linear
approximation of the separatrix by the Stable Manifold Theorem has allowed us to
quantify the susceptibility of the tumor to the Allee effect by introducing an Allee
index.

Given that there can be an Allee effect, one can ask how a tumor of appreciable size
can develop at all before the Allee effect leads to extinction? As we have observed,
our model allows for the transient growth of stem cell numbers, and hence tumor
size, even when the system is in the Allee region (recall Figs. 1a, b , 7). The amount
by which S can increase depends on system parameters. In addition, following the
hypothesis that cancer stem cells act as cancer-initiating cells (Zhou et al. 2009), one
can imagine that at very early times, the tumor is made almost entirely of cancer
stem cells, which does not correspond to the system we present, since we assume
a linear relationship between stem (S) and differentiated (D) cell populations, and
concentration of differentiation promoter (T ) (see Eqs. (1)–(7)). Such an assumption
is valid for a system that already has an appreciable, quasi-steady, population of D and
T . At early time points, when D and T are negligible, the system exhibits an effective
probability of stem cell self-renewal p that is dependent only on concentration of a,
specifically a higher p than would be predicted by the model, thereby allowing S
to increase even more than predicted by our model. This may also enable the tumor
to escape the Allee region for a finite period of time until a sufficient amount of T
accumulates to provide negative feedback on p, which could push the tumor back into
the Allee region and ultimately toward tumor extinction.

Our model and associated analysis can give insight into patient outcomes. For
example, elevated levels of nuclear β-catenin, a downstream signaling target of the
Wnt cascade, in the excised tumors of patients who had undergone surgery and therapy
for colorectal cancer, were strongly correlated with poor patient survival (Cheah et al.
2002). We can translate this phenomenon to a system where lowered levels of S
and k via surgery and therapy do not induce tumor extinction because high a levels
maintain the system in the sustainability regime. It follows that treatments that combine
traditional cancer therapy (surgery and cytotoxic chemotherapy) with targeted Wnt
inhibitors may be especially effective for the patients with elevatedWnt levels because
the lowered a levels would allow the system to enter the Allee region.

This simplified model may also help to explain why the combination treatment
in the more complex system developed by Youssefpour et al. (2012) was successful
in tumor eradication, whereas the individual therapies were not. The combination
therapy consisted of cyclical radiation therapy (intermittent killing of tumor cells) and
differentiation therapy (addition of TGFβ to the system). This combination therapy
can be interpreted in our model as a combination of decreased S (which shifts the
system toward the Allee region) and increased ξ2 (which increases the Allee region
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and AI ), thus increasing the probability that the tumor will be extinguished by the
Allee effect over individual therapy.

Additionally, the dependence of the system behavior on the strength of the negative
feedback on stem cell self-renewal, ξ2, is of particular interest since tumor response
to growth inhibitors decreases throughout tumor progression (Hanahan and Weinberg
2000). A decrease in ξ2 in our system decreases AI and increases the limiting value of
S in the sustainability region. Therefore, a decrease in response to growth inhibitors
has the combined effect of decreasing the probability that traditional chemotherapy
and/or surgery will cause the tumor to become extinct, and increasing the long-term
population of stem cells. It may be this dual action in promoting tumor survival and
growth that has selected the decreased response to growth inhibitors to be a major
hallmark of cancer.

8 Conclusions

We have shown, with a simple stem cell and chemical activator model, that a tumor
can undergo the Allee effect either spontaneously or after treatment when the system
is in the basin of attraction for extinction (what we term the Allee region). By con-
sidering tumor remission in the language of dynamical systems, we have been able to
quantify and observe how various parameters of the system contribute to defining the
Allee region in the phase space of the tumor and activator. Moreover, we have shown
why combination therapy may be especially effective with respect to treatment and
tumor eradication (e.g., see Chinnaiyan et al. 2000; Cassidy et al. 2004; Uno et al.
2006; Mangsbo et al. 2010), as it can increase the probability that the treated tumor
will lie in the Allee region (by moving the tumor into and/or increasing the Allee
region).

