

CX System Reference

Technical Manual

Copyright (c) 2001 Jenzabar, Inc. All rights reserved.
You may print any part or the whole of this documentation to support installations of Jenzabar software.
Where the documentation is available in an electronic format such as PDF or online help, you may store
copies with your Jenzabar software. You may also modify the documentation to reflect your institution's
usage and standards. Permission to print, store, or modify copies in no way affects ownership of the
documentation; however, Jenzabar, Inc. assumes no responsibility for any changes you make.

Filename: tmcxref
Distribution Date: 02/15/2002

Contact us at www.jenzabar.com

Jenzabar CX and QuickMate are trademarks of Jenzabar, Inc.
INFORMIX, PERFORM, and ACE are registered trademarks of the IBM Corporation
Impromptu, PowerPlay, Scenario, and Cognos are registered trademarks of the Cognos Corporation
UNIX is a registered trademark in the USA and other countries, licensed exclusively through X/Open Company Limited
Windows is a registered trademark of the Microsoft Corporation
All other brand and product names are trademarks of their respective companies

 i

JENZABAR, INC.
CX SYSTEM REFERENCE TECHNICAL MANUAL

TABLE OF CONTENTS

SECTION 1 – USING THIS MANUAL.. 1
Overview... 1

Purpose of This Manual.. 1
Intended Audience.. 1
Product Differences .. 1
Structure of This Manual .. 1

SECTION 2 – JENZABAR CX OVERVIEW... 3
Overview... 3

Introduction... 3
Background Knowledge.. 3

System Integration Features .. 4
Diagram .. 4
Product Integration ... 5
Enabling and Disabling Jenzabar CX Products .. 5
User Access of Products .. 5
Reporting and Output ... 5

SECTION 3 – JENZABAR CX SCHEMAS .. 7
Overview... 7

Introduction... 7
Access .. 7
File Naming Conventions ... 7

Creating Schemas Using Dbmake ... 8
Introduction... 8
DBMAKE Environment variable.. 8
Dbmake Options... 8
Alter Table Processing ... 9

Schema File Structure.. 10
Introduction... 10
Schema Template .. 10
Database Name.. 11
Table Section.. 11
Column Section .. 11
Constraint Section .. 11
Index Section.. 12
Grant Section.. 12

Specifying Table Attributes in Schemas... 13
Introduction... 13
Table Attributes Section ... 13
Table Attributes .. 13

Specifying Columns in Schemas.. 16
Introduction... 16
Column Section .. 16
Column Type .. 16
Default Values .. 17

Constraint Analysis in Schemas... 18
Introduction... 18
Column Section .. 18
Analysis Output .. 18

 ii

Constraint Format... 19
Field Level Constraints ... 19
Table Level Constraints.. 19
Implementing Constraints... 20
Unique Index/Constraint Conflict.. 20
Check Constraints Rebuilds ... 20

Specifying Triggers/Audit Trails in Schemas.. 21
Introduction... 21
Tracking Changes .. 21
Tracking Changes Made by Programs... 21
Grant/Trigger Section ... 21
Trigger/Audit Trail Section Syntax.. 22
Trigger Naming Convention ... 22
Trigger Processing ... 22
Audit Columns .. 22
CAPTURE FOR Clause.. 23
FOR CHANGE OF Clause ... 23
Triggered Actions ... 23
Audit Trail Permissions... 23
Regular Triggers... 23
The Process ... 24
Simple Trigger Example ... 25
Complex Trigger Example .. 25

Specifying Stored Procedures in Schemas.. 26
Introduction... 26
Access .. 26
Stored Procedure ... 26
Procedure File Header ... 27
Privilege Definitions .. 27
Grant Option Privileges .. 27
Storage of Permissions .. 27
Input Parameters .. 28
Output Parameters ... 28
Compile Process .. 28

Example Schemas.. 29
Introduction... 29
Basic Schema Example.. 29
Complex Schema Example .. 30

SECTION 4 – COMMON TABLES AND RECORDS... 31
Overview... 31

Using this Section... 31
Accessing Tables and Records.. 31
What Is a SQL Table? .. 31
What Is a Jenzabar CX Table? ... 31
What Is a Jenzabar CX Record?... 31
Disabled Fields ... 32

Locating Tables and Field Descriptions ... 33
Introduction... 33
Fields By File Report .. 33
Files By Track Report ... 33
Fields By Track Report ... 33

Common Records... 34
Introduction... 34

Accomplishment Table ... 36
Purpose .. 36

 iii

How to Access.. 36
Screen Example ... 36
Field Descriptions ... 36
Report Example.. 37

ADR Table .. 38
Purpose .. 38
How to Access.. 38
Screen Example ... 38
Field Descriptions ... 38
Report Example.. 39

Alternate Address Table... 40
Purpose .. 40
How to Access.. 40
Screen Example ... 40
Field Descriptions ... 40
Report Example.. 41

App Server Message Table.. 42
Purpose .. 42
How to Access.. 42
Screen Example ... 42
Field Descriptions ... 42
Report Example.. 43

Building Table... 44
Purpose .. 44
How to Access.. 44
Creation Sequence... 44
Screen Example ... 44
Field Descriptions ... 44
Report Example.. 45

Citizen Table... 46
Purpose .. 46
How to Access.. 46
Screen Example ... 46
Field Descriptions ... 46
Report Example.. 46

Communication Table .. 48
Purpose .. 48
How to Access.. 48
Screen Example ... 48
Field Descriptions ... 48
Report Example.. 48

Configuration Table .. 50
Purpose .. 50
Changes to Table ... 50
How to Access.. 50
Screen Example ... 51
Field Descriptions ... 51
Report Example.. 51

Contact Table ... 53
Purpose .. 53
How to Access.. 53
Screen Example ... 53
Field Descriptions ... 54
Report Example.. 54

Country Table ... 56
Purpose .. 56

 iv

How to Access.. 56
Screen Example ... 56
Field Descriptions ... 56
Report Example.. 57

County Table .. 58
Purpose .. 58
How to Access.. 58
Screen Example ... 58
Field Descriptions ... 58
Report Example.. 59

Day Table ... 60
Purpose .. 60
How to Access.. 60
Screen Example ... 60
Field Descriptions ... 60
Report Example.. 61

Degree Table.. 62
Purpose .. 62
How to Access.. 62
Screen Example ... 62
Field Descriptions ... 62
Report Example.. 63

Denomination Table ... 64
Purpose .. 64
How to Access.. 64
Screen Example ... 64
Field Descriptions ... 64
Report Example.. 65

Division/Department Table ... 66
Purpose .. 66
How to Access.. 66
Creation Sequence... 66
Screen Example ... 66
Field Descriptions ... 67
Report Example.. 67
Report Example.. 69

Entry Selection/Sort Criteria Table ... 70
Purpose .. 70
How to Access.. 70
Creation Sequence... 70
Screen Example ... 70
Field Descriptions ... 70
Report Example.. 71

Ethnic Table.. 73
Purpose .. 73
How to Access.. 73
Screen Example ... 73
Field Descriptions ... 73
Report Example.. 74

Exam Table .. 75
Purpose .. 75
How to Access.. 75
Screen Example ... 75
Field Descriptions ... 75
Report Example.. 76

Facility Table .. 77

 v

Purpose .. 77
How to Access.. 77
Screen Example ... 77
Field Descriptions ... 77
Report Example.. 78

Form Order Table ... 80
Purpose .. 80
How to Access.. 80
Screen Example ... 80
Field Descriptions ... 80
Report Example.. 81

Handicap Table .. 83
Purpose .. 83
How to Access.. 83
Screen Example ... 83
Field Descriptions ... 83
Report Example.. 84

Hold Tables .. 85
Purpose .. 85
How to Access.. 85
Creation Sequence... 85
Hold and Hold Action Relationships ... 85
Absolute Holds ... 85
Office Permissions.. 85
Screen Example ... 86
Field Descriptions ... 86
Report Example.. 87
Report Example (Hold Action Table).. 88
Report Example (Office Permissions Table Report) .. 89

ID Office Permissions Table... 90
Purpose .. 90
How to Access.. 90
Screen Example ... 90
Field Descriptions ... 90
Report Example.. 90

Interest Table.. 92
Purpose .. 92
How to Access.. 92
Screen Example ... 92
Field Descriptions ... 92
Report Example.. 93

Involvement Table .. 94
Purpose .. 94
How to Access.. 94
Screen Example ... 94
Field Descriptions ... 94
Report Example.. 95

Marital Table... 96
Purpose .. 96
How to Access.. 96
Screen Example ... 96
Field Descriptions ... 96
Report Example.. 97

Occupation Table ... 98
Purpose .. 98
How to Access.. 98

 vi

Screen Example ... 98
Field Descriptions ... 98
Report Example.. 99

Office Table .. 100
Purpose .. 100
How to Access.. 100
Screen Example ... 100
Field Descriptions ... 100
Report Example.. 100

Permission Table.. 102
Purpose .. 102
How to Access.. 102
Screen Example ... 102
Field Descriptions ... 102
Report Example.. 103

Privacy Act Tables.. 104
Purpose .. 104
How to Access.. 104
Creation Sequence... 104
Screen Example ... 104
Field Descriptions ... 104
Report Example.. 105

Relationship Table.. 106
Purpose .. 106
How to Access.. 106
Screen Example ... 106
Field Descriptions ... 106
Report Example.. 107

State Table ... 108
Purpose .. 108
How to Access.. 108
Screen Example ... 108
Field Descriptions ... 108
Report Example.. 109

Subscription Table.. 110
Purpose .. 110
How to Access.. 110
Screen Example ... 110
Field Descriptions ... 110
Report Example.. 111

Suffix Table... 112
Purpose .. 112
How to Access.. 112
Screen Example ... 112
Field Descriptions ... 112
Report Example.. 113

Tickler Table ... 114
Purpose .. 114
How to Access.. 114
Screen Example ... 114
Field Descriptions ... 114
Report Example.. 115

Title Table... 116
Purpose .. 116
How to Access.. 116
Screen Example ... 116

 vii

Field Descriptions ... 116
Report Example.. 117

User ID Table ... 118
Purpose .. 118
How to Access.. 118
Screen Example ... 118
Field Descriptions ... 118
Report Example.. 119

Veteran Chapter Table ... 120
Purpose .. 120
How to Access.. 120
Screen Example ... 120
Field Descriptions ... 120
Report Example.. 120

Visa Table... 122
Purpose .. 122
How to Access.. 122
Screen Example ... 122
Field Descriptions ... 122
Report Example.. 123

Zip Code Table ... 124
Purpose .. 124
How to Access.. 124
Screen Example ... 124
Field Descriptions ... 124
Report Example.. 125

SECTION 5 – JENZABAR CX MACROS .. 127
Overview... 127

Introduction... 127
What Is a Macro? ... 127
Configuration Table .. 127
The Relationship Among Macros, Includes, and C Programs. .. 128

Benefits of Jenzabar CX Macros... 129
Introduction... 129
Benefits of Jenzabar CX Macros.. 129

Contents of a Macro File .. 130
Introduction... 130
Example Macro File.. 130
Parts of a Macro File .. 130
M4_Include Statements.. 131

The Four Types of Macro Files .. 132
Types of Macro Files .. 132
Macro Files That the Institution Can Customize .. 132
Macro Files That the Institution Should Not Customize ... 133

The Macro Directory Structure ... 134
How to Access the Macro Files .. 134
Macro Directory Structure... 134

Custom Macro Files.. 135
Descriptions of Custom Macro Files... 135

User Macro Files .. 137
Descriptions of User Macro Files ... 137

Common Macros .. 139
Introduction... 139
Access .. 139
Enable Feature ... 139

 viii

Common Enable Macros .. 139
Common Periodic Macros .. 141

SECTION 6 – JENZABAR CX INCLUDES.. 149
Overview... 149

Introduction... 149
Policy Decision ... 149
Macro Dependency .. 149

How an Include Works ... 150
Relationship Between a Macro, Include, and C Program .. 150

Contents of an Include File... 151
Introduction... 151
Parts of an include file .. 151
How to Interpret the Include ... 152
Description of the Parts of an Include File.. 152

Examples of Includes ... 153
Introduction... 153
Example of an Active Include Outside a Comment.. 153
Example of an Inactive Include Inside a Comment .. 153
Interpreting the Include Inside the Comment ... 153

Nine Types of Include Files .. 154
How to Access the Include Files .. 154
Include Directory Structure... 154
Types of Include Files... 154
Include Files That an Institution Can Customize.. 155
Include Files That an Institution Should Not Customize... 155

Custom Include Files.. 156
Descriptions of custom include files ... 156
Common Includes... 157

Setting Up Includes .. 159
What is the Process?.. 159
How to Set Up an Include... 159

SECTION 7 - FORM ENTRY PROGRAM .. 161
Overview... 161

Introduction... 161
Program Features Detailed .. 161

Process Flow .. 162
Diagram .. 162
Data Flow Description .. 162
Program Relationships ... 163
Tables and Records Used.. 163

Parameters ... 164
Introduction... 164
Parameter Syntax... 164
Parameters ... 164
Operational Modes ... 165

Program Screens and Windows... 166
Introduction... 166
Access .. 166
Screen Files and Table/Record Usage .. 166

SECTION 8 – COMMON PROGRAMS.. 169
Overview... 169

Introduction... 169
Common Programs in this Section... 169

 ix

ID Entry Program.. 170
Introduction... 170
Accessing the ID Maintenance Feature ... 170
The ID Add for Individual Screen ... 170
Setup for this Feature ... 171
Results of Selecting the Add-ID Command.. 171

Duplicate ID Detection Program... 172
Introduction... 172
Dupid Terms ... 172
Program Arguments ... 174
Dupid Modes .. 175
Dupid Main Menu ... 175
Database Tables Used by Dupid.. 175
Modifying Table Definitions .. 176
Loading Data .. 176

Running Duplicate ID Detection in Background Mode... 177
Introduction... 177
Scheduling a Process... 177
Starting from an Interactive Login .. 177
Dupid Configuration.. 178
Limitations... 178
System Demands ... 178

Running Duplicate ID Detection in Interactive Mode ... 179
Introduction... 179
Interactive Mode Screen Example ... 179
Data Displayed On The Screen.. 179
Fields Accessed with the Parameters Command .. 180
Initial Screen Commands ... 180
Screen Commands after Selecting Query ID or Input.. 181
Interactive Mode Detail Pop-up Window .. 181
Command Options for Detail Window .. 182

Running Duplicate ID Detection in Review Mode .. 183
Introduction... 183
Review Mode Screen Example .. 183
Data Displayed On The Screen.. 183
Screen Commands... 184

ID Audit Program.. 186
Introduction... 186
The Process ... 186
Permissions .. 186
Idaudit Program Arguments.. 187

Running ID Audit .. 189
Processing Notes ... 189
The allow_delete Flag .. 191
Crash Recovery.. 191

Merge ID Program.. 192
Introduction... 192
Merge Logic .. 192
Overview of the Process... 192
What is an ID Column?... 193
Merge ID Features.. 194
Merge ID Terms.. 194

Merge ID Tables and Records ... 197
Introduction... 197
Configuration Macro ... 199

Running Merge ID in Interactive Mode... 200

 x

Introduction... 200
Entering ID Pairs for Merge Processing... 200

Merge ID Interactive Screen... 201
Introduction... 201
Data Displayed on the Screen.. 201
Commands on the Merge ID Interactive Screen .. 202

Merge ID List Screen.. 203
Introduction... 203
Fields on the Merge ID List Screen .. 203

Merge Table List Window... 204
Introduction... 204
Column Descriptions .. 204

Expanded Merge Item Window .. 205
Introduction... 205
Fields on the Expanded Merge Item Window .. 205

Running Merge ID in Batch Mode .. 206
Database Administration Program ... 207

Introduction... 207
Program Arguments ... 207
Dbadmin Screen... 208
Menu Options ... 208
Options Pop-Up Window .. 210
Options Pop-Up Window Fields ... 210
Audit Processing... 210
Audit Scripts.. 211
Example Audit Script .. 212
Additional Table.. 212

Schedule Entry Program .. 213
Introduction... 213
Windows Available in Schedule Entry .. 213
Records Used in Schedule Entry ... 213
Setup Issues for Schedule Entry .. 213

Sortpage Program .. 214
Introduction... 214
Macros You Must Set ... 214
Sample ACE Report ... 216
Program Flow ... 217
Sortpage Processing .. 217
Sortpage Process Commands ... 218
Bulk Mailing Mode .. 218
Setting Up Bulk Mail Sorting... 218
Program Error Messages ... 219
Crash Recovery.. 219

SECTION 9 – JENZABAR CX ENTRY LIBRARY... 221
Overview... 221

Introduction... 221
Adding Tables for Use in Entry Library Programs.. 222

Introduction... 222
Adding a Table ... 222
Adding a Detail Table ... 222
Displaying Specific Detail Table Rows on a Form ... 222
Adding a Lookup Table... 222
Limiting the Number of Detail Tables in a Form... 222

Entry Library Def.c Macros... 223
Introduction... 223

 xi

Def.c Macro Definitions .. 223
Example of Macros... 223

Entry Library Def.c Variables.. 224
Introduction... 224
Variables That You Can Specify .. 224
Example of Variables.. 225

Entry Library Def.c Local Functions ... 226
Introduction... 226
Check Functions... 226
Special Functions ... 226
Local Functions Example ... 227

Entry Library Def.c Program Parameters ... 228
Introduction... 228
Parameter Types .. 228
Parameter Labels ... 229
Program Parameters Example ... 229

Detail Tables... 230
Introduction... 230
Def.c Scroll Tables Array... 230
Example Scroll File Array ... 230

Tables for Entry Library Screens.. 231
Introduction... 231
Filename Array Fields... 231
Special Flags You Can Specify .. 231
Other Special Function Flags ... 232
Table Level Functions .. 232
Special Flag Example... 233

Table Update Order.. 234
Introduction... 234
Update Order Array Fields.. 234
Matching Entries in the Filename Array ... 234
Update Order Array Example ... 235
TABLENAME Array in an Entry Library Program... 235

Table and Field Links ... 236
Introduction... 236
Common Field Array Structure Definition... 236
Common Field Array... 236
Information for Loading Rows .. 236
Buffers for Binding Columns and Updating Records.. 237
Common Fields Array Example.. 237
Update Field Array.. 238
Update Field Array Example... 238
Add Field Array... 238
Add Field Array Example.. 238

Special Check Functions.. 239
Introduction... 239
Check Field Array Fields .. 239
Check Functions You Can Specify... 239
Check Function Array Example.. 240

Process to Process (PTP) Functionality... 241
Introduction... 241
Process to Process Field Structure .. 241
Specifying PTP Functionality.. 241
Process To Process Example .. 242

Address Maintenance... 243
Introduction... 243

 xii

Relationship Field Structure ... 243
Address Maintenance Example.. 243

GET_PRIMARY_REC Functions ... 244
Introduction... 244
GET_PRIMARY_REC Processing ... 244
Suggestions for Writing a GET_PRIMARY_REC Function.. 244
File Type Structure Example .. 245
File Type Structure Members ... 245

IS_DISPLAY_ONLY Functions .. 247
Introduction... 247
Determining a Column’s Value... 247

Check Functions... 248
Introduction... 248
Check Function Return Statuses.. 248
Check Function Parameters... 248
Check Function Pointers .. 248

Special Functions ... 250
Introduction... 250
Return Statuses.. 250
Events... 250
Special Function Parameters ... 251
Special Function Example .. 251

Transaction Procedures ... 252
Introduction... 252
Transaction Procedure Example .. 252

SECTION 10 – SCREENS AND FORMS... 253
Overview... 253

Introduction... 253
Typical Entry Screens... 253
Typical Detail Windows .. 253

Using the PERFORM Screen Commands ... 254
PERFORM screen commands ... 254

Creating Screen and Form Definition Files .. 256
Introduction... 256
Screen Section ... 256
Types of Fields ... 256
Screen Section Features .. 256
Attributes Section ... 258
Attributes Section Format ... 259
Guidelines for the Attributes Section .. 259
Attributes You Can Specify... 259
Instruction Section Format.. 267
Instructions You Can Specify ... 267

SECTION 11 – REPORTS AND OUTPUT CONTROL.. 269
Overview... 269

Introduction... 269
ACE Reports Sorting Program ... 269

ACE Report Writer Commands .. 270
Introduction... 270
Running an ACE Report ... 270
ACE Commands... 270
Defining Variables and Functions... 273
Information Macros in the Define Section .. 273
Output Commands ... 274

 xiii

Print Commands... 274
Aggregate Commands.. 275
Pause Command.. 275
Skip Commands ... 275

Example ACE Reports.. 276
Introduction... 276
Report to Print All Names in the Database... 276
Select and Sort Report ... 276
Example SELECT and ORDER BY Reports .. 277

Formatting ACE Reports .. 278
Introduction... 278
FORMAT Command Clauses... 278
Page Headers... 278
Page Trailers .. 279
ON LAST RECORD Statements .. 279

Troubleshooting ACE Reports.. 280
Introduction... 280
Apparent problem with data.. 280
Core dump when translating the report .. 280
Core dump when the Ace report is run... 281

Acearray Functions in ACE Reports .. 282
Introduction... 282
Access to Acearray Functions.. 282
Summary List of Acearray Functions ... 282
Use of the Acearray Functions ... 283
Acearray Function Variables .. 283
The _vardef Function.. 284
_vardef Examples... 284
The _varstore Function... 285
_varstore Examples.. 285
The _varistore Function.. 285
_varistore Examples ... 285
The _varget Function.. 285
_varget Examples... 286
The _variget Function... 286
_variget Examples .. 286
The _varaccum Function.. 286
_varaccum Examples ... 287
The _variaccum Function ... 288
_variaccum Examples .. 288
The _varpct Function.. 288
_varpct Examples ... 288
The _varpctold Function ... 288
_varpctold Examples .. 289

Troubleshooting Array Functions ... 290
Sample Report.. 291
Sample Output.. 292

SQL Functions.. 293
Introduction... 293
The _exec_sql Function ... 293
The _ctrl_trans Function... 293
The _ctc_add Function ... 293
The _ctcdetl_add Function ... 294
Sample Report.. 294

Troubleshooting Use of SQL Functions ... 300
Introduction... 300

 xiv

Security Setup with SQL functions ... 300
Runreport Script: A Report Sorting Enhancement .. 301

Introduction... 301
File Locations ... 301
WHERE and SORT Clauses .. 301
Example WHERE and SORT Clauses ... 302
Runreport Script ... 303
Runreport Processing... 306
Script Menu Option File .. 306

Using Print Spooler Software ... 307
Introduction... 307
The Spooling Process .. 307
Creating a Spool Queue... 307
Spooler File Locations .. 308

SECTION 12 – THE MENU SYSTEM .. 309
Overview... 309

Introduction... 309
The Process for Placing a Screen or Report on the Jenzabar CX Menu ... 309

Menu Option (Menuopt) Files... 310
Introduction... 310
Example: Dean’s List Menuopt File... 310
Menu Option Prompt .. 312
Menu Option Attributes... 312
How to Create a Menuopt File.. 316
How to Modify a Menuopt File .. 317

Menu Description (Menudesc) Files... 318
Introduction... 318
Example: Jenzabar CX master menudesc file ... 318
Example: Jenzabar CX Master Menu... 318
Menu Description Attributes ... 319
How to Create a Menudesc File ... 320

Menu Parameter (Menuparam) File ... 321
Introduction... 321
Example.. 321
Menu Parameter Options ... 321

News and Mail Menu Features... 323
Introduction... 323
Different Mail Program.. 323
News Program.. 323

Nomenu Feature: Controlling Menu Access ... 324
Introduction... 324
Nomenu Files ... 324
Menu Process... 324

SECTION 13 - CX SYSTEM STANDARDS ... 325
Overview... 325

Introduction... 325
Use of the Standards.. 325

CX Data Dictionary Standards ... 326
Introduction... 326
Definition... 326
CX-Specific Definition... 326
INFORMIX Data Files... 326
ACE Reports... 327
PERFORM Data Entry Screens ... 328

 xv

Application Software... 328
Dictionary Data Schemas... 328
Schema Definitions... 328
Entering Data.. 329
Retrieving Data... 329

Data Structure Standards... 330
Introduction... 330
Data Tables .. 330
Data Records.. 330
Comments .. 330
Names .. 330
Social Security Numbers .. 331
Phone Numbers.. 331
Data Integrity/Security .. 331
Data Dictionary Files .. 331
Standard Data Abbreviations ... 331

Program Name Abbreviations .. 333
Introduction... 333
Files In BINPATH ... 333
Files In UTLPATH... 335

Schema Standards ... 338
Introduction... 338
Naming of Files and Fields ... 338
Location .. 338
Table or Record.. 338
Testing for Correct Naming Conventions ... 338
The Schema File .. 338
Header Section... 339
Database Section ... 339
Table Section.. 339
Column Section .. 341
Text and Description... 341
Common Types of Fields.. 342
Constraint Section .. 344
Index Section.. 344
Grant Section.. 344
Keys.. 344
Use of Indexes:... 345
Naming of Suffixes ... 345
Standard Types and Lengths ... 345
Standard Schema Abbreviations.. 346

User Interface Standards: Menu Source... 354
Introduction... 354
General Conventions.. 354
Punctuation... 355
Macros .. 355

User Interface Standards: Menu Options.. 357
Introduction... 357
General Conventions.. 357
Punctuation... 358
Macros .. 358

User Interface Standards: Program Screens .. 360
Introduction... 360
General Conventions.. 360
Punctuation... 363
Macros .. 363

 xvi

User Interface Standards: PERFORM Screens.. 366
Introduction... 366
General Conventions.. 366

User Interface Standards: Comment Macros.. 368
Introduction... 368
General Conventions.. 368

PERFORM Screen Standards.. 369
Introduction... 369
Access .. 369
Source Code: Documentation Header .. 369
Source Code: Format of screen .. 369
Source Code: Attributes .. 370
Source Code: Instructions (joins) .. 370
Compilation... 370
Menu Definition... 371
Testing .. 371
Support ... 371

Entry Library Screen Standards ... 373
Introduction... 373
Introduction of Entry Library Features .. 373
Differences Between Libentry Screens and PERFORM screens .. 373
Locations for Forms and Detail Windows... 374
File Naming Conventions ... 375
Screen Field Naming Conventions:.. 375
Screen File: The Attribute Section:.. 375
Tips for Creating Entry Screens ... 376

ACE Report Standards... 377
Introduction... 377
Definitions ... 377
Access .. 377
Source Code: Documentation Header .. 377
Source Code: Defined Variables, Parameters, and Functions ... 377
Source Code: Output definition ... 378
Source Code: Read Statements (Including JOIN, WHERE clauses).. 378
Source Code: Sort Clauses... 378
Source Code: Report Format .. 378
Compilation (Translation) ... 380
Executing ACE Reports.. 380
Menu Definition... 381
Testing .. 381
Support ... 381

Menu Option Standards ... 382
Introduction... 382
Menu Option Tags .. 382
Menu Option Attributes... 384
Menu Option Standards.. 385
Related Scripts and Menu Option Testing.. 387
Testing a Menuopt.. 388
Menu Option Examples .. 388

Programming Style, Standards, and Conventions ... 394
Introduction... 394
Design Guidelines .. 394
Program Design.. 394
Use of Standard CX Functions... 394
Use of Transaction Processing .. 395
Audit on Summary Fields ... 395

 xvii

ESQL Guidelines .. 395
Program Arguments ... 395
General Guidelines for Program Arguments .. 395
Program Arguments for Entry Programs.. 396
Naming Conventions .. 396
Variable Naming Conventions.. 397
Function Names ... 397
Common CX Files for Program Development.. 397
Building a Make File ... 399
Source File Organization.. 399
General Coding Structure Rules .. 400
Indentation .. 400
Braces... 400
White Space ... 400
Comments .. 400
Compound Statements... 401
Long Lines .. 402
Expressions and Constants.. 403
Syntax Changing .. 404
Embedded Assignments... 404
Ternary Operator .. 405
GoTo Statements ... 405
Variable Definitions and Declarations .. 405
Function Definition.. 406
Function Header ... 407
Function Return Types and Parameters .. 407
Function Variable Declarations .. 407
Function Length.. 407
Function Endings.. 408
Functions and Macros .. 408
Portability .. 408
Separate Portable and Non-Portable Code ... 408
Avoid Dependence On Word Sizes.. 409
Specific Bit Representation .. 409
Special Character Expectations ... 409
Alignment Considerations... 409
Boolean Testing.. 410
Numeric Values .. 410
Function Argument Evaluation Order ... 410
Project Dependent Standards .. 410
User Interface Standards.. 410
Screens... 410
Output/Mail ... 412
Errors/Messages to User.. 412
Menus ... 413
Example C Code .. 414

Software Maintenance Standards .. 416
Introduction... 416
Product Advisory .. 416
Product Issues.. 416

Program Documentation Standards... 417
Introduction... 417
Abstract... 417
Introduction Section.. 417
Procedures Section .. 417
Parameters Section .. 417

 xviii

Compilation Values... 418
Program Flow Section .. 418
Program Errors Section .. 418
Crash Recovery Section... 418
Database Input and Output Sections ... 419
Output Samples Section... 419

INDEX ... 421

System Reference 1 Using this Manual

SECTION 1 – USING THIS MANUAL

Overview

Purpose of This Manual
This manual provides technical reference information that you can use to implement, support,
and maintain the CX product. For specific information on implementing and maintaining the
product, see the CX Implementation and Maintenance Technical Manual.

