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• A large number of growth factors and drugs are known to act in a biphasic manner: at lower concentrations
they cause increased division of target cells, whereas at higher concentrations the mitogenic effect is
inhibited.

• Often, the molecular details of the mitogenic effect of the growth factor is known, whereas the inhibitory
effect is not.

• Hepatoctyte Growth Factor, HGF, has recently been recognized as a strong mitogen that is present in the
microenvironment of solid tumors.

• Recent evidence suggests that HGF acts in a biphasic manner on tumor growth.

Representative images of CCICs grown for 9 days in (from left to right)
0 (control), 50ng/ml, and 250ng/ml HGF (1). Note that growth rate
increases from control to 50ng/ml conditions, but decreases at higher
concentration of HGF.

We build a multi-species model of HGF action on tumor cells using different hypotheses for high dose-HGF
activation of a growth inhibitor and show that the shape of the dose-response curve is directly related to the
mechanism of inhibitor activation. We hypothesize that the shape of a dose-response curve is informative
of the molecular action of the growth factor on the growth inhibitor.

Introduction

• Tumor tissue is composed of two cell types: cancer stem cells
(S), and terminally differentiated cells (TC).

• Stem cells have a probability of self-renewal, P , and a division
rate Ks .

• P and Ks are promoted by Wnt and other factors (W ) pro-
duced by stem cells and inhibited by TGFβ and other factors
(T ) produced by differentiated cells.

• HGF, represented by H, acts by increasing W production at
lower concentrations and T at higher concentrations.

Adapted from (2)

Based on the above considerations, changes in species concentrations are modeled by


∂S
∂t

= (2P − 1)KSS,

∂TC
∂t

= 2(1 − P )KSS +KTCTC,

where KS,TC are the stem and differentiated cell division rates, respectively.

Changes in probability of self-renewal and stem-cell division rate are modeled by

P = Pmin + (Pmax − Pmin)MP , KS = KSmin
+ (KSmax
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where Pmin,max are the respective min. and max. probabilities of self-renewal, and KSmin,max
are the respective min. and max. stem cell division rates. ξP,KS

, ψP,KS
represent the strength of

positive and negative feedback, respectively, on P or KS .

Finally, changes in concentrations of growth factors W and T are modeled by

∂W

∂t
=

λHH +
λPW1W

2

1 + λPW2W
2

S − νDWW

∂T

∂t
= gi(H)H(S + TC) − νDT T i = 1, 2, 3,

where λH represents the feedback response of W on H, λPW1
the strength of the autocrine positive

feedback response of W , λPW2 is the Michaelis-Menton constant for W , νDW,DT are the decay rates

for W and T , respectively, and gi(H) is the positive feedback function of H on T :

g1(H) = 5−3H, g2(H) = 3−4H2 , g3(H) = 2−5H3 .

Multispecies Model of Tumor signaling

Summary of model parameter values

Parameter Description Value Explanation

KTC TC mitosis rate 0.1 Below observed div. rate in mixed culture

Pmin Min. CSC self-renewal rate 0.2 Lower extreme for self-renewal

Pmax Max. CSC self-renewal rate 1.0 Upper extreme for self-renewal

KSmin
Min. CSC mitosis rate 0.1 Below observed div. rate in mixed culture

KSmax
Max. CSC mitosis rate 1.0 Above observed div. rate in mixed culture

ξP Pos. feedback response of P 1.0 Derived from (2)

φP Neg. feedback response of P 0.5 Derived from (2)

ξKS
Pos. feedback response of KS 0.01 Derived from (1)

φKS
Neg. feedback response of KS 0.5 Derived from (1)

λPW1 Pos. feedback response of W 1 Derived from (1)

λPW2 M-M constant for W 1 Derived from (1)

λH H feedback response of W 2 Derived from (1)

νD(W,T ) Decay rates for W and T, respec-
tively

1 First estimate

Parameter Values

In order to analyze the dynamics, we reduced the system by assuming quasi-steady state con-
centrations for W and T by setting the time derivatives in the respective equations to 0.

• In the case of W , we obtained the cubic function
0 = −W3 + W2S(2H + 1) − W + 2H. A real
solution was found using the MATLAB symbolic solver.

• In the case of T , we have 0 = g(H)(CS + TC) − T ,
allowing us to obtain T = g(H)(CS + TC).

• Equations were numerically solved in MATLAB using MAT-
LAB’s standard solver for ODEs, ode45.

• Initial conditions: S=1 / TC = 0; one unit area ∼ 1450um2 ,
the average area of initial CCIC spheres in (1);
And, 2.0 = W >> T = 0.01 since stem cells produce
W but not T .

• Except at [HGF] where peak growth occurs, where there are mi-
nor differences in peak growth between the original model and
quasi-steady state approximation, the quasi-steady state as-
sumption does not significantly effect the output of the model. Dose-response curve of original system (top)

and quasi-steady state system (bottom) for
linear, quadratic, and cubic g(H).
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Dynamics of stem cell, terminal cell, W, and T concentrations in the original model for linear and cubic g
and at concentrations of (a) H=0, (b) H=20, and (c) H=100. The graph insets for each simulation are the
dynamics of the same factor in the quasi-steady state model.

Note that at H = 20, the approximate concentration of HGF that peak growth rate occurs, stem
cell concentrations increase faster than that of terminal cells in both models, whereas at H = 100, terminal
cell concentrations overtake stem cells at later time points in the simulations.

Quasi-Steady State Growth Factor concentration

Phase planes of stem and ter-
minal cell dynamics for the
quasi-steady state system at (a)
H = 0, (b) H = 20, with
linear and cubic g(H), and (c)
H = 100, with linear and
cubic g(H). Solutions are plot-
ted for initial conditions ranging
from 0-6 stem and terminal cells
(each).

Phase Plane Analysis

• The shape of an experimental growth curve can serve as an aid
in generating hypotheses of growth factor action.

• If the curve post-peak segment (CPPS) displays low curvature
(i.e. is near linear), then a good hypothesis is that there is no
synergy of inhibitor activation by the growth factor. Example:
effect of HGF on muscle satellite cell proliferation (top panel,
(3)).

• If the CPPS shows high curvature, then a good hypothesis is
that the growth factor increases expression of the growth in-
hibitor in a non-linear fashion. Examples: NGF action on neu-
rite outgrowth and copper chloride action on bacterial colony
formation (lower two panels, (4-5)).

• A nonlinear CPPS may be indicative of pleiotropic action of
the growth factor on growth inhibition.

• Use of CSC markers (such as CDC133) could provide experi-
mental validation of the model and phase plane predictions.

Conclusion: Our simple model of HGF action on cell proliferation in a multi-species colon cancer system
serves to establish the hypothesis that a shape analysis of a dose-response curve can inform molecular
mechanism of growth factor action.

Discussion
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