We have purposefully kept the model simple in order to allow an analytical
approach to the question of tumor eradication. Extensions to include full cell lin-
eages, non-constant concentrations of the inhibitor and/or differentiation promoters,
microenvironmental interactions (such as host-produced HGF upregulation of a) or
more complex parameter dependencies (e.g., the cell division rate kmay be positively
correlated with a) should yield qualitatively similar results. Spatial effects can also
be incorporated. In particular, it is expected that the Allee index will vary through-
out space. This suggests that depending on the microenvironmental conditions and
the spatial distribution of feedback factors, some parts of the tumor may be in the
Allee region, while other parts may not. Applying combination therapy increases the
probability that the whole tumor will lie in the Allee region.
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Appendix 1: Approximation of the Separatrix for System (9) using the
Stable Manifold Theorem.

We use the Stable Manifold Theorem (SMT) to prove that the separatrix described in
Theorem 1 near the equilibrium point P2(S2, A2) of system (9) exists and to approxi-
mate it. We follow the technique presented in (Perko 2001). We recall that P2 occurs
at the unique intersection of the curves {p(S, a) = 0.5} and {F(S, a) = 0}. We state
the SMT here for reference.

Theorem 2 (The StableManifold Theorem). Let E be an open subset ofRn containing
the origin, let f ∈ C1(E), and let φt be the flow of the nonlinear system ẋ = f(x).
Suppose that f(0) = 0 and that Df(0) has k eigenvalueswith negative real part and n−
k eigenvalues with positive real part. Then there exists a k-dimensional differentiable
manifold M tangent to the stable subspace Em of the linear system ẋ = Ax at 0 where
A = Df(0), such that for all t ≥ 0, φt (M) ⊂ M for all x0 ∈ M and

lim
t→∞ φt (x0) = 0.

In our case, we make an affine change of coordinates to system (9) which sends
P2 → 0 and use the constructive proof of the SMT (see Perko 2001, p. 108) to find
the separatrix M .

Affine Change of Coordinates

To apply the SMT, we need to first make the affine change of coordinates: c : (S, a) →
(S, a) − (S2, A2). We let (S∗, a∗) = c(S, a). Then, applying c to (9), and noting that
(S, a) = (S∗, a∗) + (S2, A2), and ∂

∂t (S, a) = ∂
∂t ((S

∗, a∗) + (S2, A2)) = ∂
∂t (S

∗, a∗),
we obtain

Ṡ∗ = (2p∗(S∗, a∗) − 1)k(S∗ + S2) = f ∗
1 (S∗, a∗),

ȧ∗ = (a∗ + A2)

(

β(S∗ + S2)(a∗ + A2)

1 + λ(a∗ + A2)
− 1

)

= f ∗
2 (S∗, a∗),

p∗(S∗, a∗) = ξ1(a∗ + A2)

1 + ξ1(a∗ + A2)

1

1 + ξ2(S∗ + S2)
.

(16)

The Jacobian for (16) is

J∗(S∗, a∗) =
(

2p∗
S∗k(S∗ + S2) + (2p∗ − 1)k 2p∗

a∗k(S∗ + S2)
( f1)S∗ ( f1)a∗

)

,
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where

p∗
S∗ = −ξ1ξ2(a∗ + A2)

(1 + ξ1(a∗ + A2))(1 + ξ2(S∗ + S2))2
,

p∗
a∗ = ξ1

(1 + ξ2(S∗ + S2))(1 + ξ1(a∗ + A2))2
,

( f ∗
2 )S∗ = β(a∗ + A2)

2

1 + λ(a∗ + A2)
,

( f ∗
2 )a∗ = β(S∗ + S2)(a∗ + A2)(2 + λ(a∗ + A2))

(1 + λ(a∗ + A2))2
− 1.

(17)

In this coordinate system, (S∗, a∗) = (0, 0) is an equilibrium point and P∗(0, 0)
corresponds to P2(S2, A2). To use the SMT, we need to first determine A = Df(0) =
J∗(0, 0). We have

A = J∗(0, 0) =
(

2p∗
S∗(0, 0)kS2 2p∗

a∗(0, 0)kS2
( f2)S∗(0, 0) ( f2)a∗(0, 0)

)

. (18)

We first note, as in the original J(S1, S2), that since p∗
S∗ < 0 and ( f ∗

2 )a∗(0, 0) >

0, 2p∗
S∗(0, 0)kS2( f2)a∗(0, 0) < 0 and since p∗

a∗ > 0 and ( f ∗
2 )S∗ > 0,

2p∗
a∗(0, 0)kS2( f2)S∗(0, 0) > 0. Therefore,

det J∗(0, 0) = 2p∗
S∗(0, 0)kS2)( f

∗
2 )a∗(0, 0) − 2p∗

a∗(0, 0)kS2( f
∗
2 )S∗(0, 0) < 0,

and hence J∗(0, 0) has one positive and one negative eigenvalue, and P∗ is a saddle-
point. We also recall that S2 and A2 satisfy

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ξ1A2

1 + ξ1A2

1

1 + ξ2S2
= 0.5,

βS2A2

1 + λA2
= 1.