Intended Audience
This guide is for use by those individuals responsible for the implementation, customization, and
maintenance of CX.

Product Differences
This manual contains information for using all features developed for the CX product. Your
institution may or may not have all the features documented in this manual.

Structure of This Manual
This manual contains general reference information. The manual’s organization follows:

Overview Information
Section 1 - Information about using this guide
Section 2 - Overview information about the module

System Reference Information
Section 3 - Schemas
Section 4 - Common Tables and Records
Section 5 - Macros
Section 6 - Includes
Section 7 - Common Programs
Section 8 - Entry Library
Section 9 - Screens and Forms
Section 10 - Reports and Output
Section 11 - Menu System

Reference Information
Index

System Reference 3 Overview

SECTION 2 – JENZABAR CX OVERVIEW

Overview

Introduction
This section provides an overview to the features that integrate the product areas of CX. The
products of CX are integrated by a shared relational database and system-wide features, such as
the Common tables and records, and common programs.

Background Knowledge
The following lists and describes the necessary background information that you should know
before using the features of CX described in this manual:

UNIX
Know the following about the UNIX operating system:

• Csh environment and commands
• Editor commands (e.g., vi)

INFORMIX-SQL
Know about the following INFORMIX tools:

• SQL database
• PERFORM screens
• ACE reports

QuickMate features
Know the following about the CX Graphical Server:

• Client/Server processing
• Network settings
• Keyboard settings
• Mouse settings
• GUI mode commands

Overview 4 System Reference

System Integration Features

Diagram
The following diagram lays out the integration of CX.

Student
Accounts/

Billing

Financial
Aid

Packaging

Institutional
Advancement

General
Ledger

Fixed
 Assets

Purchasing/
Accounts
Payable

Payroll/
Personnel

Financial
Auditing

Financial
Budgeting

SQL Relational Database
Software Control System

Communications Manager & Tickler

Registrar/
Student

Alumni/Career
Placement

Student
Affairs/

Housing

Admissions

Financial
Aid

Degree Audit/
Advising

System Reference 5 Overview

Product Integration
The above graphic depicts the various products of CX. The connecting lines between products
show the products’ integration. This integration comes from programmatic associations and
associations between records and tables in the shared database.

Programmatic Integration and Commonality
CX products can contain programmatic links between them. However, another aspect of the
system’s integration is the commonality of CX entry programs in the various products. Entry
programs are designed using the Entry Library feature, which provides similar functionality
between programs and access to a common library of tables and records. See Section 8 -
Entry Library in this manual for more information.

Database Integration
CX product associations occur through the INFORMIX SQL Relational Database. Each
product contains specific records pertaining to the area, such as Financial Aid records for
the Financial Aid product. Other CX products can have access to a product-specific record.
For example, the Registration product has access to a student’s Financial Aid records. CX
records can have links between them. You specify associations between CX records in
schema files. See Section 3 - Jenzabar CX Schemas in this manual for more information.

Database integration between CX products also occurs through the use of the Common
tables and records. All CX products use the same common table for common information.
For example, every product has access to the State table for valid abbreviations of states.
See SECTION 4 – Common Tables and Records in this manual for more information.

Enabling and Disabling Jenzabar CX Products
The above graphic displays the various integrated products of CX. Your institution, however,
may or may not use all of the products displayed. CX includes tools for enabling and disabling
products and product features, which are as follows:

• Macros
• Includes
• Common table: the Configuration table

See the appropriate sections in this manual for more information about these tools.

User Access of Products
Users access CX products through the CX menu system and screens and forms. The CX menu
system provides a common access to all products of CX; however, with permissions and user
login access types, you can set up the system so that a user accesses only that product area to
which he has permissions.

• For more information, see SECTION 12 – THE MENU SYSTEM in this manual.
• For more information on user logins and permissions, see Volume I - Implementation and

Maintenance of this manual.

All CX product screens and forms are designed and displayed through the CX screen package
(SCR). For more information, see SECTION 10 – SCREENS AND FORMS in this manual.

Reporting and Output
CX products all contain reports and forms for correspondence that users can print. Output from
reports and processes is controlled through CX spooler software. See Section 10 - Reports and
Output Control in this manual for more information.

System Reference 7 Schemas

SECTION 3 – JENZABAR CX SCHEMAS

Overview

Introduction
This section describes CX schemas, their contents and maintenance. In this section, the
following are described:

• The dbmake utility, which maintains schemas
• The structure of a schema file
• Table attributes in schemas
• Table columns in schemas
• Constraints
• Triggers
• Audit Trails
• Stored Procedures

Access
Schemas are located in the $CARSPATH/schema directory path. Subdirectories under the
schema path include each product area of CX, and can include the following:

• admissions (Admissions)
• common (Common)
• development (Institutional Advancement)
• financial (Financial Management)
• eis (Enterprise Information System)
• student (Student Academic Management/Financial Aid)

File Naming Conventions
CX makes name distinctions in the naming of schemas. For schema files containing definitions
of CX tables, the UNIX file name begins with the letter t followed by characters describing the
table’s English name (e.g., tst for the State table). For schema files containing definitions of CX
records, the UNIX file name describes the record’s English name (e.g., as id for ID record).

Schemas 8 System Reference

Creating Schemas Using Dbmake

Introduction
CX makes use of the INFORMIX utility, dbmake, to maintain the structure of database tables.
Dbmake reads the schema file and uses the information to:

• Create or modify the structure of the database table
• Grant users’ access to the database table associated with the schema.
• Build audit trails, constraints, triggers, and stored procedures

DBMAKE Environment variable
When you call dbmake using the make utility, you can pass options, or flags, to dbmake using the
environment variable DBMAKE. For example, if you want to see on your screen the SQL
statements being executed as make runs on the State table (tst), you specify the "-v" flag.

Example: % cd schema/common

 % make build F=tst DBMAKE=-v

If you always want to see output, you can set the environment variable. This example uses C-
Shell.

Example: % cd schema/common

 % setenv DBMAKE -v

 % make build F=tst

Dbmake Options
You can use several options to enable or disable process features of dbmake. The following
specifies how you specify the options for dbmake:

Example: Usage:

 dbmake: [-abcinpqruvwxy] [file ...]

The following lists the dbmake options and what they signify to dbmake.

-a
Only analyze table constraints

-b
Do not build the table

-c
Do not create or delete constraints

-I
Do not create or delete indexes

-n
Do not update dbfile, dbfield or dbattr tables

-p
Do not modify the permissions

-q
Print SQL statements to file named <file>.sql

System Reference 9 Schemas

-R
Always re-create the table on rebuild

-u
Do not update anything

-v
Print to standard out

-w
Wait until requested resource is available

-W
Suppress printing any error or warning message

-N
Suppress nested comments

-M
Do not force rebuild if only data location changes

-x
Print line number debug information

-y
Build without interactive prompt

Alter Table Processing
Unless you specify the -R option (force build), dbmake uses the alter table command to change a
table instead of creating a new table and renaming it. The following table characteristics are
addressed by the alter table command:

• Add column
• Drop column
• Change column size
• Change column type
• Change not null
• Change default value of column
• Change constraint on column

Note: You use the rename column command to rename columns.

The alter table command changes the table ID (tabid) of the table being processed. The
following handles the changes to a table’s tabid:

• INFORMIX handles the changing of tabid on its internal system tables.
• The dbmake program handles the changing of the tabid for internal CX tables.

Note: You cannot rollback the changes of the alter table and rename column commands in a
transaction. Therefore, if one of the changes is not successful, the table can be left in
an incomplete state.

 The alter table command does not require exclusive access to the table being
modified. The INFORMIX database recognizes the change and informs the
application of the schema change in the form of an ISAM error.

Schemas 10 System Reference

Schema File Structure

Introduction
This section describes the contents of a schema file. Following an example of a template
schema file, the sections of the file are described.

Schema Template
The following is the template schema file you use to define a database table.

Note: The following conventions apply to the following figure:
− Upper case words represent keywords and must be typed in lower case.
− Lower case words represent an identifier.
− Square brackets ([]) represent optional items.
− Braces ({}) indicate that one of the parameters enclosed by the braces and

separated by the pipe symbol (|) must be included.
− Double quotes or parenthesis appearing in the syntax specifications are to be

included.
− Less than (<) and greater than (>) symbols are used to indicate descriptive text

and are not included.
−

{
 TYPE: C(ommon)
 <Description information>
}
{
 Revision Information (Automatically maintained by 'make' - DON'T CHANGE)

 $Header: ed,v 8.1 99/99/99 00:00:00 <uid> Developmental $

}

[DATABASE database-name]

 TABLE table-name
 DESC "description string"
 LOCATION "dbspace name"
 LOCKMODE { ROW | PAGE }
 PREFIX "prefix used for makedef"
 ROWLIMITS { <integer> | ?? } : { <integer> | ?? }
 STATUS "status"
 TEXT "text description string"
 TRACK "Track code"

 COLUMN column-name [TYPE] <column-type>
 [DEFAULT <default-value>] [NOT NULL]
 [<constraint-def> CONSTRAINT constraint-name]
 COMMENTS "comment string"
 DESC "description string"
 HEADING "heading string"
 TEXT "text string"

 ...<More column definitions, if any>

 CONSTRAINTS
 <constraint-def> CONSTRAINT constraint-name

 ...<More constraint definitions, if any>

 INDEX
 [UNIQUE] index-name ON (column-name [DESC] [,
 column-name [DESC] [...]])

 ...<More index definitions, if any>

 GRANT
 <access-type> TO (user-name [, user-name [...]])

 ...<More access definitions, if any>

 TRIGGER

System Reference 11 Schemas

 [AUDIT ([<audit-column-list>]) [IN "<audit-server-name>"]
 [CAPTURE FOR (<action-type-list>)]
 [FOR CHANGE OF (<trigger-column-list>)]
 GRANT SELECT TO (<user-list>)]
 [ON INSERT {BEFORE|FOR EACH ROW|AFTER} <triggered-action>]
 [ON UPDATE {BEFORE|FOR EACH ROW|AFTER} <triggered-action>]
 [ON DELETE {BEFORE|FOR EACH ROW|AFTER} <triggered-action>]

Database Name
The first line in a schema file, after revision information, defines the database where the schema
will be used. The entry of the database name must be preceded by the key word 'database' (e.g.,
database cars).

Table Section
In the TABLE section, you specify the INFORMIX database table that the schema defines. For
example, st_table (State table) is specified in the tst schema file. Even though the INFORMIX
software is not case sensitive, you should specify the table name in all lower-case letters to
ensure that CX works correctly.

Column Section
In the COLUMN section, you define each field in the schema, including the following basic
information about each field:

• The field name
• The type of field. Valid types include the following:

− character (contains letters, numbers and symbols)
− long (contains integers)
− integer (contains whole numbers)
− logical (single character column, expected to have a value of Y/N)
− date (format mm/dd/yy)
− serial (fields are assigned sequential serial numbers)
− double (contains signed floating point numbers)
− money (formatted as $000.00)
− float (contains single precision floating point numbers)

• The length of the field, specified in a parameter, for example: addr1(24)
• The description, heading, and text entries for the column, which are stored in the Database

Field record (dbfield_rec)

Constraint Section
In the CONSTRAINT section, you specify constraints, which are rules that must be satisfied
whenever a program attempts to insert, update, or delete data in a table.

Schemas 12 System Reference

Index Section
The INDEX section specifies those indexes required for:

• A specific application program
• An ACE report defining the primary index
• A composite join(s) in a PERFORM screen
• Creating data integrity (indexes without duplicates)

Note: The system assumes that Indexes are ascending unless you declare the DESC
(descending) attribute.

Grant Section
The GRANT section specifies access permissions for users and groups. Access types include:

• alter
• control
• delete
• index
• insert
• read
• select

You specify triggers and audit trails within this section.

Note: To help make merging easier, you should keep access-types in alphabetical order.

System Reference 13 Schemas

Specifying Table Attributes in Schemas

Introduction
You provide the name of the database table in the TABLE section. You also define the attributes
of the table, such as the table’s:

• Purpose
• Location in the database
• Associated track
• Size limits

Table Attributes Section
The following is the section of the schema template in which you specify table attributes.

Note: Keywords are presented in upper case for clarity; you should enter keywords in lower
case.

TABLE table-name
 DESC "description string"
 LOCATION "dbspace name"
 LOCKMODE { ROW | PAGE }
 PREFIX "prefix used for makedef"
 ROWLIMITS { <integer> | ?? } : { <integer> | ?? }
 STATUS "status"
 TEXT "text description string"
 TRACK "Track code"

Table Attributes
The following lists the attributes you can specify for a table.

Note: For CX-supplied schemas, you generally do not need to change any of the attribute
values in the TABLE section of the schema.

DESC Attribute
The DESC attribute indicates the purpose of the table. You can indicate the need for the
table, or the reason for the information in the table.

LOCATION Attribute
The LOCATION attribute specifies the table’s location in the database engine. The engine
has several areas, called dbspaces, where tables can be located. You place a table in a
dbspace for performance reasons, or because the dbspace is large enough to hold the
table. Generally, you specify the location using a macro that begins with "DBS_". These
macros are located in the macro file: $CARSPATH/macros/custom/configure.

LOCKMODE Attribute
The LOCKMODE attribute specifies the mode that the engine will use to lock a record in the
table.

Note: Generally, you should use ROW level locking for a table. However, in cases where a
table is rarely modified, but many rows are changed at a time, you can use PAGE level
locking as a way to control the number of locks used in the engine during the changes
to the data in the table.

Schemas 14 System Reference

PREFIX Attribute
The PREFIX attribute specifies the table prefix used by the MAKEDEF utility to create the
structures used by C code.

ROWLIMITS Attribute
The ROWLIMITS attribute specifies the initial size of the table, and the expected growth of
the table. DBMAKE expects two integer values separated by a colon (:), or ?? to indicate
using the default value for that integer. ROWLIMITS ??:?? indicates the default value for
both initial size and expected growth.

As rows are added to a table, the database allocates disk space to the table in units called
extents. Each extent is a block of physically contiguous pages in the dbspace. There are
two types of extents: initial and next. The database allocates initial extent when the table is
first created in the database. The database allocates a next extent whenever the current
space for the table has been used up. The integers that you specify are used for calculating
the size of extents in the database.

• The first integer indicates the initial number of rows that will be in the table when it is
created and loaded. This number provides dbmake with the information to create a
sufficiently large initial extent (when the table is created) to hold this number of rows in
a single extent. This can reduce the possibility of the table using several extents just
for the initial loading.

• The second integer indicates the maximum number of rows expected to be in the
table. You can use this number to indicate the speed of growth for the table. For
example, the State table (st_table) does not increase in size, so you can use the
default value. The General Ledger Transaction record (gltr_rec) in the financial area
will continue to increase in size, so you should indicate a large number for this second
integer.

The default size of an extent is eight (8) pages, which translates to 16 KB on most platforms.
Since the database engine does not automatically know table sizes, table space cannot be
preallocated. Therefore, the database adds extents only as they are needed. The
ROWLIMITS attribute provides a way to indicate the initial size of a table and to indicate the
expected rate of growth of a table. Because the engine does have a limit for the number of
extents a table may have, the ROWLIMITS attribute provides a way to automatically reduce
the number of extents needed for the table.

Note: If you use a dbspace that does not have enough contiguous space for an extent of the
specified size, the database engine allocates the largest available contiguous block for
the extent. Thus, the engine can create extents that are smaller than your specified
number in the schema. The dbmake utility attempts to use your specified initial
number of rows (the first number in the rowlimits attribute value), or the actual number
of rows in the table, whichever is larger, to calculate the size of the initial extent for the
revised table when:

− You are rebuilding a table because you changed a field size or type
− You are rebuilding a table because you added or deleted a field
− You invoked the dbmake -R option

 This feature provides a method for reducing the number of extents in use by the table
for already existing rows, as long as a large enough contiguous space is available. It
also maximizes the amount of contiguous space used for the table, which is more
efficient for the applications accessing that table.

STATUS Attribute
The STATUS attribute specifies the status of the table as far as the programs are
concerned. You generally set this attribute to active. For tables, which standard CX
programs no longer access, set the attribute to inactive.

System Reference 15 Schemas

TEXT Attribute
The TEXT attribute provides a text string to specify a user-friendly name for the table.

TRACK Attribute
The TRACK attribute specifies the area in which the data is most applicable, for example,
financial.

Schemas 16 System Reference

Specifying Columns in Schemas

Introduction
You define each column in a database table in the COLUMN section of a schema file. When you
define columns, you specify:

• Column name and type (TYPE)
• Column default value (DEFAULT)
• Constraints (CONSTRAINT)
• Comments (COMMENTS)
• A description of the column (DESC)
• Field label (HEADING)
• Field level help information (TEXT)

This section provides the values that you can specify for the column type and default.

Column Section
The following is the section of the schema template in which you specify columns.

Note: Keywords are presented in upper case for clarity; you should enter keywords in lower
case.

 COLUMN column-name [TYPE] <column-type>
 [DEFAULT <default-value>] [NOT NULL]
 [<constraint-def> CONSTRAINT constraint-name]
 COMMENTS "comment string"
 DESC "description string"
 HEADING "heading string"
 TEXT "text string"

 ...<More column definitions, if any>

Column Type
The following lists the values you specify for the column type (e.g., <column-type>).

CHAR (<length>)
A character column of a specified length (<length>)

INTEGER
A 32 bit integer

SMALLINT
A 16 bit integer

SERIAL [(<start>)]
A computer-assigned sequential number starting at the specified number (<start>)

FLOAT
A binary floating point that is machine dependent

SMALLFLOAT
A binary floating point that is machine dependent

DATE
A date column

System Reference 17 Schemas

DECIMAL [(m [, n])]
A floating point number with specified significant digits (<m>) and specified places to the
right of the decimal point (<n>).

MONEY [(m [, n])]
A floating point number with specified significant digits (<m>) and specified places to the
right of the decimal point (<n>).

Note: <m> defaults to 17. <n> defaults to 2.

Default Values
The following lists the values you specify for the column default value (e.g., <default-value>).

<literal value>
A string or numeric constant

NULL
A NULL value.

Note: This is the default when you specify no default clause.

CURRENT
A date/time value based on the current system clock

USER
An eight character name of the user running the process.

CAUTION: Many of the CX applications run as the user carsu in which case the
default USER is carsu and not the person's login name.

TODAY
The date value based on the current system date.

SITENAME
An 18 character database server name based on the currently selected database.

Schemas 18 System Reference

Constraint Analysis in Schemas

Introduction
A constraint is a rule that must be satisfied whenever a program (including isql and isql scripts)
attempts to insert, update, or delete data in a table. This facilitates data integrity by defining, at
the database level, what constitutes a valid value. The system performs constraint checking for
every schema build.

The constraint process operates on a single table and checks for the following constraints applied
to that table:

• Null values when not null is specified
• Duplicate values when unique constraint is specified
• Values not matching a foreign key
• Values not matching a value check

To run the constraint analysis, run dbmake using the -a option; this option provides constraint
analysis only. To activate this feature, use a make target of analyze. The analysis contains the
number of cases and number of rows that do not conform to a given constraint. The system
prints the analysis to the dbmake output file (either <schema_file>.sql or <schema_file>.err).

Column Section
The following is the section of the schema template in which you specify field level constraints.

Note: Keywords are presented in upper case for clarity; you should enter keywords in lower
case.

COLUMN column-name [TYPE] <column-type> [DEFAULT <default-value>] [NOT NULL][<constraint-def>
CONSTRAINT constraint-name]
COMMENTS "comment string"
DESC "description string"
HEADING "heading string"
TEXT "text string"

Analysis Output
While building a schema, the system checks any existing data to ensure that the data meets the
rules imposed by any constraints. If any data fails to meet the constraints' criteria, the build of the
table will fail. You must run the analyze make target to show an analysis.

The system sorts the analysis by the constraint type. For multiple column constraints, the system
separates columns that make up the constraint from the next violation by a blank line.

Single-column Constraint
Column name Occurrences
Column name Occurrences
...

System Reference 19 Schemas

Multi-column Constraint
Column name Occurrences
Column name

Column name Occurrences
Column name
...

Constraint Format
You can impose constraints at the field level and at the table level.

Field Level Constraints
The following lists the constraint definitions (<constraint-def>) that you can specify:

UNIQUE
Enforces all values of this column to be unique.

PRIMARY KEY
Declares that this column is the primary key that could be used by another table's references
constraint.

REFERENCES <table> [(column)]
Requires all values of this column to exist in the referenced table. If no column is specified,
dbmake will use same name as the current column.

CHECK (<boolean-expression>)
Requires the column to satisfy the boolean expression. Dbmake does no syntax verification
other than checking parenthesis levels.

Table Level Constraints
You define table level constraints in the schema file in the CONSTRAINTS section of the file.
The CONSTRAINTS section immediately follows the column definitions and immediately
precedes the INDEX section.

Remember that keywords are shown here in upper case for clarity but should be typed in lower
case.

CONSTRAINTS
<constraint-def> CONSTRAINT constraint-name
...<More constraint definitions, if any>

<constraint-def> is one or more of the following:

UNIQUE (column-list)
Requires the data in the column list to be unique.

PRIMARY KEY (column-list)
The list of columns is used as a reference in another table

FOREIGN KEY (column-list) REFERENCES table [(col-list)]
References the specified table

Schemas 20 System Reference

CHECK (<boolean-expression>)
Requires the table to satisfy the boolean expression. Dbmake does no syntax verification
other than checking parenthesis levels.

Implementing Constraints
For the initial installation of a foreign key, you do not need to check for primary keys if primary
keys were applied in a SMO previous to the application of foreign keys. If you do check for
primary keys, you can add a final case which checks for values in other tables which do not
match the constraints.

Note: If you wish to add a primary or foreign key on a column which already has an
established index, you must first drop that index. When the system builds the schema
with the primary or foreign key defined, the system will recreate the index.

Unique Index/Constraint Conflict
The use of unique indexes and unique constraints are mutually exclusive. If you specify a unique
constraint on a number of columns, you cannot specify a unique index on the same set of
columns. This situation creates a potential conflict in the processing of constraints and indexes.
Because constraints are processed before indexes, if you attempt to change a unique index into
a unique constraint, the following error appears:

Example: “ISAM error: key already exists.”

The above error occurs when the constraint processing attempts to add the unique constraint
before the index has been dropped. In this error case, you need to do one of the following:

• Complete the make in two steps (first drop the index, and then add the constraint)
• Manually drop the unique index in ISQL.