(19)

Using (19), we simplify (17) to calculate the elements of A,

p∗
S∗(0, 0) = −A2ξ1ξ2

(1 + ξ1A2)(1 + ξ2S2)2
= −ξ2

2(1 + ξ2S2)
,

p∗
a∗(0, 0) = 1

(1 + ξ2S2)(1 + ξ1A2)2
= 1

2A2(1 + ξ1A2)
,

( f ∗
2 )S∗(0, 0) = βA2

2

1 + λA2
= A2

S2
,

( f ∗
2 )a∗(0, 0) = βS2A2(2 + λA2)

(1 + λA2)2
− 1 = 2 + λA2

1 + λA2
− 1 = 1

1 + λA2
.

(20)
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Substituting (20) into (18), we have the following expression for A = J∗(0, 0),

A =

⎛

⎜

⎜

⎝

−ξ2kS2
1 + ξ2S2

kS2
A2(1 + ξ1A2)

A2

S2

1

1 + λA2

⎞

⎟

⎟

⎠

. (21)

Preliminary Calculations for the SMT

Following (Perko 2001) and taking x = (S∗, a∗), we can rewrite the system (16) as

ẋ = Ax + F(x), (22)

where A = J∗(0, 0) and F(x) = f∗(x)−Ax. We next need to find an invertible matrix
C such that

B = C−1AC =
(

L1 0
0 L2

)

, (23)

where L1 and L2 are the negative and positive eigenvalues, respectively, of A = (Ai j ).
We first calculate the trace, T , and determinant, D, of A,

T = A11 + A22 = −ξ2kS2
1 + ξ2S2

+ 1

1 + λA2
,

D = A11A22 − A12A21 = −ξ2kS2
1 + ξ2S2

1

1 + λA2
− kS2

A2(1 + ξ1A2)

A2

S2

= −ξ2kS2
(1 + ξ2S2)(1 + λA2)

− k

1 + ξ1A2
.

We note, from the calculations above, that D < 0. We proceed to calculate 0 =
det(A − L I ) to obtain the quadratic equation

0 = L2 − (A11 + A22)L + (A11A22 − A12A21) = L2 − T L + D.

The quadratic formula gives us:

L1,2 = T ∓ (T 2 − 4D)1/2

2
= T/2 ∓ (T 2/4 − D)1/2.

Since D < 0, we find that L1,2 are both real and have opposite sign; hence, L1 < 0 <

L2. It can be verified that v1 = [(L1 − A22), A21]T and v2 = [(L2 − A22), A21]T
are eigenvectors corresponding (respectively) to L1 and L2. Here the superscript T
denotes the transpose. Therefore, we have

A = CBC−1

= 1

A21(L1 − L2)

(

L1 − A22 L2 − A22
A21 A21

)(

L1 0
0 L2

)(

A21 −L2 + A22
−A21 L1 − A22

)
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We make another change of variables, taking y = C−1(x), and writing (22) as

ẏ = By + G(y), (24)

where B is from (23) and G(y) = C−1F(Cy).

Applying the SMT

By the SMT (taking a = (a1, a2)),

u(t, a) = U(t)a +
∫ t

0
U(t − s)G(u(s, a))ds −

∫ ∞

t
V (t − s)G(u(s, a))ds (25)

is the solution to (24), where

U(t) =
(

eL1t 0
0 0

)

and V (t) =
(

0 0
0 eL2t

)

.

We solve for u using the method of successive approximation. We let u(0)(t, a) = 0
and

u( j+1)(t, a) = U(t)a+
∫ t

0
U(t − s)G(u( j)(s, a))ds−

∫ ∞

t
V (t − s)G(u( j)(s, a))ds.