Check Constraints Rebuilds
Dbmake drops and rebuilds check constraints during every schema build regardless of whether
or not the check constraint has changed. The time required to rebuild a check constraint is
insignificant compared with the effort otherwise to completely parse the check constraint body
and recognize changes to the constraint.

System Reference 21 Schemas

Specifying Triggers/Audit Trails in Schemas

Introduction
Triggers provide a method of executing an action based on a triggering event, such as an insert,
update, or delete that occurs on a table. Audit trails are complex triggers that are automatically
generated by dbmake. While CX tables support full trigger functionality, to ensure the ability to
provide audit trail capabilities, you must implement column level triggers as table level triggers
using a WHEN condition.

Tracking Changes
The audit trail feature provides a means of selectively recording the insert, update, and delete
changes that have occurred to a specific table. The system records changes in a special audit
table created for each schema that has auditing specified. The audit table contains a standard
set of columns that record:

• The date and time that the change occurred
• The login name of the person who made the change
• A flag to indicate the type of change

The audit table also contains specified database columns from the audited table that capture the
values of the specific columns.

Note: For information on setting up the Audit Trail database, see Setting Up an Audit Trail
Database in the CX Implementation and Maintenance Technical Manual.

Tracking Changes Made by Programs
Many of the CX programs run as carsu. In these cases, the username field in the audit trail
indicates that the change was made by carsu and does not indicate the username that spawned
the process.

Grant/Trigger Section
The following is the section of the schema template in which you specify field level constraints.

Note: Keywords are presented in upper case for clarity; you should enter keywords in lower
case.

GRANT
 <access-type> TO (user-name [, user-name [...]])

 ...<More access definitions, if any>

 TRIGGER
 [AUDIT ([<audit-column-list>]) [IN "<audit-server-name>"]
 [CAPTURE FOR (<action-type-list>)]
 [FOR CHANGE OF (<trigger-column-list>)]
 GRANT SELECT TO (<user-list>)]
 [ON INSERT {BEFORE|FOR EACH ROW|AFTER} <triggered-action>]
 [ON UPDATE {BEFORE|FOR EACH ROW|AFTER} <triggered-action>]
 [ON DELETE {BEFORE|FOR EACH ROW|AFTER} <triggered-action>]

Schemas 22 System Reference

Trigger/Audit Trail Section Syntax
You place the trigger/audit trail specification in the schema file in the GRANT and synonym
sections, set apart with the TRIGGER keyword. The four basic categories of triggers are:
UPDATE, INSERT, DELETE, and the special AUDIT trigger. You can validly use any
combination of one or more of these trigger categories. Dbmake groups multiple triggers of the
same category into one trigger.

Trigger Naming Convention
You create the trigger name by substituting the last character of the table name with the letters u,
i, d, or a.

An example of the naming convention follows:

Update Trigger
id_rec id_reu

Insert Trigger
id_rec id_rei

Delete Trigger
id_rec id_red

Audit Trigger
id_rec id_rea

Trigger Processing
You can add trigger action statements into the schema in any order because dbmake sorts the
action statements.

Dbmake drops and rebuilds triggers during every schema build regardless of whether or not the
check constraint has changed. The time required to rebuild a trigger is insignificant compared
with the effort to completely parse the trigger text and recognize changes to the constraint.

Audit Columns
The following lists the audit column definitions (<audit-column-list>) that you can specify:

<column-list>
A comma separated list of columns within the table

*
All columns within the table

* minus <column-list>
All columns within the table except those columns listed

Note: The audit-column-list determines which columns will be included in the audit table. An
* indicates all columns are to be included.

 Audit tables cannot contain text or BLOB fields; therefore, if the table that you are
defining the audit trail for has a text or BLOB field, you cannot include all (*) columns.
You can include all columns except for the text or BLOB fields, using the * minus
blob_field, text_field clause.

System Reference 23 Schemas

CAPTURE FOR Clause
The following lists the CAPTURE FOR clauses (<action-type-list>) that you can specify:

Note: The CAPTURE FOR clause is optional. If you do not specify the clause, the system
captures rows for each of the four conditions (insert, before update, after update, and
delete). If you specify the CAPTURE FOR clause, you define exactly which of the
conditions on which to perform audit processing.

insert
Create an audit record after inserting a record into the table

before update
Create an audit record with the before update image of the record

after update
Create an audit record with the after update image of the record

delete
Create an audit record before deleting a record from the table

FOR CHANGE OF Clause
The following lists the FOR CHANGE OF clauses (<trigger-column-list>) that you can specify:

Note: The FOR CHANGE OF clause is optional. If you do not specify the clause, the system
sets the trigger-column-list to be the same as the audit-column-list. The trigger-
column-list specifies which fields will trigger an update audit if their values are
modified.

<column-list>
A comma separated list of columns within the table

*
All columns within the table

minus <column-list>
All columns within the table except those columns listed

Triggered Actions
The triggered-action <triggered-action> refers to a Triggered Action Clause as defined in the
Informix manual, Using Triggers. Within the triggered action clause, the old and new values use
the correlation name of "o" and "n", respectively.

Audit Trail Permissions
The GRANT SELECT TO clause is required and is used to provide select permissions on the
audit trail table for the users specified. If you use the GROUP keyword, the user list will also
support the specification of all users within a group.

Regular Triggers
The ON INSERT, ON UPDATE and ON DELETE clauses allow you to specify custom trigger
action clauses that can be properly merged with the optional audit trail triggers. You can specify
each type of clause multiple times to create complex action clauses. The action refers to one of
the following trigger actions:

• BEFORE
• FOR EACH ROW
• AFTER

Schemas 24 System Reference

The Process
The following lists the process to implement and use triggers and audit trails in a table.

1. Dbmake combines together any specified AUDIT, ON INSERT, ON UPDATE, and ON
DELETE clauses to build the Informix SQL trigger syntax.

2. Dbmake creates the audit table in a secondary database

Note: The secondary database must have transaction logging turned on.

3. Dbmake:
• Names the table with the same name as the table being audited in the primary

database.
• Creates the audit table at the time the schema is built.

4. The base set of columns contain:
• Date/time stamp of event

 COLUMN audit_timestamp DATETIME
• User name of the individual triggering the event

 COLUMN audit_username CHAR(8)
• Type of change indicator

 COLUMN audit_event CHAR(2) CHECK VALUE
 IN ("I ", "U1", "U2", "D ")

5. Dbmake adds additional columns listed in the audit-column-list to the audit schema.

Note: All of these columns will maintain their original name and type with the
exception of SERIAL types which will be changed to INTEGER type.

6. The system copies the old audit trail table into a table, based on the original name, and
creates a new audit trail table, if one of the following occurs:

• Columns are added or removed from the column list
• The column type or size of a column in the column list changes

Note: This step ensures that old audit trails survive table changes. Also, since the
content of the triggers is dependent upon the column list, column changes
require the creation of new audit triggers.

7. The system makes insert, update and delete triggers to perform the action of adding the
audit trail information.

Note: The new table does not require special insert permissions because triggers
operate as user informix.

 You can grant additional select permissions to allow non-DBA users to read an
audit trail.

8. The system implements audit trails using table level triggers.

Note: The system supports column level triggers indirectly through the use of the
WHEN clause on the table level triggers. This ensures good audit trail
functionality without excluding the ability to perform column based trigger
actions.

System Reference 25 Schemas

Simple Trigger Example
The following trigger specification section defines an audit trail only.

TRIGGER
AUDIT (*) GRANT SELECT TO (coord)

The system records a snapshot of all of this table’s columns in the audit trail database.
• Since no CAPTURE FOR clause was specified, the system takes snapshots of the current

row for each of the four conditions: after insert, before update, after update, and before
delete.

• Since no FOR CHANGE OF clause was specified, a change in any column specified in the
<audit-column-list> (*, thus any column in the table) triggers an update audit.

• The mandatory GRANT SELECT To clause grants select permission for the audit table to
user coord.

Complex Trigger Example
The following trigger specification section defines an AUDIT trail, an INSERT trigger, and an
UPDATE trigger.

TRIGGER

AUDIT (id, fullname, ss_no, title, suffix, addr_line1, addr_line2, st, zip, phone, mail,
correct_addr, decsd)
 CAPTURE FOR (INSERT, AFTER UPDATE)
 FOR CHANGE OF (fullname, addr_line1, addr_line2, st, zip)
 GRANT SELECT TO (GROUP auditors, coord)
 ON INSERT BEFORE (EXECUTE PROCEDURE log_id_adder())
ON UPDATE FOR EACH ROW (WHEN (o.decsd != "Y" AND n.decsd = "Y")
 (EXECUTE PROCEDURE register_decsd(n.id)))

The audit trail records images of only the columns specified (id, fullname, ss_no, etc.).
• The CAPTURE FOR clause specifies that a record should be added to the audit trail table

only upon an insert or after an update.
• The FOR CHANGE OF clause specifies that updates will be recorded in the audit table only

if the update modifies the value of one of the fields listed (fullname, addr_line1, addr_line2,
st, or zip).

• The GRANT SELECT TO clause grants select permission for the audit table to GROUP
auditors and user coord.

An INSERT trigger is defined.
• Each time a record is added to this table, the system executes the stored procedure

log_id_adder before executing the insert.

An UPDATE trigger is also specified.
• For each row of the table that is updated, the system executes the procedure

register_decsd.

The WHEN clause allows the stored procedure to execute only when the value of the decsd field
was changed from some other value to Y.

• The system passes the newly updated value of the ID field as a parameter to the stored
procedure for each row that the procedure is executed on.

Schemas 26 System Reference

Specifying Stored Procedures in Schemas

Introduction
The stored procedure allows database programs to be precompiled and packaged within the
INFORMIX database. The body of the stored procedure is composed of a mixture of SQL and
Stored Procedure Language (SPL) statements that allow for receipt and return of parameters.
For the body of the stored procedure, the system passes the syntax parsing and compiling of the
stored procedure onto the INFORMIX database.

Each stored procedure is defined in a file stored in a directory under the
$CARSPATH/procedures path.

Note: Stored procedure code is stored by track rather than module since the code is closely
linked to the data it services. The track subdirectories are same as those used for
schema definition.

Access
Each stored procedure is defined in a file stored in a directory under the
$CARSPATH/procedures path. Stored procedure code is stored by track rather than module
since the code is closely linked to the data it services. The track subdirectories is the same as
those used for schema definition.

Note: You can quickly access development information because a multiple line description of
the procedure is stored with the stored procedure.

Stored Procedure
The following is the format of a stored procedure file.

PROCEDURE <procedure name>
PRIVILEGE <privilege>
DESCRIPTION "<description lines>"
INPUTS <input parameters>
OUTPUTS <output parameters>
NOTES ["<note lines>"]

BEGIN PROCEDURE

.
. <standard procedure commands>
.

END PROCEDURE

GRANT
EXECUTE TO (GROUP <groupname-list>, <username-list>)

System Reference 27 Schemas

Procedure File Header
The header of a stored procedure file includes:

• Procedure name
• Purpose
• Inputs
• Outputs
• Notes
• Privilege

The header is organized to encourage a specific documentation style that ensures that program
parameters and corresponding documentation stay in unison.

Privilege Definitions
The following lists the privilege definitions (<privilege>) that you can specify:

Note: If the procedure is called by a trigger, it is effectively executed by user informix.

DBA
The stored procedure will execute with DBA privileges.

OWNER
The stored procedure will execute with the owner's privileges allowing permissions to all
objects referenced in the procedure.

Grant Option Privileges
When you assign DBA privilege to a stored procedure, remember the following about using the
GRANT option in a schema:

• With the GRANT option, other users can run the procedure with DBA permissions
• Without the GRANT option, only a user with DBA permissions can run the procedure

When you assign OWNER privilege to a stored procedure, remember the following about using
the GRANT option in a schema:

• With the GRANT option, other users have the owner's permissions to all objects referenced
in the procedure

• Without the GRANT option, the user's object access is limited by normal database
permissions

Storage of Permissions
The system stores procedure permissions in the Sysprocauth table, similar to the Systabauth
table for table permissions. The dbmake program maintains the Sysprocauth table, based upon
the permissions specified by the stored procedure source file. The dbadmin program reads the
Sysprocauth table for the purpose of granting user and group level permissions for stored
procedures.

Schemas 28 System Reference

Input Parameters
The following is the format of input parameters (<input parameters>).

 <paramname1><paramtype1> "<param description1a>"
 "<param description1b>"
 ...
 <paramname2><paramtype2> "<param description2a>"
 "<param description2b>"
 ...
 ...

Output Parameters
The following is the format of output parameters (<output parameters>).

 <paramtype1> "<param description 1a>"
 "<param description 1b>"
 ...
 <paramtype2> "<param description 2a>"
 "<param description 2b>"
 ...
 ...

Compile Process
The stored procedure compile process is different from that for other code in CX. Since the
procedure is immediately created and stored into the database, no local execution of the
procedure occurs. If you want to perform testing and debugging of procedures, you must perform
such tasks live or on a testing system.

You compile stored procedure files using the make build F= target. When you attempt to install a
stored procedure, the message, "No installing for stored procedures." appears, similar to
schemas.

System Reference 29 Schemas

Example Schemas

Introduction
The following examples illustrate the features of the schema file, including:

• Table definition
• Column definition
• Constraints
• Index definitions
• Triggers
• Audit trail definition

Basic Schema Example
This sample schema contains an example of a table definition, column definition, not null, and
column level primary key constraint.

 {
 Example schema to demonstrate syntax.
 }

 table eqptyp_t
 desc "Contains the descriptions of valid types"
 "of equipment items."
 location "DBS_COMMON"
 lockmode row
 prefix "eqptyp"
 rowlimits ??:??
 status "Active"
 text "Equipment Type Table"
 track "COMMON"

 column descr char(15) not null
 primary key constraint eqptyp_constr
 comments "This is the eqptyp descr comments string."
 desc "Valid types of equipment items."
 heading "Equipment Type"
 text "Equipment Type"

 grant
 alter to ()
 control to (group carsprog)
 delete to (group carsprog)
 index to ()
 insert to (group carsprog)
 select to (public)
 update to (group carsprog)

Schemas 30 System Reference

Complex Schema Example
The following sample schema contains examples of table and column definitions, table and
column level constraints, index definitions, triggers, and an audit trail definition. The constraints
include defaults, not nulls, check constraints, and a foreign key constraint which references the
primary key defined above.

{
 Example schema to demonstrate syntax.
 }

 table equip_table
 desc "Keeps track of equipment descriptions and history."
 location "DBS_COMMON"
 lockmode row
 prefix "eqp"
 rowlimits ??:??
 status "Active"
 text "Equipment Table"
 track "NONE"

 column inv_no serial not null
 comments ""
 desc "Serial number uniquely assigned by the system when an"
 "equipment record is added."
 heading "Equipment"
 text "Equipment Number"

 column typ char(15) not null
 references eqptyp_table constraint typ_constr
 comments ""
 desc "Type of equipment"
 heading "Type"
 text "Type"

 column id integer default 0 not null
 comments ""
 desc "Identifies the person who currently has this piece of"
 "equipment checked out. 0=checked in"
 heading "ID"
 text "ID Number Checked out to"

 column due_date date
 comments ""
 desc "Date this piece of equipment is due to be returned."
 heading "Due Date"
 text "Equipment Due Date"

 column fine money (4,2) default 1.00
 comments ""
 desc "Amount to be fined for each week this piece of equipment"
 "is overdue."
 heading "Weekly Fine"
 text "Weekly Fine"

 constraints
 check (id < 99999) constraint tbl_lvl_constr

 index
 memb_id on (id)
 unique inv_no on (inv_no)

 grant
 alter to ()
 control to (group carsprog)
 delete to (group carsprog)
 index to ()
 insert to (public)
 select to (public)
 update to (group carsprog)

 trigger
 audit (*)
 grant select to (auditor)
 on update after
 (EXECUTE PROCEDURE test1("12/07/1942",3))
 on delete before
 (EXECUTE PROCEDURE cleanup(id))

System Reference 31 Common Tables and Records

SECTION 4 – COMMON TABLES AND RECORDS

Overview
This section describes the common tables and records of CX. You use CX Common tables to
specify your institution’s codes for common values, such as name and address values, or degree
codes. CX products use these Common table values in entry screens and detail windows. To
ensure data entry consistency, a user can access the Common table entries in table lookup
fields. Certain Common tables, such as the Configuration table, allow you to define the setup of
CX features.

CX products use the Common records to provide integration between product areas. For
example, your institution creates one ID record (id_rec) for each student. All CX products access
the same ID record for the student.

Using this Section
The Common tables in this section are presented in alphabetical sequence. These are the
Common tables contained in the CX base product. It is possible that you may not use all of the
tables shown here, due to customizing the system to fit your specific needs. To find information
about a specific table, look through the table of contents to find the page for the table you need.

Since the fields on a screen for a table can be customized by your institution, the definitions for
the screen fields are presented in alphabetical sequence for ease of reference.

Accessing Tables and Records
You can access the common tables from the Systems Management: Table Maintenance Menu or
from a specific module table maintenance menu.

You access common records in the various CX products’ screens and detail windows.

What Is a SQL Table?
In a relational SQL database, a table is an organized set of any kind of data, regardless of its
purpose for validation or information maintenance. The basic unit of organization of a table is a
column, a category of data. A table can have multiple columns, and columns typically contain
multiple rows of data.

What Is a Jenzabar CX Table?
CX makes name distinctions in the usage of database tables. A table in CX contains information
that remains static and is denoted with the _table extension. For example, the State table,
named st_table, contains the list of the United States of America. On CX menu, you can access
most tables in Table Maintenance menus.

What Is a Jenzabar CX Record?
CX makes name distinctions in the usage of database tables. A record in CX is a table that
contains information that changes on a regular basis and is denoted with the _rec extension. For
example, the Alternate Address record, named aa_rec, contains any other addresses at which
students can be contacted, such as a summer address. You access records in CX program
screens, detail windows, and PERFORM screens.

Common Tables and Records 32 System Reference

Disabled Fields
Each Common table contains two fields, Active Date and Inactive Date, that are disabled on the
table screens. You do have the option to enable these fields to fit your specific needs. The
following list describes the fields.

Active Date
The date that this table entry is to become valid. Default value is “today’s” date.

Example: 08/15/1996

Inactive Date
The date that this entry is to become invalid

Example: 08/15/1996

System Reference 33 Common Tables and Records

Locating Tables and Field Descriptions

Introduction
The System Management area of CX contains three reports that provide information about
schemas and field descriptions in schemas. The System Management: Data Dictionary menu
contains the reports.

Fields By File Report
The Database Fields report (dbfield) lists the fields in the database by table. You can specify the
beginning and ending of an alphabetical range of table names to be included in the report.

Note: You can use wildcards to specify a range of table names. For example, to specify all
tables names from a to m, specify a* and m* in the parameter screen for the report.

Files By Track Report
The Database Files report (dbefile) lists the tables in the database by track. You can specify the
beginning and ending of a alphabetical range of track names to be included in the report. The
track values you can specify include:

• A (Admissions)
• C (Common)
• D (Development and Donor Accounting)
• F (Fiscal and Accounting)
• M (Management)
• S (Student)

Fields By Track Report
The Fields By Track report (dbetrack) lists the tables and fields in the database for the tracks that
you specify. The track values you can specify include:

• A (Admissions)
• C (Common)
• D (Development and Donor Accounting)
• F (Fiscal and Accounting)
• M (Management)
• S (Student)

Common Tables and Records 34 System Reference

Common Records

Introduction
Common records are records that are used by multiple products of CX. For example, most CX
products use the ID Record (id_rec). The following lists the common records.

Accomplishment record (accomp_rec)
Provides details of an individual's accomplishment.

Addressee record (addree_rec)
Defines the preferred salutation and/or name line for an individual for a particular case.
Also, saves changes to names and social security numbers.

Addressing record (adr_rec)
Describes the type of addressing to be performed for the specified run code, alternate
address, and/or individual.

Alternate Address record (aa_rec)
Provides alternate address information for an individual.

Application License record (aplicense_rec)
Stores application licenses that clients have registered at the institution.

Business record (bus_rec)
Provides information about businesses that have a relationship with the institution.

Church record (church_rec)
Provides information about churches that have a relationship with the institution.

Contact Detail record (ctcdetl_rec)
Defines the handling requirements for letter contacts.

Contact record (ctc_rec)
Records the sending or receipt of correspondence with another individual.

Contact BLOB record (ctc_blob_rec)
Records additional free-form text associated with a ctc_rec.

Contact Image record (ctc_image_rec)
Records additional free-form text associated with a ctc_rec.

Database Field record (dbfield_rec)
Describes fields within the database. This is a CX table maintained by the dbmake program.

Database File record (dbfile_rec)
Describes files within the database. This is a CX table maintained by the dbmake program.

Education record (ed_rec)
Records attendance at another educational institution; includes class rank, gpa, and
attendance dates.

Employment record (emp_rec)
Identifies the company and position held by an individual primarily for the purpose of
donations and matching gifts.

Event record (evnt_rec)
Contains information concerning the scheduling and type of event planned.

Examination record (exam_rec)
Contains test results and examination dates.

Faculty record (fac_rec)

System Reference 35 Common Tables and Records

Contains faculty information and identifies those who are faculty members.

Forms Order record (formord_rec)
Maintains information on all form orders placed on the system.

Group Scheduling record (grp_schd_rec)
Contains information for use in scheduling group gatherings.

Hold record (hold_rec)
Identifies the type of hold to be applied to an individual.

ID Contact record (idctc_rec)
Used for batch updates to the ctc_rec.

ID record (id_rec)
Contains the names and general information of individuals and entities.

Note: Adding fields to the id_rec is not recommended. However, if you must add a
column (field), add it to the end of the schema. You will then have to perform a
number of reinstalls depending on the number of programs that use the id_rec.

Image Document record (im_doc_rec)
Used as the primary indexing table for the document processing system.

Interest record (int_rec)
Contains an individual’s stated interests for use in selective or personalized mailings.

Involvement record (involve_rec)
Contains an individual’s involvements for use in selective or personalized mailings.

Military record (milit_rec)
Contains the military status for an individual.

Organization record (org_rec)
Describes organizations which are not foundations or businesses.

Phone Call record (phcall_rec)
Records details of a telephone contact.

Profile record (profile_rec)
Contains personal information for individuals in the ID record.

Relationship record (relation_rec)
Identifies two individuals and the relationship between them.

Step Objective record (stepobj_rec)
Defines the objective for a particular step in a track within a defined tickler system.

Step Requirement record (stepreq_rec)
Used to define the requirements to activate a step for a specified track and tickler. (All
requirements must be met.)

Temporary ID Data record (idtmp_rec)
Temporarily stores imported data while verifying duplication status.

Tickler record (tick_rec)
Contains information needed to place an individual on a specific tickler system and specifies
the completion date.

Common Tables and Records 36 System Reference

Accomplishment Table

Purpose
The Accomplishment table (accomp_table) contains all the valid accomplishments that are to be
used within the system. An accomplishment (not to be confused with an interest) is something
an individual has earned. Dean's List is an example.

Note: Accomplishments, when entered through the accomp_rec, can be listed in the
transcript body in the session/year they were achieved. Some institutions may want to
treat teacher certification as an accomplishment for listing on a transcript.

How to Access
The screen file for the Accomplishment table is located in the following directory path:
$CARSPATH/modules/common/screens/taccomp

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Accomplishment Table screen may vary from your table format and content due to
your institution’s particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen Current Master
Detail ...
Searches the active database table. ** 1: accomp_table table**

 ACCOMPLISHMENT TABLE

 Code...........[]
 Description....[]
 Display on Web.[]

Field Descriptions
The following describes the fields contained on the Accomplishment table screen.

Code
The code for an accomplishment recognized by your institution.

Example: DEAN (for the Dean’s List)

Description
The description for the accomplishment code.

Example: Dean’s List (for the code DEAN)

Display on Web

System Reference 37 Common Tables and Records

A Y/N field indicating whether or not you want this field to display on the Web Admissions
Application.

Report Example
The following Accomplishment Table report may vary from your report format and content due to
your institution’s particular specifications.

Mon Jan 12 1998 CARS College Page 1
11:32 ACCOMPLISHMENT TABLE REPORT taccomp

 Active /Inactive
 Code Text W Date Date
 ---- -------------------------------- - -------- --------
 Blank text for testing Y
 ATHL Athletic Y
 CLIN Clinical Honors Y
 DEAN Dean's List Y
 FORE Forensics Award Y
 HONR National Honor Society Y
 HWHO Who's Who in American High Sch Y
 LOA Academic Leave of Absence Y
 MCL Magna Cum Laude Y
 MERT Merit List Y
 PROB ** Academic Probation Y
 WHO Who's Who in Amer Col. & Univ. Y

Common Tables and Records 38 System Reference

ADR Table

Purpose
The ADR table (adr_table) contains the addressing run codes to be used by the system. These
codes are very important to the system since they are use to advise the system of a code to be
used if there is none specified in the program.

Note: The ADR run codes are very important to the ADR (address) process. There are
some default features in the programs to advise the system of the code to be used if
there is not one specified. In general, the default for regist is REGIST. In addition to
REGIST, GRDRPT and TRANS should also be in the table.

How to Access
The screen file for the ADR table is located in the following directory path:
$CARSPATH/modules/common/screens/tadr

You can access this table from the Systems Management Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following ADR Runcode Table screen may vary from your table format and content due to
your institution’s particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen
 ** 1: adr_table table **

 ADR RUNCODE TABLE

 Code...............[]
 Description []

Field Descriptions
The following describes the fields contained on the ADR Runcode Table screen.

Code
The ADR (addressing) run code to be used.

Example: CKSLCT (for Check Select Process)

Description
The description of the ADR run code.