(26)
To solve for j = 1, we note that G(0) = C−1F(C · 0) = C−1F(0) = 0 since
f1(0, 0) = f2(0, 0) = 0. Therefore,

u(1)(t, a) =
(

eL1t a1
0

)

.

For the next approximation, we first calculate U(t − s)G(u(1)(s, a)) = U(t −
s)C−1F(Cw) = H1F(Cw), where H1 = U(t − s)C−1 and w = (eL1sa1, 0)T .
Simplifying H1 gives us:

H1 = U(t − s)C−1 = 1

A21(L1 − L2)

(

eL1(t−s) 0
0 0

)(

A21 A22 − L2
−A21 L1 − A22

)

= eL1(t−s)
( 1

L1−L2

A22−L2
A21(L1−L2)

0 0

)

.

Then,

H1F(Cw) = eL1(t−s)
( 1

L1−L2

A22−L2
A21(L1−L2)

0 0

)

×
[(

f1(Cw)

f2(Cw)

)

− eL1sa1

(

A11 A12
A21 A22

) (

L1 − A22
A21

)]
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= eL1(t−s)

(

f1(Cw)
(L1−L2)

+ f2(Cw)A22−L2
A21(L1−L2)

0

)

− eL1t a1

( L1(T−L2)−D
L1−L2

0

)

. (27)

Hence,

∫ t

0
U(t − s)G(u(1)(s, a)) =

∫ t

0
eL1(t−s)

(

f1(Cw)
(L1−L2)

+ f2(Cw)A22−L2
A21(L1−L2)

0

)

ds − t

[

eL1t a1

( L1(T−L2)−D
L1−L2

0

)]

. (28)

We note that our stable manifold will be of the form y2 = ψ
(2)
2 (y1), whereψ

(2)
2 (a1) =

u(2)
2 (0, a1, 0). SinceU(t)a and (28) only contribute trivially tou(2)

2 ,wewill not perform
further calculations on them.

Next, we calculate V (t − s)G(u(1)(s, a)) = V (t − s)C−1F(Cw) = H2F(Cw).
As before, we first calculate H2:

H2 = V (t − s)C−1 = 1

A21(L1 − L2)

(

0 0
0 eL2(t−s)

) (

A21 A22 − L2
−A21 L1 − A22

)

= eL2(t−s)
(

0 0
−1

L1−L2

L1−A22
A21(L1−L2)

)

.

We thus have,

H2F(Cw) = eL2(t−s)
(

0 0
−1

L1−L2

L1−A22
A21(L1−L2)

)

×
[(

f1(Cw)

f2(Cw)

)

− eL1sa1

(

A11 A12
A21 A22

) (

L1 − A22
A21

)]

= eL2(t−s)

(

0
− f1(Cw)
L1−L2

+ f2(Cw)(L1−A22)
A21(L1−L2)

)

− es(L1−L2)eL2t
[

0
g(L1, L2, A21, A22)

]

. (29)

Taking the integral of the right-hand term on the domain [t,∞) gives us
eL1t

L2−L1
(0, g(·))T . We find that g(·) = L2

1 − T L1 + D = 0. Therefore, this term
does not contribute to the stable manifold.

The SMT allows us to calculate the second approximation to the separatrix, M∗ =
u(2)
2 (0, a1, 0), as
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M∗ = 1

L1 − L2

(∫ ∞

0
−e−L2s f ∗

1 (Cw)ds + L1 − A22

A21

∫ ∞

0
e−L2s f ∗

2 (Cw)ds

)

,

(30)
where Cw = eL1sa1(L1 − A22, A21)

T , and by (16),

f ∗
1 (Cw) =

(

2ξ1(eL1sa1A21 + A2)

(1 + ξ1(eL1sa1A21 + A2))(1 + ξ2(eL1sa1(L1 − A22) + S2))
− 1

)

k(eL1sa1(L1 − A22) + S2), (31)

f ∗
2 (Cw) = (eL1sa1A21 + A2)

(

β(eL1sa1(L1 − A22)+S2)(eL1sa1A21 + A2)

1 + λ(eL1sa1A21 + A2)
− 1

)

.