Example: Check Select Process (for the ADR run code CKSLCT)

System Reference 39 Common Tables and Records

Report Example
The following ADR Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
10:41 ADR RUNCODE TABLE REPORT tadr
Runcode Text
-------- -------------------------------
CKSLCT Check Select Process
GIFTRCPT Gift Receipt Process
JOINT Joint - Formal
JOINTD Joint - Formal Dups
JOINTDI Joint - Informal - Dups
JOINTI Joint - Informal
PARENT Parent - Formal
PARENTD Parent - formal - Dups
PARENTDI Parent - Informal - Dups
PARENTI Parent - Informal
PURCH Purchasing Process
REGIST Registration Process
SDSBILL1 sds bill test prior =1
SINGLE Single - Formal
SINGLED Single - Formal - Dups
SINGLEDI Single - Informal - Dups
SINGLEI Single - Informal
STMT Statement Process
TRANS Transcript Process
VOUCHER Voucher /Journal Process

Location: /base1/carsdevi/modules/common/reports/tadr
Revision: G.101 02/14/92 17:30:15

Common Tables and Records 40 System Reference

Alternate Address Table

Purpose
The Alternate Address table (aa_table) contains all the codes used for other addresses for an
individual, such as a business address.

How to Access
The screen file for the Alternate Address table is located in the following directory path:
$CARSPATH/modules/common/screens/taa

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Alternate Address table screen may vary from your table format and content due to
your institution's particular specifications.

Field Descriptions
The following describes the fields contained on the Alternate Address table screen.

Code
The code for an alternate address.

Example: BUS (for business address)

Description
The description for the code

Example: Business Address (for the code BUS)

Email

System Reference 41 Common Tables and Records

A Y/N flag indicating whether this alternate address type is an e-mail address. Use Y for yes
or N for no. Default value is N.

Maintenance
A Y/N flag indicating whether this alternate address type should maintain PREV addresses.
Use Y for yes or N for no. Default value is N.

Note: When you set this field to Y, the system saves previous address information
with this alternate address type setting.

Priority
The priority for the alternate address. Zero (0) is the highest priority. Priority controls the
order in which addresses are reviewed for appropriateness and selected for use. For
example, if at a given time there are two appropriate addresses, the address with the lowest
priority number will be selected.

Report Example
The following Alternate Address Table report may vary from your report format and content due
to your institution's particular specifications.

Wed Apr 26 2000 CARS College Page 1
14:25 ALTERNATE ADDRESS TABLE REPORT taa

 Active /Inactive
 Code Text Priority Maint Email Date Date
 ---- ------------------------ -------- ----- ----- -------- --------
 ABBR Abbreviated Address 1 N
 BILL Billing Address 50 N
 BUS Business Address 5 N
 CURR Current Address 90 Y
 EMER Emergency Address 0 N
 EML Email address 1 Y
 EMLK Second e-mail address 2 Y
 EMLT Third e-mail address 3
 FOR Foreign Address 2 N
 LOC Local Address 20 N
 MATR Matriculation Address 0 N
 PAR Parent's Address 0 N
 PERM Permanent Address 40 Y
 PREV Previous Address 99 Y
 SUMR Summer Address 15 N
 WINT Winter Address 10 N 01/01/95

 * - Record is inactive according to active/inactive dates
Location: /usr/carsdevi/modules/common/reports/taa
Revision: Developmental 04/22/95 07:05:02

Common Tables and Records 42 System Reference

App Server Message Table

Purpose
The App Server Messge table (apsmsg_table) contains messages to be returned by an app
server for given conditions.

How to Access
The screen file for the App Server Message table is located in the following directory path:
$CARSPATH/modules/common/screens/apsmsg.

You can access this table from the Systems Management: Table Maintenance Menu.

Screen Example
The following App Server Message table screen may vary from your table format and content due
to your institution’s particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
Searches the active database table. ** 1: apsmsg_table table**

 MESSAGE TABLE

 App Server.......[register_aps]
 Message Code.....[ACST]
 Description......[Not elig to register]
 Comment[You are not eligible to register. Yo]
 Standard Comment.[You are not eligible to register. Yo]

Field Descriptions
The following describes the fields contained on the App Server Message table screen.

App Server
Identifies the app server to which this message applies. This is the name of the app server
(e.g., register_aps).

Comment
Free format text blob used to store the actual message returned by the app server.

Description
Describes the error or condition that will result in this message.

Message Code
Code that identifies this particular message to the app server. This code, combined with the
aps name provides the access to the proper message by the app server.

Standard Comment

System Reference 43 Common Tables and Records

Free format text blob used to the store the standard CX message. Used for reference only.

Report Example
The following App Server Message Table report may vary from you report format and content due
to your institution’s particular specifications.

Wed Jul 1 1998 CARS College Page 1
10:09 APP SERVER MESSAGE TABLE REPORT tapsmsg

 Msg Code App Server Description
 -------- ----------------- ------------------------
 ACST register_aps Not elig to register
 Comment: You are not eligible to register. Your academic status disallows
 it. Your academic status is:

 Std Comm: You are not eligible to register. Your academic status disallows
 it. Your academic status is:

 BILLHOLD stubill_aps Hold on student bill SDS
 Comment: You have a hold that prevents release of a student billing
 statement.

 Std Comm: You have a hold that prevents release of a student billing
 statement.

Common Tables and Records 44 System Reference

Building Table

Purpose
The Building table (bldg_table) contains the building codes used by your institution. It defines all
the buildings for a particular campus.

Note: If only one campus is to be used, it should be designated as MAIN.

How to Access
The screen file for the Building table is located in the following directory path:
$CARSPATH/modules/common/screens/tbldg

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Creation Sequence
Considerations for the sequence of creating this table in relation to other tables are:

• Complete this table before the Facility table.

Screen Example
The following Building Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
Searches the active database table. ** 1: bldg_table table**

 BUILDING TABLE

 Campus.........[]
 Building.......[]
 Description....[]
 IVR Phrase No..[]

Field Descriptions
The following describes the fields contained on the Building Table screen.
Building

The building code. It identifies a particular building on a particular campus.

Example: REED (for the Reed Hall of Science)

Campus
The campus code. It identifies the campus on which the building is located.

Example: MAIN (for the main campus)

System Reference 45 Common Tables and Records

Description
The building description. The name or description of the building.

Example: Reed Hall of Science (for the building code REED)

IVR Phrase No
The Interactive Voice Response (IVR phrase) number associated with this campus and
building.

Report Example
The following Building Table report may vary from your report format and content due to your
institution's particular specifications.

Fri Jan 26 1996 CARS College Page 1
11:29 BUILDING TABLE REPORT tbldg

 Active /Inactive
 Campus Code Text Date Date
 ------ ---- ------------------------ -------- --------
 ARMY Armory Bookstore
 LILY Art G. Lily Laboratory
 Blank location
 CARS Cincinnati Ohio
 PRCE Franklin Pierce Hall
 HEAV Heavilon English Center
 HORT Horticulture Building
 DORM Main Dormitory
 PSYH Psychological Services
 SMTH Smith Mortuary
 WEDE Wedemeyer Hall
 WMBY Wembley Stadium
 WKRP Wes K. Reed Planetarium
 WH West Chester, Ohio

 * - Record is inactive according to active/inactive dates
Location: /disk06/carsdevi/modules/common/reports/tbldg
Revision: G.100.110.2 08/17/92 18:24:48

Common Tables and Records 46 System Reference

Citizen Table

Purpose
The Citizen table (citizen_table) contains codes for citizenship.

How to Access
The screen file for the Citizen table is located in the following directory path:
$CARSPATH/modules/common/screens/tcitizen

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Citizen Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: citz_table table**

 CITIZEN TABLE

 Code...........[]
 Description....[]

Field Descriptions
The following describes the fields contained on the Citizen Table screen.

Code
The code for a specific citizenship.

Description
The description for the citizenship code.

Report Example
The following Citizen Table report may vary from your report format and content due to your
institution's particular specifications.

System Reference 47 Common Tables and Records

Wed Apr 28 1993 CARS College Page 1
10:35 CITIZEN TABLE REPORT tcitz

 Code Text
 ----- ------------------------
 USA United States of America

 * - Record is inactive according to active/inactive dates
Location: /disk07/carsbetai/modules/common/reports/tcitz
Revision: G.53 12/07/92 22:12:14

Common Tables and Records 48 System Reference

Communication Table

Purpose
The Communication table (comm_table) contains codes for each form of communication that
your institution issues. For example, the code PHON represents a telephone communication.

How to Access
The screen file for the Communication table is located in the following directory path:
$CARSPATH/modules/common/screens/tcomm

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Communication Table screen may vary from your table format and content due to
your institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: comm_table table**
 COMMUNICATION TABLE

 Code...........[]
 Description....[]

Field Descriptions
The following describes the fields contained on the Communication Table screen.

Code
The communication code. The code identifying the type of communication.

Example: LETT (for letter)
Description

The description of the communication code.

Example: Letter (for the code LETT)

Report Example
The following Communication Table report may vary from your report format and content due to
your institution's particular specifications.

System Reference 49 Common Tables and Records

Thu Jul 9 1992 CARS College Page 1
10:45 COMMUNICATION TABLE REPORT tcomm

 Code Text
 ---- ------------------------
 BROC Brochures
 CAMP Campus Visit
 CARD Card
 DOCU Document
 LABL Label
 LETT Letter
 LTLB Letter and Label
 PACK Packet
 PERS Personal Contact
 PHON Phone Call
 REPO Report

Location: /base1/carsdevi/modules/common/reports/tcomm
Revision: G.101 02/14/92 17:20:24

Common Tables and Records 50 System Reference

Configuration Table

Purpose
The Configuration table (config_table) allows you to enable a feature of CX. The Configuration
table replaces the ENABLE_MACRO for every application of CX. When you want to make
changes that enable or disable a feature of CX, you make entries to the Configuration table. You
do not make changes directly to the ENABLE_MACRO.

Note: Macros for all new CX products, in addition to ENABLE_MACROs, also exist in the
Configuration table.

Changes to Table
All enable macros in the Configuration table are also loaded in the
$CARSPATH/install/m4custom/tconfigmac.m4 file. All make processes include the
tconfigmac.m4 file when expanding macros. The Configuration table contains a trigger that
creates a new copy of the tconfigmac.m4 file whenever a change is made to the table.

How to Access
The screen file for the Configuration table is located in the following directory path:
$CARSPATH/modules/common/screens/tconfig

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

System Reference 51 Common Tables and Records

Screen Example
The following Configuration Table screen may vary from your table format and content due to
your institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
Searches the active database table. ** 1: config_table table**

product []
name []
value []
 []
 []
 []
std_value []
 []
 []
 []
comm []

Field Descriptions
The following describes the fields contained on the Configuration Table screen.

comm
The documentation about the feature and its use.

name
The name of the feature. For example, the AUTH_CROSSPROG is Registration Entry’s
feature that enables the existence of an Authorization record for a student.

product
The product name of the feature (e.g., REGIST for Registration Entry).

std_value
The standard CX setup value (e.g., y for Yes). This is the setting for this feature when CX
delivers the standard CX product.

value
The value that enables the feature (e.g., y for Yes).

Report Example
The following Configuration Table report may vary from your report format and content due to
your institution's particular specifications.

Common Tables and Records 52 System Reference

Fri Jan 26 1996 CARS College Page 1
11:51 CONFIGURATION REPORT tconfig
 Sorted by product, name

 REGIST product

 AUTH_CROSSPROG
 Value Y
 System setup Y

 AUTH_CRS_CAPACITY
 Value Y
 System setup Y

 AUTH_CRS_CONFLICTS
 Value Y
 System setup Y

 AUTH_CRS_REQUIREMENTS
 Value Y
 System setup Y

Location: /usr/carsdevi/modules/common/reports/tconfig
Revision: H.0 10/13/95 17:19:41

System Reference 53 Common Tables and Records

Contact Table

Purpose
The Contact table (ctc_table) contains the valid types of contacts that drive much of the software.
The contents of this table are very important to many processes of the Registrar module,
especially grade reports, student data sheets, and transcripts.

Note: Since the entire system is heavily contact driven, entries should be made to the table
for the basic Registrar functions. These especially include SDS (student data sheets),
TRANS (transcripts), and GRDRPT (grade reports).

 The two primary contacts used for letter production are DEANLIST and PROBAT
(probation).

 Bulk Mail, Span Waived, and Reissued are normally set with an N.

 Enrollment Status is normally left blank.

How to Access
The screen file for the Contact table is located in the following directory path:
$CARSPATH/modules/common/screens/tctc

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Contact Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: ctc_table table**
 CONTACT TABLE

 Code.........[]
 Description..[]
 Tickler......[]
 Comm Code....[]
 Routing......[]
 Span Waived..[]
 Reissued.....[]
 Ace Report...[]
 Run Code.....[]
 Bulk Mail....[]

 Document Tracking Type..[]
 Enrollment Status..[]

Common Tables and Records 54 System Reference

Field Descriptions
The following describes the fields contained on the Contact Table screen.

Ace Report
The name of the ACE report using this contact.

Example: ltradmit

Code
The contact code. It identifies the communication to be sent or received.

Example: ACCLET (for acceptance letter)

Comm Code
The communication code. This code is used to identify the type of communication this
contact is.

Example: LTLB (for letter and label)

Description
Describes the contact code.

Example: Acceptance Letter (for ACCLET)

Document Tracking Type
The optional document control type for this contact.

Enrollment Status
The enrollment status achieved with this contact.

Example: ACCEPTED (for a contact code of ACCLET - acceptance letter)

Reissued
Can this contact occur more than once? Use Y for yes or N for no. Default value is N.

Routing
Is this an incoming or outgoing contact? Use I for incoming or O for outgoing.

Run Code
The ADR run code for this type of contact.

Example: SINGLE

Span Waived
Is the normal span for days between contacts waived for this contact? Use Y for yes or N
for no. Default value is N.

Tickler
The code for the tickler system which may be used with the described contact.

Example: ADM (for administration)

Report Example
The following Contact Table report may vary from your report format and content due to your
institution's particular specifications.

System Reference 55 Common Tables and Records

Fri Jan 26 1996 CARS College Page 1
12:03 CONTACT TABLE REPORT tctc
 Tickler: ADM

 Active /Inactive Spn
 Code Text Comm Report Run Code Rt Wv Rs Dc Enr_Stat Date
 Date
 -------- ------------------------ ---- ---------- -------- -- -- -- -- -------- -------- -------
-
 LETT SINGLEI O N N
 ACCEPTED Acceptance letter LETT ltradmit SINGLEI O Y N ACCEPTED
 ACCPDT Accept date deadlines O
 ACC_LET Acceptance letter LTLB ltradmit SINGLEI O N N
 ACK_LET App. Acknowledgement Ltr LTLB ltradmit SINGLEI O N N
 ACTIVITY Activities letter LTLB ltradmit SINGLEI O Y N
 ADMNOTE Student Not Admitted LETT SINGLEI I N N
 ADVISOR Advisor letter LTLB ltrlbl SINGLEI O N N
 APPCALL Application phonecall PHON SINGLEI O N N
 APPLIED Applied for admission I APPLIED
 APPRECV Application received I APPLIED
 ASKDPST Request deposit LETT ltradmit SINGLEI O N N
 ASKFEE Ask for fee LETT SINGLEI O Y N
 ASKVISIT Invite to campus LETT ltradmit SINGLEI O N Y
 ATHLETIC Athletic activity LETT ltradmit SINGLEI O N N
 BIRTHDAY Birthday Greetings Ltr. LTLB ltradmit SINGLEI O N N N
 CALLED Call from student PHON SINGLEI I N N INQUIRED
 CANCEL Sent acknowledgement LETT ltradmit SINGLEI O Y Y CANCEL
 CAREER Career options LTLB ltradmit SINGLEI O Y N

* - Record is inactive according to active/inactive dates
Location: /disk06/carsdevi/modules/common/reports/tctc
Revision: G.100.110.1 08/17/92 18:26:30

Common Tables and Records 56 System Reference

Country Table

Purpose
The Country table (ctry_table) contains the valid country codes (US and territories, and
international) for use within the system.

Note: Additions and deletions may be made as necessary. However, the table is adequate
as it exists to begin using it.

How to Access
The screen file for the Country table is located in the following directory path:
$CARSPATH/modules/common/screens/tctry

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Country Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: ctry_table table**
 COUNTRY TABLE

 Code...........[]
 Description....[]
 Postal Code....[]

Field Descriptions
The following describes the fields contained on the Country Table screen.

Code
The country code. A code specifying a country.

Example: AUS (for Australia)

Description
The description of the country code.

Example: AUSTRALIA (for the code AUS)

Postal Code
The US Postal Service code for the country.

Example: AS (for Australia)

System Reference 57 Common Tables and Records

Report Example
The following Country Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
10:47 COUNTRY TABLE REPORT tctry

 Code Text Postal Code
 ---- ---------------------- ------------
 AFG AFGHANISTAN AF
 AL ALBANIA AL
 DZ ALGERIA AG
 AS AMERICAN SAMOA AQ
 AND ANDORRA AN
 AO ANGOLA AO
 AY ANTARCTICA AY
 AC ANTIGUA & BARBUDA AC
 RA ARGENTINA AR
 AUS AUSTRALIA AS
 A AUSTRIA AU
 PO AZORES PO
 BRN BAHRAIN BA
 BNG BANGLADESH BG
 BDS BARBADOS BB
 B BELGIUM BE
 BH BELIZE BH
 DY BENIN DM
 BD BERMUDA BD
 BT BHUTAN BT
 BOL BOLIVIA BL
 RB BOTSWANA BC
 BR BRAZIL BR
 IO BRITISH INDIAN OCEAN TER IO
 VI BRITISH VIRGIN ISLANDS VI

Location: /sysdisk/carsgSQL/modules/common/reports/tctry
Revision: G.100 08/21/91 19:32:35

Common Tables and Records 58 System Reference

County Table

Purpose
The County table (cty_table) contains valid county codes, as specified by your institution.

Note: Unless your institution is in the state of Kentucky, this table will have to be built
entirely. If you want to have counties from more than one state, a schema will have to
be developed to deal with the same county name in different states. Some institutions
have defined their county codes with the letter of the state in the first position of the
county code.

How to Access
The screen file for the County Table is located in the following directory path:
$CARSPATH/modules/common/screens/tcty

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following County Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: cty_table table**
 COUNTY TABLE

 Code...........[]
 Description....[]

Field Descriptions
The following describes the fields contained on the County Table screen.

Code
The county code. A code specifying a county.

Example: ADAI (for Adair county)

Description
The description of the county code.

Example: Adair (for the county code ADAI)

System Reference 59 Common Tables and Records

Report Example
The following County Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
10:48 COUNTY TABLE REPORT tcty

 Code Text
 ------- --------------

 ADAI Adair
 ALLE Allen
 ANDE Anderson
 BALL Ballard
 BARR Barren
 BATH Bath
 BELL Bell
 BON Bond
 BOON Boone
 BOUR Bourbon
 BOYD Boyd
 BOYL Boyle
 BRAC Bracken
 BREA Breathitt
 BREC Breckinrid
 BULL Bullitt
 BUTL Butler
 CALD Caldwell
 CALL Calloway
 CAMP Campbell
 CARL Carlisle
 CARR Carroll
 CART Carter

Location: /disk15/carsdevi/modules/common/reports/tcty
Revision: G.101.110.1 03/04/92 10:22:33

Common Tables and Records 60 System Reference

Day Table

Purpose
The Day table (days_table) contains codes for each valid abbreviation for a day of the week. For
example, Monday has the following valid abbreviations: M, Mo, Mon, MO, and MON.

How to Access
The screen file for the Day Table is located in the following directory path:
$CARSPATH/modules/common/screens/tdays

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Day Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: tdays_table table**
 DAY TABLE

 Number.......[]
 Description..[]
 Abbreviation.........[]
 Abbreviation 2.......[]
 Abbreviation 3.......[]
 Upper Case Abbrev 2..[]
 Upper Case Abbrev 3..[]

Field Descriptions
The following describes the fields contained on the Day Table screen.

Abbreviation
A one character abbreviation for a day of the week.

Example: M (for Monday)

Abbreviation 2
A two character abbreviation for a day of the week.

Example: Mo (for Monday)

Abbreviation 3
A three character abbreviation for a day of the week.

Example: Mon (for Monday)

System Reference 61 Common Tables and Records

Description
The description for the specified day of the week.

Example: Monday

Number
The order of the specified day of the week.

Example: 1 (for Monday as the first day of the week)

Upper Case Abbrev 2
An upper case two character abbreviation for a day of the week.

Example: MO (for Monday)

Upper Case Abbrev 3
An upper case three character abbreviation for a day of the week.

Example: MON (for Monday)

Report Example
The following Day Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
13:04 DAY TABLE REPORT tdays

 Day Text Abbr1 Abbr2 Abbr3 Upabbr2 Upabbr3
 --- -------- ----- ----- ----- -------- --------
 0 Sunday S Su Sun SU SUN
 1 Monday M Mo Mon MO MON
 2 Tuesday T Tu Tue TU TUE
 3 Wednesday W We Wed WE WED
 4 Thursday H Th Thu TH THU
 5 Friday F Fr Fri FR FRI
 6 Saturday S Sa Sat SA SAT

Location: /base1/carsdevi/modules/common/reports/tdays
Revision: G.101 02/14/92 17:20:45

Common Tables and Records 62 System Reference

Degree Table

Purpose
The Degree table (deg_table) should include all approved degrees for an institution (Associate,
Baccalaureate, Master, etc.). Dependent on the registrar's desires, all IPEDS (Integrated
Postsecondary Education Data System) completion programs may be entered in this table. CX
IPEDS Completion report uses the values in this table.

Note: Normally this table will require updating only. In conversion, this table should include
degrees that are no longer used. This, however, can create a problem because it
could confuse the users as to what is valid or invalid. A suggestion is to add a
distinctive character or word in the description (*, obsolete) or make the first position of
the code a consistent character to specify obsolete degrees.

How to Access
The screen file for the Degree table is located in the following directory path:
$CARSPATH/modules/common/screens/tdeg

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Degree Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen Current Master
Detail ...
Searches the active database table. ** 1: deg_table table**
 DEGREE TABLE

 Code.............[]
 Description......[]
 Years............[]
 Terminal Degree..[]
 IPEDS Level......[]

Field Descriptions
The following contains descriptions of the fields contained on the Degree Table screen.

Code
The degree code. A code identifying the type of degree granted.

Example: BA (for Bachelor of Arts)

Description
The text describing the degree code.

Example: Bachelor of Arts (for the code BA)

System Reference 63 Common Tables and Records

IPEDS Level
Specifies the relative level of the degree that an undergraduate student can receive. The
IPEDS GRS program enrollment update options uses this value to determine the highest
degree earned by a student who has completed more than one degree. Valid codes include:

• 1 - Bachelor’s degree (at least a four year degree)
• 2 - Degrees of at least two years but less than four years
• 3 - Completers of programs which are less than two years

Leave this field blank if none of the above conditions apply.

Terminal Degree
Is the degree a Baccalaureate, a first professional degree, as defined by FISAP
specifications? Use Y for yes or N for no. Default value is N.

Years
The number of years expected to complete this degree

Report Example
The following Degree Table report may vary from your report format and content due to your
institution's particular specifications.

Mon Jan 5 1998 CARS College Page 1
15:08 DEGREE TABLE REPORT tdeg

 IPEDS
 Code Text Level Years
 ---- ------------------------ ----- -----
 AAS Associate in Applied Sci 2
 ASB Assoc. Special Business 2
 BA Bachelor of Arts 4
 BME Bachelor of Music Educat 4
 BS Bachelor of Science 4
 MA Masters of Arts 2
 MBA Master of Business Admin 2
 MDIV Master of Divinity 2
 PHD Doctor of Philosophy 4

Common Tables and Records 64 System Reference

Denomination Table

Purpose
The Denomination table (denom_table) contains the religious denominations that apply to your
institution.

Note: This table contains a wide range of denominations and normally is adequate for
beginning the implementation process.

 Note that this information is valuable to private, church affiliated colleges, but less
important to public institutions.

How to Access
The screen file for the Denomination table is located in the following directory path:
$CARSPATH/modules/common/screens/tdenom

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Denomination Table screen may vary from your table format and content due to
your institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: denom_table table**
 DENOMINATION TABLE

 Code...........[]
 Description....[]

Field Descriptions
The following describes the fields contained on the Denomination Table screen.

Code
The denomination code. A code specifying a religious denomination.

Example: CATH (for Roman Catholic)

Description
The description of the denomination code.

Example: Roman Catholic (for the denomination code CATH)

System Reference 65 Common Tables and Records

Report Example
The following Denomination Table report may vary from your report format and content due to
your institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
13:07 DENOMINATION TABLE REPORT tdenom

 Code Text
 ------ ------------------------
 ADVE Advent Christian
 AFME African Meth Episcopal
 ANGL Anglican
 APOS Apostolic
 ASSM Assembly of God
 BAHI Bahai Faith
 BAPT Baptist
 BIBL Bible Church
 BIBP Bible Baptist
 BPAM Baptist, American
 BPFW Baptist, Free Will
 BPST Baptist, Southern
 BUDH Buddhist
 CATH Roman Catholic
 CC Church of Christ
 CCCH Ch of Christ, Christian
 CCHO Ch of Christ, Holiness
 CG Church of God
 CGIC Church of God in Christ
 CH Christian
 CHAR Charismatic
 CHCU Christ, Christian Union
 CHMA Christian & Mission All
 CHME Christian Meth Episcopal
 CHRE Christian Reformed

Location: /base1/carsdevi/modules/common/reports/tdenom
Revision: G.101 02/14/92 17:21:01

Common Tables and Records 66 System Reference

Division/Department Table

Purpose
The Division/Department table contains the divisions and departments used within the system.
The Division table (div_table) has the major academic entities within the academic sector. An
academic division has departments under it. The Department table (dept_table) contains those
departments. For example, the division "Fine Arts" has the departments of "Art" and "Music"
under it. The Division table and Department table function as master/detail relationships.

Note: The division code is part of the key for the Department table department code.

 When adding/updating the department in the course record, the corresponding division
code is automatically brought forward on the screen. It is suggested to leave one
blank record for the Division table. This will be used for any departments that are not
associated with a division or for all departments if the division concept is not used.