(32)

We now solve − ∫ ∞
0 I1ds = ∫ ∞

0 e−L2s f ∗
1 (Cw)ds and

∫ ∞
0 I2ds = ∫ ∞

0 e−L2s f ∗
2

(Cw)ds. Substituting (31) into I1, we obtain

I1 =
(

2ξ1e−L2s(eL1sa1A21 + A2)

(1 + ξ1(eL1sa1A21 + A2))(1 + ξ2(eL1sa1(L1 − A22) + S2))
− e−L2s

)

k(eL1sa1(L1 − A22) + S2). (33)

We split I1 into three parts:

I1 = I11 + I12 + I13

= (2ξ1e−L2s(eL1sa1A21 + A2)k(eL1sa1(L1 − A22) + S2)

(1 + ξ1(eL1sa1A21 + A2))(1 + ξ2(eL1sa1(L1 − A22) + S2)

− ke(L1−L2)sa1(L1 − A22) − e−L2skS2.

We can directly integrate I12 and I13 to obtain

−
∫ ∞

0
I1ds = −

∫ ∞

0
I11ds − ka1(L1 − A22)

L1 − L2
+ kS2

L2
. (34)

We now work to simplify I11 by taking u = eL1s . The change of variables gives us

−
∫ ∞

0
I11ds = − 2k

L1

∫ u2

u1
u−T/L1

× (ua1A21 + A2)(ua1(L1 − A22) + S2)

(1 + ξ1(ua1A21 + A2))(1 + ξ2(ua1(L1 − A22) + S2))
du

= 2ξ1k

L1

∫ 1

0
u−T/L1

(uc1 + A2)(uc2 + S2)

(1 + ξ1(uc1 + A2))(1 + ξ2(uc2 + S2))
du,

(35)

where we find that u1 = 1 and u2 = lims→∞ eL1s = 0 since L1 < 0. We take
c1 = a1A21 and c2 = a1(L1 − A22).
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We would like to do a partial fraction decomposition for the integrand term in (35)
not containing u−T/L1 , I ∗

11. Noting that both the numerator and denominator are of
degree 2, we first perform long division to obtain a fraction p/q where deg p < deg
q. Fully multiplying the terms in the fraction, and setting c3 = A2c2 + S2c1 and
c4 = A2ξ1 + S2ξ2 + A2S2ξ1ξ2 + 1 gives us

I ∗
11 = u2c1c2 + uc3 + A2S2

u2ξ1ξ2c1c2 + u(ξ1ξ2c3 + ξ2c2 + ξ1c1) + c4

= 1

ξ1ξ2
− u(c2/ξ1 + c1/ξ2) + (A2/ξ2 + S2/ξ1 + 1/(ξ1ξ2))

(1 + ξ1(uc1 + A2))(1 + ξ2(uc2 + S2))
.

(36)

Setting c5 = c2/ξ1 + c1/ξ2 and c6 = A2/ξ2 + S2/ξ1 + 1/(ξ1ξ2), the second term of
(36) becomes

uc5+c6
(1+ξ1(uc1+A2))(1+ξ2(uc2 + S2))

= N1

(1 + ξ1(uc1 + A2))
+ N2

(1 + ξ2(uc2+S2))
,

where

N1 = −c5(ξ1A2 + 1) + c1c6ξ1
ξ1ξ2(c1S2 − A2c2) + c1ξ1 − c2ξ2

,

N2 = −c5(ξ2S2 + 1) + c2c6ξ2
ξ1ξ2(−c1S2 + A2c2) − c1ξ1 + c2ξ2

.

Therefore, the integrand in (35), u−T/L1 I ∗
11, can be written as

u−T/L1 I ∗
11 = u−T/L1

(

1

ξ1ξ2
− N1

(1 + ξ1(uc1 + A2))
− N2

(1 + ξ2(uc2 + S2))

)

.

We note that the first term can be integrated,

2ξ1k

L1ξ1ξ2

∫ 1

0
u−T/L1du = −2k

L2ξ1ξ2
u−L1/L2 ,

where the first equality comes about from the observation that−T/L1 = −1−L2/L1.
To summarize, if we set

I ∗∗
11 = u−T/L1

(

N1

(1 + ξ1(uc1 + A2))
+ N2

(1 + ξ2(uc2 + S2))

)

,

we can rewrite (34) as

−
∫ ∞

0
I1ds = kS2

L2
− kC2

L1 − L2
− 2ξ1k

L2ξ1ξ2
− 2ξ1k

L1

∫ 1

0
I ∗∗
11 du. (37)
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To solve
∫ 1
0 I ∗∗

11 du, wewill need to use a hypergeometric function and the beta function.
Indeed, we have the formula

∫ 1

0
tb−1(1 − t)c−b−1(1 − t x)−adt = B(b, c − b)2F1(a, b; c; x),

where B(a, b) = ∫ a
0 ta−1(1 − t)b−1dt and 2F1(a1, a2; b1; x) = ∑∞

k=0
(a1)k (a2)k

(b1)k
xk
k! .