 Before creating the Division/Department table, coordinate with the business and
academic offices since academic departments are frequently considered financial cost
centers. All affected offices should be in agreement as to "official" departments.
Enrollment reporting and grade distribution statistics often depend on the department
breakdowns. Certain applications which apply to divisions, such as the schedule of
classes, can be produced in either department or division/department order.

How to Access
The screen file for the Division/Department table is located in the following directory path:
$CARSPATH/modules/common/screens/tdivdept

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Creation Sequence
Create these tables in the following sequence: establish the Division Table first, then the
Department Table to add all the departments for a given division

Screen Example
The following Division/Department Table screen may vary from your table format and content due
to your institution's particular specifications.

System Reference 67 Common Tables and Records

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: div_table table**

 DIVISION TABLE

 Division Code....[]
 Description......[]

===
 DEPARTMENT TABLE

 Department Code..
 Description......

Field Descriptions
The following describes the fields contained on the Division/Department Table screen.

Department Code
A code that identifies an academic department.

Example: ART (for the Art Department)

Description (department)
The text that describes the department code.

Example: Biology (for the department code BIO)

Description (division)
The text that describes the division code.

Example: Language and Literature (for the division code LLIT)

Division Code
A code that identifies the division an academic department belongs to.

Example: LLIT (for the Language and Literature Division)

Report Example
The following Department Table report may vary from your report format and content due to your
institution's particular specifications.

Common Tables and Records 68 System Reference

Thu Jul 9 1992 CARS College Page 1
13:08 DEPARTMENT TABLE REPORT tdept

 Code Text Division
 ----- ------------------------- -----
 AC Accounting - Cent. Penn. ACCT
 ART Art ARTS
 BIO Biology NSCI
 BUS Business/Economics ACCT
 CHE Chemistry NSCI
 COA Communication Arts ARTS
 DP Comp Info Sys /Cent Penn SSCI
 DS Dev. Studies - Cent Penn SSCI
 EDU Education EDUC
 ENG English LLIT
 EX Communication/Cent. Penn LLIT
 HIS History SSCI
 HOE Home Economics EDUC
 HPR Health, Phys. Ed. & Rec. EDUC
 INT Internships
 LAN Foreign Languages LLIT
 MC Mass Media - Cent. Penn. SSCI
 MG Management - Cent. Penn ACCT
 MM Retail Mgmt - Cent. Penn ACCT
 MUS Music ARTS
 NUR Nursing NSCI
 PC Purchasing Department
 PHI Philosophy SSCI
 POS Political Science SSCI
 PSY Psychology SSCI
 REL Religion SSCI

Location: /base1/carsdevi/modules/common/reports/tdept
Revision: G.101 02/14/92 17:21:11

System Reference 69 Common Tables and Records

Report Example
The following Division Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
13:08 DIVISION TABLE REPORT tdiv

 Code Text
 ----- ------------------------
 ACCT Business / Accounting
 ARTS Fine Arts
 EDUC Education
 HUM Humanities
 LLIT Language and Literature
 NSCI Natural Science
 SSCI Social Science

Location: /base1/carsdevi/modules/common/reports/tdiv
Revision: G.101 02/14/92 17:21:18

Common Tables and Records 70 System Reference

Entry Selection/Sort Criteria Table

Purpose
The Library Entry programs have a feature that allows users to define the select and sort
capabilities in an Entry Program detail window. A detail window with the sort feature contains the
Sort command. The Entry Selection table (entsel_table) defines the name and the database
record for the sort selection. The indicated database record corresponds directly with any detail
window that accesses that database record. The Sort Criteria table (entselcrit_table) establishes
how the system selects and/or sorts data in a detail window linked to the database record in the
Table Name field of the entsel_table.

Note: The admentry program does not recognize this function of the entsel_table unless you
do one of the following:
• Comment out the following line in the commonfld section of the def.c file:

{"ctc_rec", "tick", NULL, "tick", PROG_BUFFER}
• Provide users with the ability to pass a different tickler code every time they access

admentry

How to Access
The screen file for the Entry Selection/Sort Criteria table is located in the following directory path:
$CARSPATH/modules/common/screens/tentsel

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Creation Sequence
Create these tables in the following sequence: establish an Entry Selection table entry then add
the corresponding Sort Criteria table entry.

Note: If you create multiple Sort Criteria table entries for a Entry Selection table entry, use
AND or OR logical operators in each Sort Criteria table entry.

Screen Example
The following Entry Selection/Sort Criteria Table screen may vary from your table format and
content due to your institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
Searches the active database table. ** 1: entsel_table table**
 ENTRY SELECTION/SORT CRITERIA

 Entry Selection Code.....[]
 Description..............[]
 Table Name...............[]
 Program Name.............[]
 Permission Code..........[]
 Default..................[]

===

 Boolean Condition........
 Column Name..............
 Relational Operator......
 Column Value.............
 Sort Order...............
 Descending...............

Field Descriptions
The following describes the fields contained on the Entry Selection/Sort Criteria Table screen.

System Reference 71 Common Tables and Records

Boolean Condition
The logical operator for multiple selection and sort tests. Use AND or OR.

Column Name
The column name in the detail window (scroll screen) for the selection and sort criteria

Column Value
The column value for selection criteria

Default
Is this entry considered the default (Y/N)? Use Y for yes or N for no.

Note: Only one Selection code can be a default for each table.

Descending
Should the column values be sorted in descending order? Use Y for yes or N for no. The
default value is N.

Description
The description of the selection code

Entry Selection Code
The selection code (e.g., A&R_CTCS for Admissions and Registration Contacts)

Program Name
The program applicable to this selection code (e.g., stuentry for Student Entry)

Permission Code
The permission code indicating who can assess the selection code (e.g., REGIST for
Registrar users)

Relational Operator
The relational operator for the selection and sort criteria. Leave blank if the criteria is sort
only.

Sort Order
The sort order for the values selected from the column

Note: Enter a unique value per selection code

Table Name
The table name applicable to the selection code (e.g., ctc_table for Contact table)

Report Example
The following Entry Selection/Sort Criteria Table report may vary from your report format and
content due to your institution's particular specifications.

Common Tables and Records 72 System Reference

Fri Jan 26 1996 CARS College Page 1
12:50 ENTRY PROGRAM SELECTION AND SORT CRITERION tentsel

Selection Code Criterion (display in sort order)
--------------------------------- ---
All Entry Programs:

INTEREST Interest Records int_rec.id
 int_rec.prsp_no
 int_rec.interest

Program: admentry

ADMFACTC ADM & FY93+ Contacts ctc_rec.tick = ADM
 OR ctc_rec.tick > FY92
 OR ctc_rec.tick < FY95
 ctc_rec.tick
 ctc_rec.resrc

ADM_CTCS Contact Records ctc_rec.tick = ADM
 ctc_rec.ctc_no

ADM_ED Education Records ed_rec.gpa

ADM_EXAM Exam Records exam_rec.exam_no

ADM_INT Interest Records int_rec.id
 int_rec.prsp_no
 int_rec.interest

Location: /disk06/carsdevi/modules/common/reports/tentsel
Revision: G.0 04/22/94 12:16:34

System Reference 73 Common Tables and Records

Ethnic Table

Purpose
The Ethnic table (ethnic_table) contains the standard race codes that are used for reporting
purposes.

Note: This table contains the valid ethnic codes and should need no change. While it is
possible to add codes to the table, you must be careful because reports and macros
may have to be modified to accommodate the additions. Reports can have a
significant loss of student data unless they provide for counts of ethnic codes that are
not the CX standard. Possibly an "Other" category may have to be added.

How to Access
The screen file for the Ethnic table is located in the following directory path:
$CARSPATH/modules/common/screens/tethnic

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Ethnic Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: ethnic_table table**

 ETHNIC TABLE

 Code...........[]
 Description....[]

Field Descriptions
The following describes the fields contained on the Ethnic Table screen.

Code
The ethnic code. A code taken from HEGIS standards identifying an ethnic background.

Example: AS (for Asian/Pacific Islander)

Description
The ethnic description. It describes the associated ethnic code.

Example: Asian/Pacific Islander (for AS)

Common Tables and Records 74 System Reference

Report Example
The following Ethnic Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
13:10 ETHNIC TABLE REPORT tethnic

 Code Text
 ----- -------------------------
 AM Amer Indian/Alaskan Natv
 AS Asian/Pacific Islander
 BL Black
 HI Hispanic
 NO Non-Resident Alien
 UN Unknown/Undecided
 WH White, non-Hispanic

Location: /base1/carsdevi/modules/common/reports/tethnic
Revision: G.101 02/14/92 17:21:31

System Reference 75 Common Tables and Records

Exam Table

Purpose
The Exam table (exam_table) includes all tests, measurement instruments, and examinations
that an institution uses. It not only provides the valid types, but formats the various labels which
are to appear when an exam record is added or updated.

This table is very important to the Admissions Office and should be coordinated accordingly.

Note: This table should have entries for every type of exam/test that your institution plans
use. Typically this includes the tests that are used for admission purposes (ACT, SAT,
GRE, GMAT, LSAT, MCAT, etc.).

 The registrar may want to use this table and the corresponding exam record to
account for certain tests for which waivers are granted or credit is received (speech
proficiency, CLEP, AP exams, etc.).

How to Access
The screen file for the Exam Table is located in the following directory path:
$CARSPATH/modules/common/screens/texam

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Exam Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen Current Master
Detail ...
Searches the active database table. ** 1: exam_table table**
 EXAM TABLE

 Exam...........[ACT]
 Description....[American College Test]
 Label 1........[English]
 Label 2........[Math]
 Label 3........[Reading]
 Label 4........[Sci Reason]
 Label 5........[Composite]

Field Descriptions
The following contains descriptions of the fields contained on the Exam Table screen.

Description
A text description of the exam code. For example, “American College Test” for ACT.

Exam

Common Tables and Records 76 System Reference

The exam code. This code identifies the exam taken.

Example: ACT

Label 1
The label for the first examination category.

Example: English

Label 2
The label for the second examination category.

Example: Math

Label 3
The label for the third examination category.

Example: Reading

Label 4
The label for the fourth examination category.

Example: Sci Reason

Label 5
The label for the fifth examination category.

Example: Composite

Report Example
The following Exam Table report may vary from your report format and content due to your
institution's particular specifications.

Mon Jan 5 1998 CARS College
Page 1
15:33 EXAM TABLE REPORT
texam
 CA
 Code Label 1 Label 2 Label 3 Label 4 Label 5 Code
 ---- ---------- ---------- ---------- ---------- ---------- ------
 ACT English Math Reading Sci Reason Composite
 ACT1 Usage/Mech Rhet Skill Elem Algbr Alg/Coor G Pl Geo/Trg
 ACT2 Soc St/Sci Arts/Litrt
 ACTE English Math Composite
 ACTP English Math Soc Sci Nat Sci Composite
 AP English Math Frgn Lang History Nat Sci
 CLEP
 GMAT VERBAL QUANT TOTAL
 MATH PRE
 MCAT
 PEP PSYCH MAT/CHILD MED/SURG COMM HLTH
 RVMA RVCMATH RVCMATHFLG
 RVRD RVCREAD RVCREADFLG
 SAT Verbal Math Reading Vocabulary TWSE
 SATI Verbal Math Verbal % Math % Total
 SATS Reading Analogies Sentences Algebra Geometry
 SATW Sent Error Imp Sent Imp Para Wr Sample
 TOEF TOEFL EXAM

Location: /disk15/carsdevi/modules/common/reports/texam
Revision: G.101.110.1 03/04/92 10:24:34

System Reference 77 Common Tables and Records

Facility Table

Purpose
The Facility table (facil_table) contains codes for each facility on your campus.

How to Access
The screen file for the Facility table is located in the following directory path:
$CARSPATH/modules/common/screens/tfacil

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Facility Table screen may vary from your table format and content due to your
institution's particular specifications.

Field Descriptions
The following descriibes the fields contained on the Facility Table screen.

Building
The building code. It identifies the building on the campus where the facility is located.

Example: REED (for the Reed Hall of Science)

Campus
The campus code. It identifies the campus where the facility is located.

Example: MAIN (for the main campus)

Department
The department owner. It identifies the department which has control of the use of this
facility.

Example: CHE (for the Chemistry Department)

Common Tables and Records 78 System Reference

Facility Description
The description of the facility.

Example: Lecture/Lab room

Location Status
The status of this facility. Use A for active or I for inactive. Default value is A.

Maximum Occupants
The maximum occupancy of the facility.

On Campus
Does this facility reside on campus for billing purposes? Use Y for yes or N for no. Default
value is Y.

Phone
The phone number. The telephone number of the facility.

Phone Extension
The extension number for the phone number of the facility.

Primary Association
The Primary Association code of the facility being evaluated.

Room
The room code or number. It identifies the room in the building on the campus where the
facility is located.

Example: 102 (for room 102)

Site
The institution linked to location of the facility.

Example: CARS (for CARS College)

Type of Facility
The facility code. It identifies the facility usage type.

Example: C (for classroom); D (for dormitory room); O (for office)

Report Example
The following Facility Table report may vary from your report format and content due to your
institution's particular specifications.

System Reference 79 Common Tables and Records

Thu Jul 9 1992 CARS College Page 3
13:12 FACILITY TABLE REPORT tfacil
 Site: CARS

Camp Bldg Room Description Occup Telephone Type Site
 Dept Extension Status Bill
---- ------- ----------------------- ----- ---------- ---- -----
MAIN REED 100 Physics lab 24 C CARS
 MPC A Y
MAIN REED 101 Physics Lab 24 C CARS
 MPC A Y
MAIN REED 102 Lecture/Lab room 30 C CARS
 CHE A Y
MAIN REED 103 Lecture Hall 25 C CARS
 MPC A Y
MAIN REED 104 Lecture/Lab room 24 C CARS
 MPC A Y
MAIN REED 105 Lecture Hall 50 C CARS
 MPC A Y

Location: /disk06/carsdevi/modules/common/reports/tfacil
Revision: G.101.110.2 04/10/92 12:34:07

Common Tables and Records 80 System Reference

Form Order Table

Purpose
The Form Order table (formord_table) defines the forms that can be ordered for printing using the
Form Order program.

How to Access
The screen file for the Form Order table is located in the following directory path:
$CARSPATH/modules/common/screens/tformord

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Form Order Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
Searches the active database table. ** 1: formord_table table**

 FORM ORDER ENTRY

 Order Code.....[] Description....[]
 Printer........[] Trans. Type....[]
 Form Type......[] Trans. Charge..[]
 Operator Only..[] Tickler Code...[]
 Alternate ID...[] Resource Code..[]
 ACE Report.....[] Active Date....[]
 Hold Action....[] Inactive Date..[]
 Site...........[]

 Program Parameters:
[]

Field Descriptions
The following describes the fields contained on the Form Order Table screen.

ACE Report
Is this form being generated by an ACE report? Use Y for yes or N for no.

Active Date
The date (mm/dd/yyyy) on which this table entry becomes valid.

Alternate ID
Is this form capable of being sent to an alternate ID? Use Y for yes or N for no.

Description
The text describing the form order code.

Example: Grades for Spring 1984 (for the form order code GRDSP84)

Form Type
The form type code.

Example: Trans (for transcript)

System Reference 81 Common Tables and Records

Hold Action
The hold action associated with this form.

Inactive Date
The date (mm/dd/yyyy) on which this table entry becomes invalid.

Order Code
The form order code (e.g., ARCTEST for ARC report test output).

Operator Only
Is this form to be restricted to operators only? Use Y for yes or N for no.

Printer
The printer name.

Example: p300

Program Parameters
The program and its parameters.

Example: trans -S

Resource Code
The resource code to use in batch mode

Note: Leave blank for immediate mode

Site
The site code for this form.

Example: CARS (for CARS College)

Note: The operator's login site (or the value of the global CARSSITE variable if you
have not specifically set sites for logins) must be the same as the site value in
order for the operator to execute the process specified in the table entry. This
prevents an operator at site "A" from running a process that is set up for and
specific to site "B".

Tickler Code
The tickler code to use in batch mode

Note: Leave blank for immediate mode.

Trans. Charge
Should transcript charging be enabled for this form? Use Y for yes or N for no.

Trans. Type
The transcript order form to track. Valid values are:

• O (Official)
• U (Unofficial)
• N (No tracking)

Report Example
The following Form Order Table report may vary from your report format and content due to your
institution's particular specifications.

Common Tables and Records 82 System Reference

Fri Jan 26 1996 CARS College Page 1
13:12 FORM ORDER TABLE REPORT tformord

 FORM ORDER ENTRY

Formord Code: ARCTEST Description: ARC report test output.
Printer: lascli Formtype: wide
Begin Date: 01/01/94 Ending Date: 01/01/98
Operator Only: Y Alternate ID: N
Site: CARS Hold Action:
Transcript: Charging:
Tickler Code: Resource Code:

Program Parameters:
'$SCPPATH/common/runreports.scp -f "dsktest" $ARCPATH/common/tformord lascli'

 FORM ORDER ENTRY

Formord Code: ARCTEST2 Description: ARC report test output.
Printer: lascli Formtype: wide
Begin Date: 01/01/94 Ending Date: 01/01/98
Operator Only: Y Alternate ID: N
Site: CARS Hold Action:
Transcript: Charging:
Tickler Code: Resource Code:

Program Parameters:
'sacego -q -d devi /disk09/cisids/dkim/dummy'

Location: /disk06/carsdevi/modules/common/reports/tformord
Revision: G.0.110.2 01/11/94 03:46:58

System Reference 83 Common Tables and Records

Handicap Table

Purpose
The Handicap table (hand_table) contains the types of handicaps that are sufficiently important
for an institution to track.

Note: The table should contain all the handicaps that your institution plans to use. The
extent of use of this table is normally dependent on the magnitude of the handicap
student capability of your institution. Many institutions have a special office set up to
meet the needs of handicapped students. If you have such an office, expect to add
many different handicap codes.

 One blank entry in the table is required for the category of no handicap.

How to Access
The screen file for the Handicap table is located in the following directory path:
$CARSPATH/modules/common/screens/thand

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Handicap Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: hand_table table**

 HANDICAP TABLE

 Code...........[]
 Description....[]

Field Descriptions
The following describes the fields contained on the Handicap Table screen.

Code
The handicap code. It identifies a specific handicap.

Example: BL (for blind)

Description
A description of the handicap code.

Example: Blind (for the handicap code BL)

Common Tables and Records 84 System Reference

Report Example
The following Handicap Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
14:55 HANDICAP TABLE REPORT thand

 Code Text
 ------ ------------------------
 No Handicap
 BL Blind

Location: /disk15/carsdevi/modules/common/reports/thand
Revision: G.101.110.1 03/04/92 10:25:47

System Reference 85 Common Tables and Records

Hold Tables

Purpose
The Hold table (hold_table) is used to restrict some functions from the student or other individual.
These functions might be student accounts, registrar, etc.

The Hold Action table (hold_act_table) works in conjunction with the Hold table. As a result of
the Hold Table entry, the Hold Action table specifies if the hold is absolute or a warning hold.

The Office Permission table (ofcperm_table) is used to grant permission to an office and
individual for updating holds. Typically, one or more table entries will be added for each office
allowed to have holds. The business office, registrar, admissions, and student services normally
will have holds of various types.

How to Access
The screen file for the Hold tables is located in the following directory path:
$CARSPATH/modules/common/screens/thold

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Creation Sequence
Considerations for the sequence of creating the tables in relation to other tables are:

1. Create the Hold table before the Hold Action and Office Permission tables.
2. Create the Hold Action table for the hold in the Hold table.
3. Create the Office Permission table for the specified hold.

You must create the Hold table before the Hold Action table. Associated with each hold code in
the Hold table will be one or more hold action code entries that specify what is to be held as a
result of the hold code. Multiple hold action code table entries are permissible for each Hold
table entry.

Hold and Hold Action Relationships
An example of a hold and hold action relationship would be the following. A Hold table has a
code for student accounts and the Hold Action table has an entry for transcript with an Absolute
entry of yes. If a student with such a hold is delinquent in paying his student fees, an absolute
hold is placed so as not to release the transcript until the hold is cleared. It is also common to
place a registration absolute Hold Action table entry to student accounts to prevent registration.
It is less common to place such a hold on grade reports.

Absolute Holds
Use absolute holds with some discretion since they are to prevent some action and can create
additional work if used carelessly.

Office Permissions
A user can add, update, and delete holds only if he has database permissions set in the Office
Permissions table (ofcperm_table). (See Setting Up Office Permissions Checking in Section 2 of
the CX Implementation and Maintenance Technical Manual.) Programs check the ofcperm_table
for a user’s office permissions before allowing the adding or updating of holds. To delete a hold,
the user must have ownership of the hold.

The system determines ownership of a hold based on whether or not an appropriate entry exists
in:

• The ofcperm_table for the user or group

Common Tables and Records 86 System Reference

• The ofc_add_by column of the hold_rec

The system also takes active/inactive dates into consideration when determining the ownership
of a hold.

Screen Example
The following Hold tables screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
Searches the active database table. ** 1: hold_table table**
 HOLD TABLE

 Code..................[A/P]
 Description...........[Accounts Payable Hold]
 Phrase Number.........[1700]
 Comment (w/ HTML markups).....
[]
==
 HOLD ACTION TABLE

 Action................ PURCH
 Absolute.............. Y
==
 OFFICE PERMISSIONS TABLE

 User Office Code......
 Group or User Number..
 Type..................

Field Descriptions
The following describes the fields contained on the Hold Tables screen.

Absolute
This indicates whether the affect of this hold is absolute or is just a warning. Use Y for yes
or N for no. Default value is N.

Action
This code identifies the process affected by the associated hold.

Example: GRDRPT (for grade reporting)

Code
The hold code identifies the type of hold.

Example: ADMS (for Admissions)

Comment (w/ HTML Markups)
A blob field containing the explanation of the hold and the steps needed by the student to
clear it. Used in web applications to provide more information to the user.

Description
The text describing the hold code.

Example: Admissions (for the hold code ADMS)

Group or User Number
The UNIX group (gid) or user (uid) identification number that has permission to update the
associated hold.

Type
The permission type. Valid values are:

• G (Group ID#)
• U (User ID#)

User Office Code

System Reference 87 Common Tables and Records

The code indicating which office has permission to update the associated hold.

Example: ACAD (for Academic Affairs)

User uid Number
The login ID. This is the specific ID number of an individual, within the specified office, who
is allowed to update the hold.

Example: 151 (for the user within the specified office who has the login ID of 151)

Report Example
The following Hold Table report may vary from your report format and content due to your
institution’s particular specifications.

Wed Dec 18 1996 CARS College Page 1
12:23 HOLD TABLE REPORT thold

 Code Text
 ---- ------------------------

 A/P Accounts Payable Hold
 A/PA Accts Pay Advisory Hold
 ACAD Academic Dean Hold
 ADMS Admissions Hold
 ADVI Advisor Hold
 BUSO Business Office
 DSOL Donor Solicitation Hold
 EDTR Education Transc Incompl
 FEES Registration Fees Unpaid
 FINA Financial Aid Hold
 FINP Financial Purge - No
 INTR Incomplete transcripts
 MAIL Mailing Hold
 NOND Non-Declared Major Hold
 PUB Publicity Hold
 REGI Registrar Hold
 REGR Registrar Holds
 STUA Student Accounts Hold
 STUS Student Services Hold

Location: /base1/carsdevi/modules/common/reports/thold
Revision: G.101 02/14/92 17:22:08

Common Tables and Records 88 System Reference

Report Example (Hold Action Table)
The following Hold Action Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
14:56 HOLD ACTION TABLE REPORT tholdact

 Code Hold Absolute
 ----- ---- ---
 REGIST ACAD NO
 REGIST ADMI NO
 REGR ADMS YES
 TRANS ADVI NO
 REGIST ADVI NO
 TRANS BUSO YES
 SOLICIT DSOL YES
 REGIST FINA NO
 JN MAIL YES
 DPJN MAIL YES
 NOJN MAIL YES
 REGIST MAIL NO
 CKSLCT MAIL YES
 SINGLEI MAIL YES
 PURCH MAIL YES
 NPREMIUM PREM YES
 NPREMIUM PRM NO
 GRDRPT REG NO
 TRANS REGI NO
 REGIST REGI NO
 JOIN SOL YES
 SINGLE SOL YES
 TRANS STUA NO
 REGIST STUA NO
 TRANS STUS NO
 REGIST STUS NO

Location: /sysdisk/carsgSQL/modules/common/reports/tholdact
Revision: G.100 08/21/91 19:33:07

System Reference 89 Common Tables and Records

Report Example (Office Permissions Table Report)
The following Office Permissions Table report may vary from your report format and content due
to your institution's particular specifications.

Wed Dec 18 1996 CARS College Page 1
12:31 OFFICE PERMISSIONS REPORT tofcperm

 User / Group
 Code Office Description Type ID
 ---- ------------------------ ---- ----
 ACAD Academic Affairs U 150
 ACAD Academic Affairs U 246
 ACAD Academic Affairs U 151
 ADM Admissions Office G 100
 ADMS Admissions U 147
 ADMS Admissions U 143
 ADMS Admissions U 185
 BASK Basketball G 100
 BOFF Business Office U 121
 BUSA U 122
 DEVL Development U 122
 DEVL Development U 271
 FAID Financial Aid U 271
 MATR U 228
 REGI U 185
 REGR Registrar's U 153
 REGR Registrar's U 147
 REGR Registrar's U 116
 SOC U 122

 * - Record is inactive according to active/inactive dates
Location: /usr/carsdevi/modules/common/reports/tofcperm
Revision: H.1 08/23/96 13:35:53

Common Tables and Records 90 System Reference

ID Office Permissions Table

Purpose
The ID Office Permissions table (idperm_table) defines the permissions to ID records (id_rec) for
users and user groups for each office at your institution.

How to Access
The screen file for the ID Office Permissions table is located in the following directory path:
$CARSPATH/modules/common/screens/idperm

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following ID Office Permissions Table screen may vary from your table format and content
due to your institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
Searches the active database table. ** 1: idperm_table table**

 ID PERMISSIONS TABLE

 User Office Code......[]
 Group or User Number..[0]
 Type..................[]

Field Descriptions
The following describes the fields contained on the ID Office Permissions Table screen.

Group or User Number
The UNIX group or user identification number (100:999).

Type
The permission type for the user. Valid values are:

• G (Group ID#)
• U (User ID#)

User Office Code
The office code (e.g., ADM for Admissions office).

Report Example
The following ID Office Permissions Table report may vary from your report format and content
due to your institution's particular specifications.

System Reference 91 Common Tables and Records

Fri Jan 26 1996 CARS College Page 1
13:35 ID PERMISSIONS REPORT tidperm

 User / Group Active /Inactive
 Code Office Description Type ID Date Date
 ---- ------------------------ ---- ---- -------- --------
 U 159
 U 157
 U 146
 ADM U 185 01/01/94
 ADM G 120
 ADM G 100
 ADMS Admissions U 146
 BOFF Business Office U 233
 DEVL Development U 146
 DEVL Development U 166
 DEVL Development U 122
 KEVI G 998 05/18/93 12/31/99
 REG U 166
 REG U 157
 REGR Registrar's G 999 05/18/93 12/31/99
 REGR Registrar's U 146
 REGR Registrar's U 166

 * - Record is inactive according to active/inactive dates
Location: /disk06/carsdevi/modules/common/reports/tidperm
Revision: G.0 06/09/93 13:55:49

Common Tables and Records 92 System Reference

Interest Table

Purpose
The Interest table (int_table) contains those activities (academic, social, athletic) that may be of
interest to a prospective student, but do not fit into the categories of accomplishment or
involvement.

Note: Add interest codes as necessary to accommodate the various interests of students.
Do not confuse these with accomplishments or involvements, which are in separate
tables.

 These entries are frequently of much interest to the admissions office because they
may be used for recruitment purposes. For example, someone has an interest in the
Honors Program which may be the key to send literature on that program. These
interests usually include a wide range of academic, social (extra-curricular), and
athletic areas.

How to Access
The screen file for the Interest table is located in the following directory path:
$CARSPATH/modules/common/screens/tint

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Interest Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen Current Master
Detail ...
Searches the active database table. ** 1: int_table table**

 INTEREST TABLE

 Code...........[]
 Description....[]
 Type...........[]
 Display on Web.[]

Field Descriptions
The following describes the fields contained on the Interest Table screen.

Code
The interest code. A code given to an area of interest by which that interest may be
referred.

Example: ACCO (for accounting)

System Reference 93 Common Tables and Records

Description
The text that describes the interest code.

Example: Accounting (for the code ACCO)

Type
The interest type code. A code identifying the type of interest in general terms.

Example: ACAD, ATHL, MUSI, etc.

Display on Web
A Y/N field indicating whether or not you want this field to display on the Web Admissions
Application.

Report Example
The following Interest Table report may vary from your report format and content due to your
institution's particular specifications.

Mon Jan 5 1998 CARS College Page 1
14:24 INTEREST TABLE REPORT tint

 Code Text Type W
 ---- -------------------------------- ---- -
 ACAD Y
 ACCO Accounting ACAD Y
 ADVE Advertising ACAD Y
 AERO Aeronautics ACAD Y
 AESP Aerospace Studies ACAD Y
 AGRO Agronomy ACAD Y
 AMER American Studies ACAD Y
 ANTH Anthropology ACAD Y
 ARCH Archery ACAD Y
 ART Art - Painting ACAD Y
 ARTE Art Education ACAD Y
 AUTO Automotive Technology ACAD Y
 BASE Baseball ATHL Y
 BASK Basketball ATHL Y
 BIBL Biblical Literature ACAD Y
 BIOL Biology ACAD Y
 BLAC Black World Studies ACAD Y
 BOTA Botany ACAD Y
 BROA Broadcasting ACAD Y
 BUSA Business Adminstration ACAD Y
 BUSE Business Education ACAD Y
 BUSL Business Law ACAD Y
 CART Cartography ACAD Y
 CHED Christian Education ACAD Y
 CHEM Chemistry ACAD Y
Standard input

* - Record is inactive according to active/inactive dates
Location: /usr/carsbetai/modules/common/reports/tint
Revision: Released 12/12/97 18:57:15

Common Tables and Records 94 System Reference

Involvement Table

Purpose
The Involvement table (involve_table) contains those activities that a student might participate in.
Participation in varsity basketball, debate club, etc. are representative examples. Do not confuse
involvements with interests or accomplishments.

Note: This table contains the various types of activities a student is or has been involved in.
Some institutions track their athletes through this table and the associated
accomplishment record because they can specify periods of involvement. Also, it is a
good way of tracking occurrences of participation in such activities as offices held and
leadership positions.

How to Access
The screen file for the Involvement table is located in the following directory path:
$CARSPATH/modules/common/screens/tinvolve

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Involvement Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen Current Master
Detail ...
Searches the active database table. ** 1: invl_table table**

 INVOLVEMENT TABLE

 Code.............[]
 Description......[]
 Display on Web...[]
 IPEDS Sports Lev.[]

Field Descriptions
The following contains descriptions of the fields contained on the Involvement Table screen.

Code
The involvement code. A code given to an activity by which a person's participation in that
activity may be referred.

Example: BASE (for the baseball team)

Description
The text that describes the activity referred to in the involvement code.

Example: Baseball Team (for the involvement code BASE)

Display on Web

System Reference 95 Common Tables and Records

A Y/N field dictating whether or not you want this field to display on the Web Admissions
Application.

IPEDS Sports Lev.
Specifies the level of a sport which is eligible for athletic aid as specified by the Department
of Education Valid codes are as follows:

• 1 - Football
• 2 - Basketball
• 3 - Baseball
• 4 - Cross - country/track
• 5 - All other sports

Leave this field blank if 1- 5 does not apply.

Report Example
The following Involvement Table report may vary from your report format and content due to your
institution's particular specifications.

Mon Jan 5 1998 CARS College Page 1
13:52 INVOLVEMENT TABLE REPORT tinvolve

 Sports Active /Inactive
 Code Text W Level Date Date
 ---- ------------------------------- - ----- -------- --------
 ATHL Athletic Y
 BASE Baseball Team Y
 DEB Debate Society Y
 DELT Tri-Delta Sorority Y 01/01/90
 FHOC Field Hockey Y
 FOOT Football Team Y
 FRIE Friend of College Y
 LIFP Lifetime Presidents Club Giving Y
 PRES Presidents Club Y
 RG Rockwood Giddings Member Y
 RGDF R Giddings Dist Giving Club Y
 RGF Rockwood Giddings Fellow Giving Y
 RGM Rockwood Giddings Giving Club Y
 SWIM Swim Team - Men's Y
 SWIW Swim Team - Women's Y
 TENM Tennis Team - Men's Y
 TENW Tennis Team - Women's Y
 YAC Young Alumni Club Y

* - Record is inactive according to active/inactive dates
Location: /usr/carsbetai/modules/common/reports/tinvolve
Revision: Released 12/19/97 13:32:41

Common Tables and Records 96 System Reference

Marital Table

Purpose
The Marital table (mrtl_table) contains the valid marital statuses that are used at your institution.

How to Access
The screen file for the Marital table is located in the following directory path:
$CARSPATH/modules/common/screens/tmrtl

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Marital Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1:mrtl_table table**

 Marital TABLE

 Code...........[]
 Description....[]

Field Descriptions
The following describes the fields contained on the Marital Table screen.

Active Date
The date on which the table entry becomes valid. CX displays this field on reports and
screens if the macro ENABLE_FEAT_BEG_END_DATE is set to Y.

Code
The marital status code. A code given to a marital status by which that status may be
referred.

Example: M (for Married)

Description
The text used to describe the marital status referred to by the marital status code.

Example: Married (for the code M)

EDI Marital Status Code

System Reference 97 Common Tables and Records

The marital status code used on the data obtained via EDI (Electronic Data Interchange).
CX translates this code on records to the Code you assign. This field appears on your table
screen only if the macro ENABLE_TRANS_EDI is set to Y.

Inactive Date
The date on which the table entry becomes invalid. CX displays this field on reports and
screens if the macro ENABLE_FEAT_BEG_END_DATE is set to Y.

Report Example
The following Marital Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
15:41 MARITAL TABLE REPORT tmrtl

 Active /Inactive
 Code Text Date Date
 ---- ------------------------ -------- --------

 D Divorced
 M Married
 P single Parent
 S Single
 T Separated
 W Widowed

 * - Record is inactive according to active/inactive dates
Location: /usr/carsdevi/modules/common/reports/tmrtl
Revision: Developmental 08/29/97 15:08:18

Common Tables and Records 98 System Reference

Occupation Table

Purpose
The Occupation table (occ_table) consists of generalized jobs (occupations) that may be used for
your institution's purposes.

Note: This table contains many occupation types. Dependent upon your use of the table, it
may require some modification to the level of detail desired. A source of occupational
titles is the Directory of Occupational Titles, published by the federal government. The
advantage of using such a document is that it will provide consistency to the level
desired for positions.

 This occupational information is valuable for recruiting purposes and identifying
individuals by type of work when it is input on the employment record.

How to Access
The screen file for the Occupation table is located in the following directory path:
$CARSPATH/modules/common/screens/tocc

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Occupation Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: occ_table table**

 OCCUPATION TABLE

 Code...........[]
 Description....[]

Field Descriptions
The following describes the fields contained on the Occupation Table screen.

Code
The occupation code. A code given to an occupation by which that occupation may be
referred.

Example: ADV (for advertising)

System Reference 99 Common Tables and Records

Description
The text used to describe the occupation referred to by the occupation code.

Example: Advertising (for the occupation code ADV)

Report Example
The following Occupation Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
15:02 OCCUPATION TABLE REPORT tocc

 Code Text
 ---- ----------
 ADV Advertising
 AGR Agriculture;Ranching
 AIR Aircraft Industry
 ARC Architecture;Landscaping
 ART Art
 ATH Athletics
 AUS Armed Forces
 AUT Automobile Business
 AUTH Author
 AVI Aviation
 BEV Beverage Manu/Distr
 BK Banking
 BLD Construction;Carpentry
 BTCR Butcher
 BUS Business;Comm Enterprise
 CARS CARS Solution Systems Rep
 CHM Chemists;Chemistry
 CARS CARS Account Manager
 CLP Clinical Psychology
 COL Coal&Fuel;Explor/Develop
 COM Computers:Manuf/Sales
 DDS Dentistry
 DIET Dietitian
 DNC Dance: Teach,Perform etc
 EAM Education Administration

Location: /base1/carsdevi/modules/common/reports/tocc
Revision: G.101 02/14/92 17:22:49

Common Tables and Records 100 System Reference

Office Table

Purpose
The Office table (ofc_table) should contain all the offices on a campus. This information is used
in a variety of ways. One of the more important ways is to specify which office added a record.
Examples of such records are: id_rec, hold_rec, aa_rec, adree_rec, etc.

Note: You should update this table to include all offices that will be using the system directly
or indirectly. Typically, all offices on a campus should be added.

How to Access
The screen file for the Office table is located in the following directory path:
$CARSPATH/modules/common/screens/tofc

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Office Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: ofc_table table**

 OFFICE TABLE

 Code...........[]
 Description....[]

Field Descriptions
The following describes the fields contained on the Office Table screen.

Code
The office code. A code given to an office for reference purposes.

Example: ACAD (for the Academic Affairs office)

Description
The office code description. The text describing the office code.

Example: Academic Affairs (for the office code ACAD)

Report Example
The following Office Table report may vary from your report format and content due to your
institution's particular specifications.

System Reference 101 Common Tables and Records

Thu Jul 9 1992 CARS College Page 1
15:03 OFFICE TABLE REPORT tofc

 Code Text
 ----- ------------------------
 ACAD Academic Affairs
 ADMS Admissions
 ADMT Administration & Treas.
 BASK Basketball
 BOFF Business Office
 BOOK Bookstore
 CAMP Campus Activities
 CARR Career Planning
 CHAN Chancellor
 COMP Computer Services
 DEVL Development
 FAID Financial Aid
 FOOD Food Services
 FOOT Football
 GRAD Graduate Studies
 HOUS Housekeeping
 INFR Infirmary
 LIBR Library
 MAIN Maintenance
 MINS Campus Ministry
 NOTE Notes Payable Office
 PERS Personnel/Payroll
 POST Post Office
 PRES President
 PRNT Printing

Location: /base1/carsdevi/modules/common/reports/tofc
Revision: G.101 02/14/92 17:22:57

Common Tables and Records 102 System Reference

Permission Table

Purpose
The Permission table (perm_table) contains codes for each level of access on the CX database.

How to Access
The screen file for the Permission table is located in the following directory path:
$CARSPATH/modules/common/screens/tperm

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Permission Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: perm_table table**

 PERMISSION TABLE

 Program or Process....[]
 Category[]
 Permission Code[]
 Group or User Number..[]
 Type[]
 Exclude Permission....[]

Field Descriptions
The following describes the fields contained on the Permission Table screen.

Category
The permission category. It identifies a restriction category for this permission.

Example: GLPERM (for general ledger permission)

Exclude Permission
Is permission being denied to the user/group for this permission? Use Y to deny permission
or N to grant permission. Default value is N.

Group or User Number
The system user or group ID number associated with this permission.

Example: 121

Permission Code
The permission code that is granted or denied access.

Example: ALL or CASHIER

Program or Process

System Reference 103 Common Tables and Records

The name of the application program using this record. If left blank, this record applies to all
programs using this table.

Example: acquery

Type
Specifies whether the system ID number is for a user or a group. Use U for user ID number
or G for group ID number.

Report Example
The following Permission Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
16:07 PERMISSION TABLE REPORT tperm

Program Code Category Code Number User/Group Exclude
-- ------ ---- --- ---- ----- ----
 CATPERM KELLY 121 U N
 CATPERM ******** 121 U N

 CATPERM KELLY 147 U Y
 CATPERM ******** 147 U N

 CATPERM KELLY 149 U N
 CATPERM COMMON 149 U N

 CATPERM KELLY 151 U N

 GLPERM ALL 140 G N

 GLPERM ALL 102 U N

 GLPERM ALL 103 U N

 GLPERM ALL 105 U N

 GLPERM ALL 107 U N

 GLPERM ALL 110 U N

acquery GLPERM ALL 121 U N
 GLPERM CASHIER 121 U N

Location: /sysdisk/carsgSQL/modules/common/reports/tperm
Revision: G.100 08/21/91 19:33:24

Common Tables and Records 104 System Reference

Privacy Act Tables

Purpose
The Privacy table (priv_table) contains a code and text description of the privacy style that you
mark as "private" on screens in entry programs. Since the names of these styles (e.g., ADDR for
Address information) is arbitrary, you can define them any way you prefer.

The Privacy Field table (privfld_table) contains the database records and fields that are located in
the groups from the Privacy table. Each group can contain as many records and fields as you
want, but only records and fields that are accessible in entry programs are highlighted.

How to Access
The screen file for the Privacy Act Table is located in the following directory path:
$CARSPATH/modules/common/screens/tpriv

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Creation Sequence
Create these tables in the following sequence: enter the privacy code in the Privacy table, then
enter the corresponding table name(s) and column(s) in the Privacy Field table.

Screen Example
The following Privacy Act Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
Searches the active database table. ** 1: priv_table table**
 PRIVACY ACT INFORMATION

 Privacy Code.............[]
 Description..............[]
 Comment Text.............
[]

===

 Table Name...............
 Column Value.............

Field Descriptions
The following contains descriptions of the fields contained on the Privacy Act screen.

Column Value
The column name for the privacy code (e.g., addr_line1)

Comment Text
A blob field containing the explanation of the privacy restriction. It is used in web
applications to provide the user more information about the restriction.

Description

System Reference 105 Common Tables and Records

The description of the privacy code.

Privacy Code
The privacy code (e.g., ADDR for name and address information).

Table Name
The table name applicable to the privacy code (e.g., id_rec for ID record).

Report Example
The following Privacy Act Table report may vary from your report format and content due to your
institution's particular specifications.

Fri Jan 26 1996 CARS College Page 1
13:50 ENTRY PROGRAM PRIVACY ACT INFORMATION tpriv

Privacy Code Database Table(s) and Column(s)
--------------------------------- ---
ADDR Name and Address Info id_rec.addr_line1
 id_rec.addr_line2
 id_rec.city
 id_rec.fullname
 id_rec.st
 id_rec.zip
 profile_rec.priv_code

BRTH Birthday and sex profile_rec.birth_date
 profile_rec.sex

PHON Name, Address and Phone id_rec.addr_line1
 id_rec.addr_line2
 id_rec.city
 id_rec.fullname
 id_rec.phone
 id_rec.phone_ext
 id_rec.st
 id_rec.zip
 profile_rec.priv_code

Location: /disk06/carsdevi/modules/common/reports/tpriv
Revision: G.0 04/22/94 10:23:39
:39

Common Tables and Records 106 System Reference

Relationship Table

Purpose
The Relationship table (rel_table) contains the valid primary/secondary relationships.

Note: The base system contains many of the basic relationships that are necessary to
implement the system. The real issue is whether or not your institution plans to use
relationship records. If so, which offices will be responsible for maintaining them. The
two primary users will probably be admissions and development.

 Do not reverse a relationship order in another code.

How to Access
The screen file for the Relationship table is located in the following directory path:
$CARSPATH/modules/common/screens/trel

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Relationship Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: rel_table table**

 RELATIONSHIP TABLE

 Code...........[]
 Description....[]
 Maintenance....[]

Field Descriptions
The following describes the fields contained on the Relationship Table screen.

Code
The relationship code. A code assigned to a relationship.

Example: BS (for brother/sister)

Description
The text describing the relationship code.

Example: Brother/Sister (for the relationship code BS)

Maintenance

System Reference 107 Common Tables and Records

Should related IDs have their addresses maintained? Use Y for yes and N for no. The
default value is no.

Report Example
The following Relationship Table report may vary from your report format and content due to your
institution's particular specifications.

Fri Jan 26 1996 CARS College Page 1
14:01 RELATIONSHIP TABLE REPORT trel

 Active /Inactive
 Code Text Maint Date Date
 ---- ------------------------ ----- -------- --------
 AUE Aunt / Nephew N 01/01/94
 AUI Aunt / Niece N
 BB Brother/Brother N
 BE Business/Employee N
 BI Brother / In-Law N
 BS Brother/Sister N
 CE Company / Employee N
 COE College / Employee N
 CP Church/Pastor N
 FD Father/Daughter N
 FI Father / In-Law N
 FS Father/Son N
 GW Guardian/Ward N
 HW Husband/Wife Y
 MD Mother/Daughter N
 MEM Member N
 MI Mother / In-Law N
 MS Mother/Son N
 PC Parent/Child Y
 SC School/Counselor N
 SI Sister / In-Law N
 SP School/Principal N
 UNE Uncle/Nephew N
 UNI Uncle/Niece N

 * - Record is inactive according to active/inactive dates
Location: /disk06/carsdevi/modules/common/reports/trel
Revision: G.101.110.2 04/22/94 10:06:30

Common Tables and Records 108 System Reference

State Table

Purpose
The State table (st_table) contains all states and US territories.

Note: This table will probably not require updating from the base product. The zip codes
specify the ranges for a given state and can be used as desired by your institution.

How to Access
The screen file for the State table is located in the following directory path:
$CARSPATH/modules/common/screens/ts

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following State Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: st_table table**
 STATE TABLE

 Code...........[]
 Text...........[]
 Description....[]
 Low Zip........[]
 High Zip.......[]

Field Descriptions
The following describes the fields contained on the State Table screen.

Code
The state code. A code assigned to a state for reference purposes.

Example: SC (for South Carolina)

Description
The Federal Information Processing Standard (FIPS) code assigned to this state

Example: SC (for South Carolina)

High Zip
The high end of the zip code range for this state.

Low Zip
The low end of the zip code range for this state.

Text

System Reference 109 Common Tables and Records

The text describing the state code.

Example: South Carolina (for the state code SC)

Report Example
The following State Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
16:09 STATE TABLE REPORT tst

 Code Text Low Zone High Zone Description
 ---- ------------------ ------ ---------- --------------------
 PR Puerto Rico 00600 00999 PR
 RI Rhode Island RI
 SC South Carolina 29000 29999 SC
 SD South Dakota 57000 57799 SD
 TN Tennessee 37000 38599 TN
 TX Texas 75000 79999 TX
 UT Utah 84000 84799 UT
 VA Virginia 22000 24699 VA
 VI Virgin Islands VI
 VT Vermont 05000 05999 VT
 WA Washington 98000 99499 WA
 WI Wisconsin 53000 54999 WI
 WV West Virginia 24600 26899 WV
 WY Wyoming 82000 83199 WY
 YK Yukon Territories YK

Location: /disk06/carsdevi/modules/common/reports/tst
Revision: G.201 07/07/92 15:41:37

Common Tables and Records 110 System Reference

Subscription Table

Purpose
The Subscription table (sbscr_table) is a variation of the Contact table that specifies recipients,
other than students, who are to receive some communication (e.g. grade reports, student data
sheets that contain billing information).

Note: This table is a variation of the Contact table and allows your institution to specify other
recipients of selected information in addition to the student. Two common uses are for
GRDRPT (grade reports) and SDSBILL (student data sheets with billing).

How to Access
The screen file for the Subscription table is located in the following directory path:
$CARSPATH/modules/common/screens/tsbscr

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Subscription Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: ctc_table table**

 SUBSCRIPTION TABLE

 When querying, enter "SBSC"..[]

 Subscription Code...[]
 Description.........[]
 Run Code............[]
 Communication Code..[]
 Ace Report..........[]
 Routing.............[]
 Span Waived.........[]
 Reissued............[]
 Enrollment Status...[]

Field Descriptions
The following describes the fields contained on the Subscription Table screen.

Ace Report
The name of the ACE report using this subscription.

Example: ltracadrec (for academic records letter)

Communication Code
The communication code. This code identifies the type of communication this contact is.

Example: LTLB (for letter and label)

Description
The text describing the subscription code.

Example: DEANLIST (for the dean's list letters)

System Reference 111 Common Tables and Records

Enrollment Status
The enrollment status achieved with this contact. There is no entry to this field.

Example: ACCEPTED (for a subscription code of ACCLET acceptance letter)

Reissued
Can the contact occur more than once? (Y = yes; N = no) There is no entry to this field.

Routing
Is this an incoming or outgoing contact?
(I = incoming; O = outgoing) There is no entry to this field.

Run Code
The run code for this subscription.

Example: SINGLE

Span Waived
Is the normal span for days between contacts waived for this contact? (Y = yes; N = no)
There is no entry for this field.

Subscription Code
The code assigned to this subscription.

Example: DEANLIST (for the dean's list letters)

Report Example
The following Subscription Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
16:10 SUBSCRIPTION TABLE REPORT tsbscr

 Code Text Comm Run Code
 -------- ---------------------- ---- ---------
 ALUMNEWS Alumni News Mailing LABL JN
 PRESRPT President's Annual Rpt LETT JN

Location: /sysdisk/carsgSQL/modules/common/reports/tsbscr
Revision: G.100 08/21/91 19:33:31

Common Tables and Records 112 System Reference

Suffix Table

Purpose
The Suffix table (suffix_table) contains codes for all valid suffixes (e.g., Esq for Esquire).

How to Access
The screen file for the Suffix table is located in the following directory path:
$CARSPATH/modules/common/screens/tsuffix

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Suffix Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: suffix_table table**

 SUFFIX TABLE

 Code...........[]
 Title..........[]
 Labels.........[]
 Joint Labels...[]

Field Descriptions
The following describes the fields contained on the Suffix Table screen.

Code
The suffix code.

Example: ESQ (for esquire)

Joint Labels
The text used for printing when two IDs have the same suffix.

Example: Esquires

Labels
The text used for printing labels.

Example: Esq. (for esquire)

Title

System Reference 113 Common Tables and Records

Can this suffix be used with titles? Use Y for yes or N for no.

Report Example
The following Suffix Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
16:11 SUFFIX TABLE REPORT tsuffix

 Code Title Text Joint Text
 ---- ----- ------------------------ ------------------------
 ESQ N Esq Esquires

Location: /disk06/carsdevi/modules/common/reports/tsuffix
Revision: G.50 07/07/92 15:41:41

Common Tables and Records 114 System Reference

Tickler Table

Purpose
The Tickler table (tick_table) specifies the ticklers used by your institution, even if they are not set
up in the tickler structure.

Note: One entry in this table is required for the registrar even though a tickler process may
not be established for the registrar's office. Few, if any, registrars establish specific
tickler applications for their office, since the great majority of their processes do not
lend themselves to such applications.

How to Access
The screen file for the Tickler table is located in the following directory path:
$CARSPATH/modules/common/screens/ttick

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Tickler Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: tick_table table**

 TICKLER TABLE

 Code..................[]
 Description...........[]

 Minimum Contact Span..[]
 Maximum Contact Span..[]
 Maximum Review Span...[]
 Mail Recipient........[]

Field Descriptions
The following describes the fields contained on the Tickler Table screen.

Code
The tickler code. A code assigned to a tickler system for identification purposes.

Example: ADM (for admissions tickler)

Description
The text describing the tickler system referred to by the tickler code.

Example: Admissions Tickler (for the tickler code ADM)

Maximum Contact Span
The user's login name, who is to receive mail from the tickler program.

Example: admit (for admissions)

System Reference 115 Common Tables and Records

Maximum Contact Span
The maximum number of days which may exist between sending contacts to a person on
this tickler system.

Example: 30 (for 30 days)

Maximum Review Span
The maximum number of days between reviews of a person on this tickler system.

Example: 30 (for 30 days)

Minimum Contact Span
The minimum number of days which may exist between sending contacts to a person on this
tickler system.

Example: 10 (for 10 days)

Report Example
The following Tickler Table report may vary from your report format and content due to your
institution's particular specifications.