In our case, we split I ∗∗
11 naturally as a sum of two terms, and for the first integral,

we have b − 1 = −T/L1, hence b = 1 − T/L1 = −L2/L1, 0 = c − b − 1, hence
c = b + 1 = 2 − T/L1, a = 1, and x = (−ξ1C1)/(ξ1A2 + 1), where we have pulled
(ξ1A2 + 1)−1 from the denominator. We want to first find an explicit representation
for B(b, c − b),

B(b, c − b) = B(−T/L1 + 1, 1) =
∫ 1

0
t−T/L1dt = 1

−L2/L1
t−T/L1+1|10 = −L1

L2
.

Using the hypergeometric function and (37), our final formula for − ∫ ∞
0 I1ds =

∫ ∞
0 −eL2s f ∗

1 (Cw)ds is

−
∫ ∞

0
I1ds = k

(

S2
L2

− C2

L1 − L2
− 2

L2ξ2
+ 2ξ1N1

L2(ξ1A2 + 1)
2F

1
1

+ 2ξ1N2

L2(ξ2S2 + 1)
2F

2
1

)

, (38)

where

2F
1
1 = 2F1

(

1,−L2/L1; 1 − L2/L1; −ξ1c1
ξ1A2 + 1

)

and

2F
2
1 = 2F1

(

1,−L2/L1; 1 − L2/L1; −ξ2c2
ξ2S2 + 1

)

We now begin work to solve
∫ ∞
0 I2ds = ∫ ∞

0 e−L2s f2(Cw)ds. Using the same substi-
tution as earlier, i.e., u = eL1s , and again taking c1 = a1A21 and c2 = a1(L1 − A22),
we obtain

∫ ∞

0
I2ds = −1

L1

∫ 1

0
u−T/L1(uc1 + A2)

(

β(uc2 + S2)(uc1 + A2)

1 + λ(uc1 + A2)
− 1

)

,

= −β

L1

∫ 1

0
u−T/L1

(uc2 + S2)(uc1 + A2)
2

1 + λ(uc1 + A2)
du + 1

L1

∫ 1

0
u−T/L1+1c1

+u−T/L1 A2du,
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= −β

L1

∫ 1

0
u−T/L1

(

c∗
3u

2 + c∗
4u + c∗

5 + c∗
6

λuc1 + λA2 + 1

)

du

+ c1
L1 − L2

+ −A2

L2
, (39)

where the last equality comes from long division in the first integral and full integration
of the second. The constants are as follows:

c∗
3 = c1c2

λ
, c∗

4 = c2A2 + c1S2
λ

− c2
λ2

, c∗
5 = c2

c1λ3

+ S2(A2 − 1)

λ2
, c∗

6 = −1

λ3
+ S2 − (A2c2/c1)

λ2
.

We concentrate now on the first integral in (39). The first three terms multiplied by
u−T/L1 can be integrated in a straightforward manner. The last one can be integrated
using a hypergeometric function as described earlier. We thus obtain

∫ ∞

0
I2ds=−β

(

c∗
3

2L1 − L2
+ c∗

4

L1−L2
− c∗

5

L2

)

+ βc∗
6

L2(1+λA2)
2F

3
1 + c1

L1 − L2
− A2

L2
,

(40)

where 2F3
1 = 2F1

(

1,−L2/L1; 1 − L2/L1; −λc1
1+λA2

)

. Therefore, using (30), (38) and

(40) we obtain an explicit solution for M∗,

M∗ = k

L1 − L2

(

S2
L2

− c2
L1−L2

− 2

L2ξ2
+ 2N1ξ1

L2(ξ1A2+1)
2F

1
1 + 2N2ξ1

L2(ξ2S2+1)
2F

2
1

)

+ L1 − A22

(L1 − L2)A21

(

−β

(

c∗
3

2L1 − L2
+ c∗

4

L1 − L2
− c∗

5

L2

)

+ βc∗
6

L2(1 + λA2)
2F

3
1

+ c1
L1 − L2

− A2

L2

)

, (41)

where the constants and hypergeometric functions were specified earlier.