Thu Jul 9 1992 CARS College Page 1
16:12 TICKLER TABLE REPORT ttick

 Tick Description Ctc Span Rev Mail
 -- --- -------- --- --------
 ADM Admissions Tickler 10/ 30 30 coord
 ADMG Graduate Admissions 10/ 30 30 admit
 ALPR Alumni Public Relations 7/ 30 7 mark
 DEV Development 30/ 90 30
 FA87 Fall 87 Financial Aid 0/ 10 7 dave
 FA88 Fall 88 Financial Aid 0/ 10 7 dave
 FA89 FA89 Tickler 0/ 0 0
 FY87 Financial Aid 8788 0/ 30 7 dave
 FY88 Financial Aid 8889 0/ 30 7 dave
 FY89 8990 Tickler 0/ 30 7 dave
 FY91 9192 Financial Aid 0/ 10 7 gerry
 FY92 9192 Financial Aid 0/ 10 7 gerry
 FY94 9091 FA Document Track'g 0/ 30 7 dave
 HUNT CARS Standard ADM tick 10/ 30 10 ken
 INV Invitation to Open House 14/ 28 14
 KADM StKate Admissions 5/ 30 30 harold
 MAIL Direct Mailings 0/ 0 0
 REG Registration 0/ 0 0
 SAFF Std Services/Affairs 0/ 0 0
 SBSC Subscription 0/ 0 0
 SP88 Spring 89 Financial Aid 0/ 10 7 dave
 SP89 Spring 89 Financial Aid 0/ 10 7 dave
 SP90 SP90 Tickler 0/ 0 0

Location: /sysdisk/carsgSQL/modules/commgmt/reports/ttick
Revision: G.100 08/21/91 19:16:43

Common Tables and Records 116 System Reference

Title Table

Purpose
The Title table (title_table) contains the various titles that are used by your institution.

Note: The base product has a reasonably comprehensive set of titles. You should update
the table as necessary for your institution.

 You should use titles when building your ID records so that other applications will
respond properly (e.g.,adr).

How to Access
The screen file for the Title table is located in the following directory path:
$CARSPATH/modules/common/screens/ttitle

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Title Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen Current Master
Detail ...
Searches the active database table. ** 1: title_table table**

 TITLE TABLE

 Code...........[]
 Priority.......[]
 Labels.........[]
 Salutation.....[]
 Joint..........[]
 Gender.........[]
 Display on Web.[]

Field Descriptions
The following describes the fields contained on the Title Table screen.

Code
The title code. A code assigned to a specific title.

Example: CAPT (for Captain)

Joint
Does this title address two individuals (e.g., Mr. & Mrs.) jointly? Use Y for yes or N for no.
Default value is N.

Labels
The text used for printing on labels.

Example: Capt. (for Captain)

Priority
The title priority. The priority level assigned to a title in case the order of displaying two titles
may make a difference. This is used for report sorting. The value of "0" (zero) is the
highest.

Salutation

System Reference 117 Common Tables and Records

The formal usage of this title when used as a salutation in a letter.

Example: Capt. & Mrs. (for the title code CPMS)

Display on Web
A Y/N field dictating whether or not you want this field to display on the Web Admissions
Application.

Report Example
The following Title Table report may vary from your report format and content due to your
institution's particular specifications.

Mon Jan 5 1998 CARS College Page 1
14:33 TITLE TABLE REPORT ttitle

 Code Text Salutation Prty J G W
 ---- ---------------------- ---------------------- ---- - - -
*CAPT Capt. Captain 0 N Y
 COL Col. Col. 0 N Y
 COLM Col. & Mrs. Col. & Mrs. 0 Y M Y
 CPMS Capt. & Mrs. Capt. & Mrs. 0 Y M Y
 DEAN Dean Dean 0 N Y
 DR Dr. Dr. 0 N Y
 DRMS Dr. & Mrs. Dr. & Mrs. 0 Y M Y
 FR Fr. Father 0 N M Y
 GEN Gen. Gen. 0 N N
 HG The Hon. Governor 15 N Y
 HGMS The Hon. & Mrs. Governor & Mrs. 0 Y M Y
 HJ The Hon. Judge 0 N Y
 HJMS The Hon. & Mrs. Judge & Mrs. 0 Y M Y
 HM The Hon. Mayor 0 N Y
 HMMS The Hon. & Mrs. Mayor & Mrs. 0 Y M Y
 LCDR Lt. Cdr. Lt. Cdr. 0 N Y
 LT Lt. Lt. 0 N Y
 LTC Lt. Col. Lt. Col. 0 N Y
 MAJ Major Major 0 N Y
 MISS Miss Miss 0 N F Y
 MM Mr. & Mrs. Mr. & Mrs. 0 Y M Y
 MR Mr. Mr. 0 N M Y
 MRMS Mr. and Mrs. Mr. and Mrs. 0 Y M Y
 MRS Mrs. Mrs. 0 N F Y
 MS Ms. Ms. 0 N F Y

* - Record is inactive according to active/inactive dates
Location: /usr/carsbetai/modules/common/reports/ttitle
Revision: Released 12/12/97 18:57:20

Common Tables and Records 118 System Reference

User ID Table

Purpose
The User ID table (userid_table) contains user ID numbers and provides a link between the login
ID number and the database id_no.

How to Access
The screen file for the User ID table is located in the following directory path:
$CARSPATH/modules/common/progscr/identry/tuserid_1

Screen Example
The following User Id Table may vary from your table format and content due to your institution’s
particular specifications.

Field Descriptions
Add Date

The date the user was added

Address
The street address of the user.

City
The city in which the user lives.

Country
The country in which the user lives.

ID No
The user’s ID number.

Last Upd
The date the ID record was last updated. (This field is display only.)

Name
The name of the user.

SS No

System Reference 119 Common Tables and Records

The social security number of the user.

State/Zip
The state in which the user lives, and the user’s zip code.

System User ID Number
The user’s system Id number.

Telephone
The telephone number of the user.

Title
The user’s title.

Report Example
The following User ID Table report may vary from your report format and content due to your
institution’s particular applications.

Tue Jan 13 1998 CARS College Page 1
09:40 USER ID TABLE REPORT tuserid
 Sorted by fullname

 User Active /Inactive
 ID ID No Name Date Date
 ---- -------- -------------------------------- -------- --------
 999 0
 277 100000 03/19/97
 255 104575 ACCOUNTS PAYABLE CLERK
 207 104667 Bargo, Jerome D.
 247 104893 Smith, Steve
 191 104624 Jones, Robert F.
 212 22407 Loggia, Timothy
 224 104629 Davis, Paul
 131 20228 DeVry, Kenneth
 268 104781 Dorney, Doug
 130 20315 Severil, Philip
 151 28360 Roth, William
 225 104628 Birdsong, Montgomery
 * 158 92766 Stuart, Andrea 01/01/93 01/01/98
 233 104651 Elbony, Tina
 246 104753 Lincoln, Thomas
 121 20240 Thackeray, Robert
 221 104625 Bryant, Toni R.
 159 104576 Kowalcyzk, Edward
 199 104688 Simon, Arthur
 211 104623 McGraw, Stephen
 196 104855 Tyson, Marge
 217 104626 Simpson, Lance
 128 84987 Clark, Christopher

 * - Record is inactive according to active/inactive dates
Location: /disk07/carsbetai/modules/common/others/tuserid
Revision: Released 08/20/92 18:06:47

Common Tables and Records 120 System Reference

Veteran Chapter Table

Purpose
The Veteran Chapter table (vetchap_table) contains codes for veteran chapters.

How to Access
The screen file for the Veteran Chapter table is located in the following directory path:
$CARSPATH/modules/common/screens/tvetchap

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Veteran Chapter Table screen may vary from your table format and content due to
your institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: vetchap_table table**

 VETERAN CHAPTER TABLE

 Code...........[]
 Description....[]

Field Descriptions
The following describes the fields contained on the Veteran Chapter Table screen.

Code
The code for this veteran chapter.

Description
The description for this veteran chapter code.

Report Example
The following Veteran Chapter Table report may vary from your report format and content due to
your institution's particular specifications.

System Reference 121 Common Tables and Records

Fri Jan 26 1996 CARS College Page 1
15:24 VETERAN CHAPTER TABLE REPORT tvetchap

 Active /Inactive
 Code Text Date Date
 ---- ------------------------ -------- --------
 AUTO Automobile Veterans

 * - Record is inactive according to active/inactive dates
Location: /disk06/carsdevi/modules/common/reports/tvetchap
Revision: G.0.110.2 11/06/92 12:17:41

Common Tables and Records 122 System Reference

Visa Table

Purpose
The Visa table contains codes and descriptions of Visa codes recognized by the system. A visa
is official authorization for travel within a specific country. An example of a visa code recognized
by the CX System is F-1 for student in an academic or language program.

How to Access
The screen file for the Visa table is located in the following directory path:
$CARSPATH/modules/common/screens/tvisa.

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Visa table screen example may vary from your table format and content due to your
institution’s particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen Current Master
Detail ...
Shows the next row in the Current List. ** 1: visa_table table**

 VISA TABLE

 Code...........[F-1]
 Description....[Student in academic or language]
 Description....[program]
 Description....[]

Field Descriptions
The following are descriptions of the fields contained on the Visa Table screen.

Code
The visa code as given by Immigration and Naturalization Service. For example, “F-1” for
Student in academic or language program.

Description

System Reference 123 Common Tables and Records

Text describing the associated visa code. There may be more than description line to
accomodate lengthy descriptions. For example, “Student in academic or language program”
for the code F-1.

Report Example
The following portion of a Visa Table report may vary from your report format and content due to
your institution’s particular specifications.

Mon Jan 5 1998 CARS College Page 1
11:54 VISA TABLE REPORT tvisa

 Active /Inactive
 Code Text Date Date
 -------- -------------------------------- -------- --------
 Blank

 1234 This is but a description of an
 undetermined length. So I guess
 that I can just keep going and

 A-1 Ambassador,public minister, care
 er diplomat or consular, & membe
 rs of immediate family

 A-2 Other foreign government officia
 l or employee, and members of im
 mediate family

 A-3 Attendant, servant, or personal
 employee of alien classified A-1
 or A-2, & imm. family members

 B-1 Temporary visitor for business

 B-2 Temporary visitor for pleasure

 C-1 Alien in transit

 C-2 Alien in transit to U.N. headqtr

Common Tables and Records 124 System Reference

Zip Code Table

Purpose
The Zip Code table (zip_table) contains zip codes.

How to Access
The screen file for the Zip Code table is located in the following directory path:
$CARSPATH/modules/common/screens/tzip

You can access this table from the Systems Management: Table Maintenance Menu or from the
specific module table maintenance menu.

Screen Example
The following Zip Code Table screen may vary from your table format and content due to your
institution's particular specifications.

PERFORM: Query Next Previous View Add Update Remove Table Screen ...
 ** 1: zip_table table**

 ZIP TABLE

 Code............[]
 City............[]
 State...........[]
 County..........[]
 Residence Code..[]

Field Descriptions
The following describes the fields contained on the Zip Code Table screen.

City
The city associated with this zip code.

Example: Cincinnati (for the zip code 45241)

Code
The zip code. The zip code assigned to the city or county.

Example: 45241 (for the city of Cincinnati)

County
The county code associated with this zip code.

Example: HAMI (for the county of Hamilton)

Residence Code
The five digit residence code associated with this zip code.

State
The state code associated with this zip code.

Example: OH (for Ohio)

System Reference 125 Common Tables and Records

Report Example
The following Zip Code Table report may vary from your report format and content due to your
institution's particular specifications.

Fri Jan 26 1996 CARS College Page 1
14:08 ZIP CODE TABLE REPORT tzip

 Active /Inactive
 Zip Code City St Cty Res Date Date
 ---------- ------------------------ -- ---- ----- -------- --------
 45140-1111 Loveland OH WARR 00000
 45056 Oxford OH BUTL 00000
 43123 Grove City OH FRAN 00000
 74135 Tulsa OK TULS 00000
 74012 Broken Arrow OK TULS 00000
 74014 Broken Arrow OK WAGO 00000
 74017 Claremore OK WAGO 00000
 45213 Cincinnati OH HAMI
 45242 Cincinnati OH HAMI
 45215 Cincinnati OH
 00000 0000 No City
 77651 Port Neches TX
 60187 Wheaton IL
 60188 Glen Ellyn IL WARR
 62002 Alton IL
 60540 Naperville IL
 76201 Denton TX
 75287 Dallas TX
 75090 Sherman TX
 77056 Houston TX
 75979 Woodville TX
 43606 Toledo OH LUCA
 77623 Beaumont TX
 67898 Troy MI

 * - Record is inactive according to active/inactive dates
Location: /disk06/carsdevi/modules/common/reports/tzip
Revision: G.0.110.2 04/29/94 11:36:48

System Reference 127 Macros

SECTION 5 – JENZABAR CX MACROS

Overview

Introduction
This section describes CX macros, defines specific values used throughout the system. The
macros enable you to change the available options and functionality of CX without having to
modify C code. By modifying macros, you can customize your implementation of CX, and make
the system easier to maintain.

This section provides reference information about macros, and the macros used to set up the
common elements of CX.

What Is a Macro?
A macro is an instruction that causes the execution of a pre-defined sequence of instructions in
the same source language. A macro consists of uppercase letters and underscores, and is used
in place of a text string within source files. CX expands the macro to the longer text during the
installation process for a file.

You set up and modify macros using UNIX commands that are part of the make processor. The
make processor translates and expands the macro to the longer text during the installation
process for a file. Macros are contained in a common area (library) on the system.

CX uses the following kinds of macros:
• Enables - allows you to enable or disable a CX module or module or feature
• DBS_COMMON - allows you to define database values in screens
• Periodic - allows you to make changes on a periodic basis

Macros can perform one of the following functions:
• Define defaults on a screen (_DEF)
• Define valid values in a field (_VALID or _INCL)
• Enable system modules (ENABLE_MOD)
• Enable system features (ENABLE_FEAT)
• Establish a valid value for an include

Configuration Table
You make changes to enable macros using the Configuration table. For more information, see
Configuration Table in Common Tables and Records in this manual.

Macros 128 System Reference

The Relationship Among Macros, Includes, and C Programs.
For all elements of the product other than C programs, m4 macros contain the definitions of
features that have been designed to be modified for each institution. These macros, located
under $CARSPATH/macros, are passed through the m4 processor.

CX contains an alternative method for the setting of features in C programs. Macros in the
source code of C programs are not passed through the m4 processor because the C compiler
has its own preprocessor, the cc.

To provide the same apparent functionality to C programs, a section in the include source
directory has been allocated for a type of include file that acts as an intermediary between the m4
processor and the cc preprocessor. In operation, m4 macros are defined whose output is a valid
cc macro. These m4 macros are placed in the include files. Then the include files are translated
and the appropriate cc macro is placed in the include file. The installed include file is included by
the C compiler at compile time so that the result of the compilation is influenced by the m4 macro.

System Reference 129 Macros

Benefits of Jenzabar CX Macros

Introduction
Use macros within source files for menu options, screens, and reports to reduce the need for
editing source files when you make changes to such items as defaulted values, included sets of
values, or report headings.

The CX base product contains approximately 1500 menu options that are distributed among 320
menus. You can use a macro to make a change in one location; then, use the make processor to
incorporate that change throughout the entire CX product.

For example, if your institution wants to change the base product word "session" to "semester,"
make the change in the appropriate macro file and then use the make processor to incorporate
that change throughout the product. Changing a macro is simpler than locating all of the source
files using a particular string of text and then ensuring that all of the text strings are modified.

Benefits of Jenzabar CX Macros
The following lists and describes the benefits of macros.

Improved productivity
Macros, because of their abbreviated state, reduce the amount of text that you need to insert
in a file. After you test a macro definition to make sure that it works properly, you can use
the macro to reduce typographical and logical problems.

Improved and maintained consistency
Macros provide a means for ensuring consistency of implementation among multiple files.
For example, you can use macros to set the format for ACE report output. You can also use
macros to create a comment that appears on the comment line throughout an application
with the same wording each time.

Simplified customizations
The make processor maintains changes that your institution makes to the macro files. You
can merge these changes with new releases of the macro files that CX electronically
distributes.

Macros 130 System Reference

Contents of a Macro File

Introduction
The macros in CX are processed through a UNIX utility called m4, or the m4 processor. Each
macro is contained in a macro file. The macro files are located in the following directory path:
$CARSPATH/macros.

A macro file contains the following components:
• Comments
• Macro definition lines

A macro file can also contain m4_include statements. For details on the m4_include statements,
see m4_include statements in this section.

Example Macro File
Following is an example of a macro located in the following directory path:
$CARSPATH/macros/custom/common.

 |--------- comment
 |
{ |
==
 Common Enable Macro Definitions
==
} comments
 | |______
{*** Defines whether FPS is enabled ***} -------³ |
{*** Normally, this will be set to "Y". This would ***}--|
{*** be set to "N" only if all printing was done in ***}--|
{*** central location and not in individual end-user ***}--|
{*** offices. ***}--³
m4_define(`ENABLE_FEAT_FPS', `Y') ----- macro definition line
 | | |
 | | |
 ³--- m4 command | ³----- macro definition
 |
 |
 ³------ macro name

The above macro, m4_define(`ENABLE_FEAT_FPS', `Y'), indicates the following:

The system will enable (turn on) the Forms Production System (FPS) feature because the
macro definition is set to "Y" for yes. Wherever the macro `ENABLE_FEAT_FPS' is used in
a menu, the make processor will enable the feature when the file is installed.

Parts of a Macro File
The following lists each part of a macro file and provides the content and specification for each.

Comment
A statement that provides information on the source code following it. Comments begin with
the left brace symbol ({) and end with the right brace symbol (}). Notice that some
comments also contain three asterisks (***) between the text and braces to help you
separate the comment from the macro definition line.

Note: The system does not process comments. Comments separate major sections
of macro files, and each section begins with a comment.

Macro definition line
An m4 command, the macro name, and the macro definition. The definition line appears on
the next line after a comment.

m4 command

System Reference 131 Macros

A command that is processed by the m4 processor, and that uses the following format:
m4_command. Leave no blank spaces between the m4 command (e.g., "m4_define") and
the opening parenthesis.

Macro name
Any collection of only uppercase letters and underscores (_) that appear between a single
back quotation (`) and a forward quotation (').

• Enclose the macro name and its corresponding macro definition within a single back
quotation (`) and a single forward quotation (').

• Leave a comma and one blank space following the forward quotation (') of the macro
name.

Macro definition
A collection of one or more characters that the make processor substitutes in the source file
when the macro is translated and expanded. Enclose the macro definition within a single
back quotation (`) and a single forward quotation (').

M4_Include Statements
In addition to the components listed on the previous pages, a macro file can also contain
m4_include statements. m4_include statements define the other macro files that the make
processor will include when it expands and translates the macro file in which you are currently
working.

Note: An m4_include statement is not the same as the include that is discussed in Setting
Up Includes in this guide.

Some examples of m4_include statements are located in the following directory path:
$CARSPATH/macros/user/common. Following is an example of three m4_include statements
located in the common file:

Example: m4_include(m4PATH/custom/client.m4)

 m4_include(m4PATH/custom/configure.m4)

 m4_include(m4PATH/custom/periodic.m4)

The above m4_include statements indicate the following:

When you access a macro file, the make processor searches the install path for the list of
m4_include statements that could contain a macro definition, and then it searches for the macro
definition in the macro file. The make processor searches the client file first, and if it cannot find
the macro definition, it searches the configure file, then the periodic file, until it locates the macro
definition in the actual file.

Macros 132 System Reference

The Four Types of Macro Files

Types of Macro Files
The following describes the types of macro files that are located in each of the four macro
subdirectories.

Custom macro files
The $CARSPATH/macros/custom directory path contains macro files that your institution
can customize. The institution maintains the custom macro files using the make processor.

System macro files
The $CARSPATH/macros/system directory path contains macros that pertain to
implementing the UNIX operating system. There is one system macro file for each hardware
platform that supports CX (e.g., AIX for UNIX on the IBM platform).

CAUTION: The institution cannot customize the macros located in the system macro files.
CX maintains the system macro files.

User macro files
The $CARSPATH/macros/user directory path contains macros that define many of the
standard defaults that a menu user sees on a screen (e.g., the default for the state in which
the institution is located).

Note: The institution customizes the macros in the user macro files during the initial
installation of CX. Once you set up the macros in the user macro files, you
should never have to modify them again unless your institution makes a major
policy or procedure change.

Utility macro files
The $CARSPATH/macros/util directory path contains macros that pertain to implementing
the Revision Control System (RCS), the make macros, and the macro processor (m4)
macros.

CAUTION: The institution cannot customize the macros in the utility macro files. CX
maintains the utility macro files.

Macro Files That the Institution Can Customize
An institution can customize the following macro files:

• The custom macro files located in the following directory path:
$CARSPATH/macros/custom

• The user macro files located in the following directory path: $CARSPATH/macros/user

Note: The custom macro files contain the macros that an institution can customize. Although
the institution can modify the user macro files, CX discourages this since the institution
can customize the macros in the custom macro files.

If an institution makes a change to a macro in any of the custom or user macro files, you must
install the files and reinstall the menu options, menu screens, PERFORM screens, program
screens, and reports that use the macro you have changed.

Any changes that you make in a macro file are recorded by the Revision Control System (RCS).
The RCS maintains a history of all changes made to a macro file. You can review the changes
before installing the macro file.

System Reference 133 Macros

Macro Files That the Institution Should Not Customize
CX processes depend on the macros contained in the system and utility macro files. Any
changes made to the system macro files or the utility macro files could corrupt an institution's
entire system.

CAUTION: Do not change the macro files listed below:
• The system macro files located in the following directory path:

$CARSPATH/macros/system
• The utility macro files located in the following directory path: $CARSPATH/macros/util

Macros 134 System Reference

The Macro Directory Structure

How to Access the Macro Files
The CX macro files are located in the following directory path: $CARSPATH/macros.

Macro Directory Structure
There are four subdirectories in the $CARSPATH/macros directory path. The following figure
shows the macro directory structure that is made up of these four subdirectories: custom,
system, user, and util (utility).

$CARSPATH/macros

/system/custom /user /util

System Reference 135 Macros

Custom Macro Files

Descriptions of Custom Macro Files
This list describes macro files that an institution can customize. These macros are located in the
following directory path: $CARSPATH/macros/custom.

admissions
Macros that are unique to the Admissions module.

admrpt
Macros that are unique to reports in the Admissions module.

client
Macros that are unique to an institution. The client macros are strictly local customizations,
meaning that they contain changes to the CX base product that are specific to the institution.
CX never modifies macros in the client file.

Note: Use the client file to create a new macro that an institution wants to keep as a
local customization; that is, the institution does not want CX to modify the
macro using the make processor. The make processor does not modify local
customizations.

CAUTION: The make processor translates and expands the macro definitions in the client file
first, out of all of the custom macro files. If your institution selects a macro name
in the client file that has the same name as a macro created by CARS, then the
CX macro takes precedence and is translated and expanded.

comment
Macros used for comments that appear on the comment line of screens used throughout
CX.

common
Macros that are shared between each administrative office at an institution.

configure
Macros that are used to configure an institution's database and to enable macros when CX
is first installed. If an institution has not purchased the Financial Aid Packaging module, for
example, then type an N as the macro definition for that module. The result is that none of
the menu options associated with the Financial Aid Packaging module appear on the
menus.

Note: Once the macros are set up in the configure file, an institution never needs to
change them again unless the institution purchases additional modules in the
future.

develop
Macros that are unique to the Alumni/ Development module.

financial
Macros that are unique to the Financial module (e.g., General Ledger, Subsidiary, Fixed
Assets).

finrpt
Macros that are unique to reports in the Financial module (e.g., General Ledger, Subsidiary).

Macros 136 System Reference

Itrwp
Macros that are used in the letter writing process for letters that an institution creates and
sends.

periodic
Macros whose values change periodically, such as session, fiscal year, and calendar year.
The macro definitions in the periodic file are defaulted into fields on the data entry screens,
and contain the most current information that menu users see on the screens (e.g., FA9X for
the current session of Fall 199X).

student
Macros that are specific to the student area (e.g., Financial Aid, Registration, Course Entry,
Student Services).

sturpt
Macros that are unique to reports in the student area (e.g., Financial Aid, Registration,
Course Entry, Student Services).

table
Macros that an institution uses for setting up standard default codes that menu users see in
fields on screens (e.g., the default code for the Class field is FF for first-time freshman).
These macros contain codes for fields in which Table Lookup windows are not available.

System Reference 137 Macros

User Macro Files

Descriptions of User Macro Files
This list describes each macro file that is located in the following directory path:
$CARSPATH/macros/user.

acct
Macros for customizing the general ledger account structure.

admrep
Macros for customizing profile reports in the Admissions module.

adr
Macros for customizing the name and address management (ADR) process.

arc
Macros for customizing ACE reports.

cmd
Contains the macros for customizing command scripts.

common
• Macros that are common to several types of files (e.g., frm.m4, opt.m4), and that

provide the default values for several files.
• The m4_include statements that define the other macro files that the make processor

is to include when it expands and translates the macro file in which you are working.

db
Macros for customizing the Informix data types.

doc
Nroff macros for formatting the documents located on CX

finrpt
Macros for customizing financial reports.

fonts
Macros for customizing the fonts on the laser printer.

fps
Macros for customizing the Forms Production System (FPS).

frm
Macros for customizing PERFORM screens

inc
Macros for customizing include files.

inf
Macros for customizing ISQL scripts.

lps
Macros for customizing ACE reports to produce a Letter Production System (LPS) data file.

ltb
Macros for customizing ACE reports that are used with the letter and label processing and
formatting.

Macros 138 System Reference

ltr
Macros for customizing nroff formats in ACE reports.

ltrwp
Macros for customizing the font type for letters.

mnu
Macros for customizing menu description files.

oth
Macros for customizing the formats for the ACT and ETS tapes used in the tape conversion
process.

prompt
Macros for customizing menu option screen prompts.

rep
Macros for customizing ACE reports.

sch
Macros for customizing schema files.

scp
Macros for customizing script files.

scr
Macros for customizing application screen files.

skl
Macros for customizing skeleton files for home directories.

srt
Macros for sorting information on a page in reports.