Linear and Quadratic Approximation of M∗

We take a linear and quadratic portion ofM∗ in order tomore easily ascertain the effects
of the system parameters. Using the expansion for the hypergeometric function, and
noting that the untransformed stable manifold will intersect (0, 0), we remove all
nonlinear terms and rewrite M∗ as y2 = my1, where m is the slope of the line y2 to
obtain

y2 = −y1
(L1 − L2)2

c7, (42)
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where c7 is the constant

c7 = 2N1ξ
2
1 A21k

(ξ1A2 + 1)2
+ 2N2ξ1ξ2k(L1 − A22)

(ξ2S2 + 1)2

− (L1 − A22) + L1 − A22

A21

(

−βc∗∗
4 + A21 + βc∗∗

6 A21λ

(1 + λA2)2

)

,

(43)

where c∗∗
4 = c∗

4/y1 and c∗∗
6 = c∗

6/y1. Next, since (S∗, a∗) = x = Cy, we can obtain

a∗ = S∗
(

(L1 − L2)
2 − c7

(L1 − A22)(L1 − L2)2 + (−L2 + A22)c7

)

A21.

Keeping all quadratic terms, we obtain

y2 = −(y1)2

(L1 − L2)(2L1 − L2)
c8 − −y1

(L1 − L2)2
c7, (44)

where

c8 = −2ξ1

(

N1ξ
2
1 k A

2
21

(ξ1A2 + 1)3
+ N2ξ

2
2 (L1 − A22)

2

(ξ2S2 + 1)3

)

+

L1 − A22

A21

(

−β

λ
A21(L1 − A22) − βc∗∗

6 A2
21λ

2

(1 + λA2)3

)

.

The system can be solved for x = (S∗, a∗) using the quadratic formula.
In Fig. 1, we plot M∗, M∗

l and M∗
q for specific parameter values in the original

coordinate system (S, a). To plot M∗ and M∗
q in the original coordinate system (S, a),

we input a discreet set of values for y1 and use Eqs. (41) or (44), respectively, to find
y2. We can then find (S∗, a∗) = C−1y and hence (S, a) = (S∗ + S2, a∗ + A2). To
plot M∗

l in the original coordinate system (S, a), we directly find (S∗, a∗) using Eq.
(42) and translate to (S, a). To simplify notation, when we refer to M∗, M∗

l and M∗
q

in the main text, we are referring to these functions after coordinate transformation to
(S, a).

Appendix 2: Calculation of the Coefficient of Determination, R2

Here, we briefly describe the calculation of the coefficient of determination, or R2, as
a measure of the goodness of fit of a regression model to the data. One can find more
in depth development and analysis of R2 in Greene (2003).

The coefficient of determination is calculated as follows. Define the dependent
variables as {yi }ni=1 (in our case, the yi correspond to the values of AI for a given
parameter input); taking ȳ = ∑

i yi/n, we define the total variation in y as
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SSt =
∑

i

(yi − ȳ)2,

which is just the sum of squared deviations. For each yi , we associate a bi , which is
the value of the regression equation at independent variable xi . We similarly define
the residual sum of squares as

SSres =
∑

i

(yi − bi )
2.

The unadjusted R2 is calculated as

R2 = 1 − SSres
SSt

.

Note that if the data perfectly fit the model (i.e., yi = bi ∀i), then R2 = 1, indicating
that amodel with a perfect fit to the data has R2 = 1, and decreases to 0 as the goodness
of fit is reduced. The adjusted R2, R̄2, corrects to an increase in R2 that can occur
due to incorporation of additional degrees of freedom into a model and thus should
be used in lieu of R2 when comparing goodness of fit between models with different
degrees of freedom. It is defined as

R̄2 = 1 − SSres/(n − d)

SSt/(n − 1)
,

where n is the total number of observations, d is the number of regression coefficients,
n − d is the degrees of freedom of SSres , and n − 1 is the degrees of freedom of SSt .
In the main text, the adjusted R2 is presented without the bar notation.
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