Note: Sortpage is a program developed by Jenzabar that is an extension of ADR and
is used to sort information in reports after CX has processed the report.

sys
Macros for defining system files.

wp
Macros for customizing the vi wp files.

System Reference 139 Macros

Common Macros

Introduction
This section lists the following macros that are used in common by the applications of CX:

• Enable macros that enable shared features of CX
• Periodic macros that define values used jointly by applications in CX

Note: You make changes to enable macros using the Configuration table. For more
information, see Configuration Table in Common Tables and Records in this manual.

Access
The common enable and periodic macros are located in the following file:
$CARSPATH/macros/custom/common.

Enable Feature
A group of macros containing the word enable are used to turn on and turn off features of CX.
Determining which of these macros to enable is a policy decision that an institution makes. The
macros enabled in CX at an institution determine how to carry out your institution's policies and
procedures.

Common Enable Macros
The following lists the common enable macros located in the common macro file.

Note: You make changes to enable macros using the Configuration table. For more
information, see Configuration Table in Common Tables and Records in this manual.

ENABLE_FEAT_ALLOW_TRANS_CHG_FEE_BALANCE
Default setting: Y

Defines whether or not to allow a fee balance for a transcript charge in the Form Entry
(forment) program.

ENABLE_FEAT_AUTOMODE
Default setting: N

Defines whether or not to enable the AUTOMODE feature in entry programs. AUTOMODE
specifies that entry programs start in query mode and automatically select update or insert
mode based upon the return status of the query function. When AUTOMODE is disabled,
you can initially perform a query without the program automatically initiating update mode
upon the return status of the query function.

ENABLE_CONTACT_TEXT
Default setting: Y

Defines whether or not to enable text blob fields in the Contact detail window, accessed in
entry programs. When you enable this macro, you access via the blob field a text editor in
which you can make unlimited comment entries.

Macros 140 System Reference

ENABLE_FEAT_FORCEQUERY
Default setting: N

Defines whether or not to enable the FORCEQUERY feature in entry programs.
FORCEQUERY specifies that entry programs start in query mode so that a user queries for
an ID record before attempting to add the ID to the database. This feature reduces the
possibility of duplicate ID records being added to the database.

Note: If you select Y, the system automatically changes to update mode immediately
after you complete your query. It is recommended that you change this default
to Y.

ENABLE_FEAT_FPS
Default setting: Y

Defines whether or not to enable the Form Production System (FPS). You enable FPS if
printing occurs in individual end-user offices. You disable FPS if all printing occurs in one
central location.

ENABLE_FEAT_IDPERMS
Default setting: N

Defines whether or not to grant permissions by office and by entry programs (those
programs that utilize Library Entry (libentry) routines. If you enable the IDPERMS feature,
entry programs perform lookups in the ID Permissions table (idperm_table) before allowing
the update of an ID record (id_rec) or Profile record (profile_rec). If the office has the
permissions to update the records, the program allows the update.

ENABLE_FEAT_IDS_ENTER_2_EXECUTE
Default setting: N

Defines whether or not to enable the IDS_ENTER_2_EXECUTE feature, which sets the
Enter key as an execute key for the system-wide ID Query functionality.

Note: This feature is currently not implemented.

ENABLE_FEAT_LPS
Default setting: Y

Defines whether or not to enable the Letter Production System (LPS). You enable LPS if
printing occurs in individual end-user offices. You disable LPS if all printing occurs in one
central location.

ENABLE_FEAT_MULTI_SITE
Default setting: Y

Defines whether or not to set multiple site functionality when multiple sites are associated
with the institution. Disable the MULTI_SITE feature when the institution has only one
location of instruction, or does not differentiate between multiple locations of instruction.

ENABLE_FEAT_PREV_INTERACTIVE
Default setting: N

Defines whether or not the PREV-address logic in entry programs prompts the user before
saving a previous (PREV) address in the Alternate Address record (aa_rec). If you enable
the PREV_INTERACTIVE feature, entry programs prompt the user to respond yes or no
when asked to save a previous address. If you disable the feature, entry programs
automatically save a previous address.

System Reference 141 Macros

ENABLE_FEAT_PREV_PHONE
Default setting: Y

Defines whether or not to invoke the PREV-address logic in entry programs when a user
makes changes to phone number information. If you enable the PREV_PHONE feature,
entry programs save a previous address in the Alternate Address record (aa_rec) when a
user changes the phone number for an individual. If you disable the PREV_PHONE feature,
entry programs invoke the PREV- address logic for address changes, but not phone number
changes.

ENABLE_FEAT_TRANS_CHG_OVERRIDE
Default setting: N

Defines whether or not to enable the transcript charging override feature in the Form Entry
(forment) program. When you enable the TRAN_CHG_OVERRIDE feature, a user can
manually override a charge for a transcript.

Common Periodic Macros
The following lists the Common periodic macros located in the common macro file.

Accomplishment Table Macros
• ACCOMP_TYPE_DEF',`ACADEMIC'
• ACCOMP_TYPE_VALID',`SOCIAL,ACADEMIC,ATHLETIC,BUSINESS,SERVICE'
• ACCOMP_TYPE_INCL',`include=(ACCOMP_TYPE_VALID)’
• ACCOMP_TYPE_EG',`, eg: ACADEMIC, ATHLETIC’

Define accomplishment type values, the default value, and example values for the
Accomplishments table (accomp_table). The system only accepts those values defined
in ACCOMP_TYPE_VALID when adding an Accomplishment record.

Address Macros
• ADDREE_CODE_DEF', `S'
• ADDREE_CODE_VALID', `L,S'
• ADDREE_CODE_INCL', `include=(ADDREE_CODE_VALID)’

Define the values, the default value, and example values for the Addree Code Include.
The default codes are: L for Label, and S for Salutation

• ADDREE_STYLE_DEF'
• ADDREE_STYLE_VALID', `" ",F,I,M,N,P'
• ADDREE_STYLE_INCL', `include=(ADDREE_STYLE_VALID)’
• ADDREE_STYLE_EX' (F)ormal,(I)nformal,(M)atric,(N)ickname,(P)revious

,blank’
Define the values, the default value, and example values for the Addree Style Include.

• ADR_JOIN_REL_DEF', `HW'
• ADR_JOIN_REL_VALID', `HW,PC," "'
• ADR_JOIN_REL_INCL', `include=(ADR_JOIN_REL_VALID)’
• ADR_JOIN_REL_EX', `(HW), (PC) or blank.’

Define the values, the default value, and example values for the Address Joining feature
(ADR Joining).

• AA_PREV_MAINT_CODE', `PREV'
Defines the Alternate Address code for previous address.

• CTRY_DEF',`USA'
Defines the default Country value.

• CTY_DEF',`HAMI'
Defines the default County value.

Macros 142 System Reference

Note: You should use the county that has the greatest number of inhabitants at the
institution. The County value must exist in the County table (cty_table).

• INST_NAME',`CARS College'
• INST_ADDR1',`4000 Executive Park Drive'
• INST_ADDR2',`Cincinnati, Ohio 45241'
• INST_ADDR3'
• INST_CITY',`Cincinnati'
• INST_ST',`OH'
• INST_ZIP',`45241'

Define the name and address of institution.

Note: These values are used by various forms (e.g. cash_rcpt), and screens.

• ST_DEF', `OH'
Defines the default State value.

Note: You should use the state that has the greatest number of inhabitants at the
institution.

• ZIP_DEF', `45014'
Defines the default Zip Code value.

Note: You should use the zip code that will occur most frequently.

Business Macros
• BUS_TYPE_DEF',`CORP'
• BUS_TYPE_VALID', `" ",CORP,PART,PROP'
• BUS_TYPE_INCL',`include=(BUS_TYPE_VALID)’

Define the values, the default value, and example values for business’ types. The system
only accepts those values defined in BUS_TYPE_VALID when adding an ID record for a
business.

Campus Building/Facility Macros
• BLDG_DEF', `ADMN'

Defines the default building code.

Note: Use a value that reflects the most commonly used building on the campus.
This building must exist in the Building table (bldg_table).

• CAMPUS_DEF', `MAIN'
Defines the default Campus value.

Communication Management Macros
• COMM_DEF', `LETT'
• COMM_EG', `, eg: (LETT)letters, (LABL)labels, (LTLB)both.’

Define the default and example Communication code values.

• CTC_SPAN_WAIVE_DEF',`Y'
• CTC_REISSUE_DEF',`Y'

Define the default Contact span waived and reissue values.

• SBSCR_ACE',`ltrsbscr'
• SBSCR_DEF',`ALUMNEWS'
• SBSCR_OFFICE_DEF',`DEVL'

Define the default subscription mailings values.

• TICK_ADM',`ADM'
• TICK_LEAD',`LEAD'

System Reference 143 Macros

• TICK_ALPR',`ALPR'
• TICK_DEV',`DEV'
• TICK_FA',`FA'
• TICK_ACAD',`ACAD'
• TICK_RECV',`RECV'
• TICK_OTHRECV',`ORCV'
• TICK_REG',`REG'
• TICK_SBSCR',`SBSC'
• TICK_MATRIC',`MAT'
• TICK_TRANS',`TRAN'
• TICK_EOPS',`EOPS'
• TICK_DSPS',`DSPS'
• TICK_DEF',`TICK_ADM'
• TICK_VALID',`TICK_ADM,TICK_LEAD,TICK_ALPR,TICK_DEV,TICK_MATRIC,TICK_TRA

NS,TICK_EOPS,TICK_DSPS,TICK_FA')’
• TICK_INCL',`include=(TICK_VALID)’

Define the Tickler program default values.

Note: All of the above values exist in the Tickler table (tick_table).

Date Macros
• ARC_DATE_DEF', `12/31/1985'

Defines the default archiving date value.

• DATE_FORMAT5', `mm/dd'
• DATE_FORMAT8', `mm/dd/yy'
• DATE_FORMAT10', `mm/dd/yyyy'

Define the default date formatting values.

Enrollment Status Macros
• ENRSTAT_ROUTE_DEF', `O'
• ENRSTAT_ROUTE_VALID', `O,S'
• ENRSTAT_ROUTE_INCL', `include=(ENRSTAT_ROUTE_VALID)’
• ENRSTAT_ROUTE_EX', `(O)ffice/outgoing or (S)tudent/incoming.')’

Define the default enrollment status routing values and includes.

Events/Scheduling Macros
• EVNT_TYPE_DEF',`SOCIAL'
• EVNT_TYPE_VALID' MUSICAL,DRAMA,ATHLETIC,SOCIAL,ACADEMIC,SERVICE,

BUSINESS'
• EVNT_TYPE_INCL',`include=(EVNT_TYPE_VALID),’

Define the values, the default value, and example values for event types.

• GRPSCHD_TYPE_DEF',`SERVICE'
• GRPSCHD_TYPE_VALID' MUSICAL,DRAMA,ATHLETIC,SOCIAL,ACADEMIC,SERVICE,

BUSINESS'
• GRPSCHD_TYPE_INCL',`include=(GRPSCHD_TYPE_VALID)’

Define the values, the default value, and example values for group event types.

• SCHD_STAT_DEF',`S'
• SCHD_STAT_EX',`(S)cheduled, (F)inished, (P)ostponed, (C)ancelled, (T)entative'
• SCHD_STAT_VALID',`S,F,P,C,T'
• SCHD_STAT_INCL',`include=(SCHD_STAT_VALID)’

Define the values, the default value, and example values for Activity/Visit, Event, Group
and Scheduling Status. Valid values include:

− S for Scheduled

Macros 144 System Reference

− F for Finished
− P for Postponed
− C for Canceled

• SCHD_PLACE_DEF',`HS'
• SCHD_PLACE_EG',`, eg: (HS)High School, (CF)College Fair.’
• SCHD_PLACE_EX',`(CH)urch,(HS)High School,(CF)Coll. Fair,(CO)llege,(JC)Jr.

Coll.,(JH)Jr. High'
• SCHD_PLACE_VALID',`HS,CH,CO,JC,JH,CF'
• SCHD_PLACE_INCL',`include=(SCHD_PLACE_VALID)’

Define the values, the default value, and example values for Activity/Visit Scheduling
Place codes. Valid values include:

− HS for High School
− CH for Church
− CO for College
− JC for Jr. College
− JH for Jr. High
− CF for College Fair

Faculty Macros
• FACULTY_CONTRACT_DEF', `9'
• FACULTY_CONTRACT_VALID', `1 to 12'
• FACULTY_CONTRACT_INCL', `include=(" ",FACULTY_CONTRACT_VALID)’

Define the default faculty contract duration in months and include.

File Format Macros
• FILE_FORMAT_DEF', `stdlps'
• FILE_FORMAT_VALID', `"rtf","stdlps","wordp"'
• FILE_FORMAT_INCL', `include=(FILE_FORMAT_VALID)'

Define file formats.

File Transfer Macros
• XFER_PROTOCOL', `ZMODEM'

Defines the file transfer protocol to be used when transferring files from the UNIX host
system to a PC. ZMODEM for zmodem; XMODEM for xmodem; KERMIT for kermit; FTP
for ftp; CSERV for QuickMate.

• XFER_REMOTE_DIR', `/wpwin'
Defines the receive directory for files that are downloaded using ftp as protocol with the
xfer command from wpvi or from utility menu.

• XFER_REMOTE_HOST', `$LOGNAME'
• XFER_REMOTE_USER', `$LOGNAME'

Define the remote host and user for ftp used for downloading files in wpvi or via the utility
menu option.

Form/Label Macros
• FORMENT_ALT_ID_NUMBER',`92394'

Defines the ID of a temporary id_rec for creating ad hoc alternate addresses. Form Entry
allows you to specify an alternate ID (an ID other than the ID for whom the form is
generated) without that individual actually having an id_rec in the database. To provide
that functionality, however, forment requires an ID record that is used as temporary
storage space for this alternate recipient name and address data. This macro specifies
the ID number of that record. Make sure that the ID number you assign here is specially
created only for forment.

• FORMENT_STU_EXIT_PASSWORD',`CARS'

System Reference 145 Macros

Defines password used to allow the operator to exit student version of forment.

• FORMENT_PERM_CATEGORY', `FORMENT'
• FORMENT_PERM_CODE', `OVERRIDE'

Define Perm table category and perm code for allowing you to override the charges for
transcript orders.

• FT_DEF', `FT_STANDARD'
• FT_VALID', `"FT_STANDARD","FT_WIDE"‘
• FT_INCL', `include=(FT_VALID)’

Define formtypes.

• FT_STANDARD'
Defines standard 80 column paper.

• FT_WIDE', `wide'
Defines 132 column wide paper.

• LBLFORM_ DEF', `1up5x35'
• LBLFORM_VALID'`1up5x35,1up5x40,1up8x40,3up5x35,3up5x40,3up8x40,4up5x30,4up5x

35,"3up5x35 1up8x40"'
• LBLFORM_EX', `1up5x35'

Define label form files.

• NROFF_TOTAL',`2000'
Defines Nroff limits for producing Letters/Labels.

ID/Profile Macros
• DENOM_DEF', `BAPT'

Defines the denomination default value. The value used must exist in the Denomination
table (denom_table).

• ETHNIC_WHITE', `WH'
• ETHNIC_BLACK', `BL'
• ETHNIC_HISPANIC', `HI'
• ETHNIC_ASIAN', `AS'
• ETHNIC_AMERICAN', `AM'
• ETHNIC_NONRES', `NO'
• ETHNIC_UNKNOWN', `UN'

Define ethnic codes.

Note: The codes must exist in the Ethnic table (ethnic_table). If you want to add an
ethnic code, you must define a new m4_define macro, and also add the value
in Ethnic table. Additionally, you might need to modify applicable reports.

• HAND_DEF',`NO'
Defines the handicap default value. The value used must exist in the Handicap table
(hand_table).

• ID_LEN',`6'
Defines the length of ID numbers, mainly used in Menu options. Do not change this
value.

• MARITAL_DEF', `S'
• MARITAL_VALID', `S,D,P,W,M,T'
• MARITAL_INCL', `include=(MARITAL_VALID),’
• MARITAL_EX', `(S)ingle, (M)arried, (D)ivorced, single (P)arent, separ

a(T)ed, (W)idowed.’
Define the marital status default and valid values.

Macros 146 System Reference

• OT_DEF', `18'
• PT_DEF', `12'

Define the Part-Time, Full-Time, Over-time default values.

• SEX_DEF', `M'
• SEX_VALID', `F,M'
• SEX_INCL', `include=(SEX_VALID)’

Define the sex default values

• SUFFIX_EG', `ESQ'
Defines the suffix default value.

• TITLE_DEF', `MR'
Defines the title default value. If you use this macro, ensure that it matches the SEX_DEF
above by sex (e.g., TITLE_DEF of MR if SEX_DEF is M).

• VET_BEN_DEF',`N'
• VET_BEN_VALID',`D,V,N'
• VET_BEN_INCL',`include=(VET_BEN_VALID),’
• VET_BEN_EX',`(D)ependent, (N)on-veteran, (V)eteran’

Define the veteran's benefit values, the default value, and example values.

Interest Table Macros
• INT_TYPE_DEF',`ACAD'
• INT_TYPE_VALID',`SOCI,ACAD,ATHL,BUSI,RELI'
• INT_TYPE_INCL',`include=(INT_TYPE_VALID)’
• INT_TYPE_EX',`SOCI, ACAD, ATHL, BUSI, RELI’

Define the interest type values, the default value, and example values for the Interest
table (int_table).

Involvement Table Macros
• INVL_TYPE_DEF',`ACADEMIC'
• INVL_TYPE_VALID',`SOCIAL,ACADEMIC,ATHLETIC,BUSINESS,SERVICE,DA_GVGCLU

B_MAN'
• INVL_TYPE_INCL',`include=(INVL_TYPE_VALID,COHORT_INVL_VALID)’

Define the involvement type values, the default value, and example values for the
Involvement table (invl_table).

Printer Macros
• PRINTER_DEF', `${CARSPRINTER}'
• PRINTER_VALID', `${CARSPRINTERS}'
• PRINTER_INCL', `include=(PRINTER_VALID)’

Define the printers. Do not change these values.

Right To Know Macros
• COHORT_INVL_VALID',`ATHLAID,OTHER," "'
• COHORT_INVL_DEF',`ATHLAID'
• COHORT_CTGRY_VALID',`FFFT,FFPT'
• COHORT_CTGRY_DEF',`FFFT'
• COHORT_INVL_INCL', `include=(COHORT_INVL_VALID)’
• COHORT_CTGRY_INCL',`include=(COHORT_CTGRY_VALID)’

Define the default values for Right To Know processing.

School/Community College Macros
• SCH_CODE_DEF',`PU'

System Reference 147 Macros

• SCH_CODE_VALID',`PU,PR'
• SCH_CODE_INCL',`include=(SCH_CODE_VALID),’
• SCH_CODE_EG',`, eg: (PU)blic, (PR)ivate.’

Define the school code values, the default value, and example values.

• SCH_TYPE_DEF',`HS'
• SCH_TYPE_VALID',`HS,COL,CC,GRAD'
• SCH_TYPE_INCL',`include=(SCH_TYPE_VALID)’
• SCH_TYPE_EG',`, eg: (HS)High School, (COL)lege.’

Define the school type values, the default value, and example values.

• MIS_DISTRICT_CC_ID', `100'
• MIS_DISTRICT_INCL', `include=(MIS_DISTRICT_VALID)’
• MIS_DISTRICT_VALID', `100,200,300,400'

Define the Community College District College Identifier values, the default value, and
example values used for MIS tapes.

Session/Academic Year Macros
• ACAD_YR_DEF', `ACAD_YR_CUR'
• ACAD_YR_VALID', `1900 to 2100'
• ACAD_YR_INCL', `include=(0,ACAD_YR_VALID)’
• ACAD_YR_EG', `, eg: ACAD_YR_DEF.'

Define the academic year values, the default value, and example values.

Note: ACAD_YR_VALID should include a range of years that begins with the first
year you plan to enter data and ends at some future year. For example, to
enter transcript edit for FA 1982, the year must be within the prescribed range.

 Ensure that ACAD_YR_INCL has the 0 value in it because certain sessions
allow a year of 0.

• SESS_EG', `, eg: SESS_DEF.’
• SESSYR_EG', `, eg: SESSYR_DEF’
• SESSYR_DEF', `SESSYR_CUR'
• SESSYR_VALID', `SESSYR_PREV,SESSYR_CUR,SESSYR_NEXT, SESSYR_OTH')’
• SESSYR_INCL', `include=(SESSYR_VALID)’

Define the academic Sessions values, the default value, and example values.

Site Macros
• ALL_SITES', `${CARSSITE}’

Defines the site value, which indicates to programs that all sites are to be included.

• SITE_DEF', `CARS'
• SITE_VALID', `null," ",SBVC,CARS,CHC'
• SITE_INCL', `include=(SITE_VALID)’

Defines the valid Site code types

Telephone Number Macros
• INST_CASHIER_PHONE',`(513) 563-CASH'

Defines the phone number for the Cashier, in
$CARSPATH/accounting/forms/voucher/cash_rcpt, the old version of the cash receipt
program.

• INST_BURSAR_PHONE',`(513) 563-5010'
Defines the phone number for the Cashier, in
$CARSPATH/accounting/forms/cashier/cash_rcpt, the current cash receipt used by the
Cashier Program.

Macros 148 System Reference

• FA_PHONE',`(513) 563-4542'
Defines the phone number the Financial Aid office, in
$CARSPATH/modules/finaid/forms/faentry/fatran. You can print the number on the
Financial Aid Transcript.

• FA_DIRECTOR',`CARS FA Director'
Defines the Director of Financial Aid’s name, in
$CARSPATH/modules/finaid/forms/faentry/fatran. You can print the name on the
Financial Aid Transcript form.

Track Macros
• TRACK_HOLD_DEF', `S'
• TRACK_SBSCR_DEF', `D'
• TRACK_VALID', `A,C,D,F,S'
• TRACK_INCL', `include=(TRACK_VALID),’
• TRACK_EX', `(A)dmissions,(C)ommon,(D)evelopment,(F)inancial,(S)tudent’

Define track code default values, the default value, and example values.

Word Processing Macros
• MERGE_WORDP_FILE_EXT', `mrg'

Defines the filename extension for WordPerfect merge files, which are placed into the
Merge subdirectory in wpvi when you generate merge data files instead of nroff letter
files.

• MERGE_WORDW_FILE_EXT', `doc'
Defines the filename extension for Word for Windows merge files, the default value, and
example values.

System Reference 149 Includes

SECTION 6 – JENZABAR CX INCLUDES

Overview

Introduction
This section describes CX includes. An include is a statement that controls what operations are
performed by the C code in a C program, and functions in one of the following ways:

• Defines a variable to equal a value for the make processor to use (or include) in a C
program

• Defines a variable to turn on and off operations for the make processor to use (or include)
in a C program

• Defines compilation values for an entry program.

An include is located in an include file. You can set up and modify includes from the UNIX shell
using an editor. Using the make processor, CX expands and translates any macros referenced
in the includes to the longer text. This is done during the installation process for a file.

This section provides the necessary information to set up and modify includes.

Policy Decision
Determining which includes to enable in CX is a policy decision that your institution must make.
The includes you enable determine how to carry out your institution's policies and procedures.

Macro Dependency
Includes have a dependency on macros. Normally, you do not directly modify includes for the
module. You must modify a corresponding macro value and then reinstall the include.

Includes 150 System Reference

How an Include Works

Relationship Between a Macro, Include, and C Program
As the following figure suggests, an include functions as an intermediary between a macro and a
C program.

---→macro---------------------→include------------------→C program
An m4 macro cannot be used directly in a C program since the system does not process C
program code through the m4 processor. Therefore, an include is used so that a C program can
communicate and process a macro. An include statement in an include file contains the
information for defining a macro using a syntax that a C program understands. C programs read
and understand include files.

System Reference 151 Includes

Contents of an Include File

Introduction
The includes on CX are processed through a UNIX utility called m4, or the m4 processor. Each
application include is contained in a separate include file, and the include files are located in the
following directory path: $CARSPATH/include.

An include statement in a file contains the following components:
• An include command
• A variable
• A value (A value in an include statement is optional.)

Parts of an include file
Following is an example of an include statement that defines a variable equal to a value. The
include is located in the following directory path: $CARSPATH/include/custom/billing.
 --------- comment

 |

 /* ----- |

 ==

 BILLING program compilation options.

 ==

 ----- */

 /* -----

 Estimated aid note symbol which can be displayed on

 the SDS BILL next to any financial aid with an

 "EA" aid amount status. |

 |

 |

 ----- */ +---------comment

 ------------------------include statement

 |

 #define EST_AID_SYMBOL "*"

 | | |

 +--- include | +------- value

 command |

 |

 |

 +--------------variable

Note: An include that is used to define a variable to equal a value should always be placed
outside of a comment (after the "*/" symbols). An include that appears outside of a
comment will be substituted in the actual C program when you reinstall the C program.
An include placed inside of a comment is not defined, and therefore will not be
substituted in the actual C program.

For an example of an include that appears inside of a comment, see Examples of Includes in this
section.

Includes 152 System Reference

How to Interpret the Include
The example include on the previous page, #define EST_AID_SYMBOL "*", indicates the
following:

The include defines using an asterisk (*) as the estimated aid symbol in the Student Billing
application. Because the example include appears outside of the comment, it will be substituted
in the actual C program when you reinstall the C program in the following install path:
/src/stubill/billing.

When you reinstall the C program, the make processor brings in the include file
($CARSPATH/include/custom/billing) containing the above include that defines using an asterisk
(*) as the estimated aid symbol. Therefore, when menu users use the Student Billing application,
they see an asterisk (*) as the estimated aid symbol.

CAUTION: Do not modify the C code in CX C programs unless your are experienced in using
C code.

Description of the Parts of an Include File
The following lists and describes the content of each component of an include file and provides
specifications for each component.

Comment
A statement that provides information on the source code following it.

Note: The system does not process comments. Comments separate major sections
of include files, and each section begins with a comment.

Begins with the "/*" symbol and ends with the "*/" symbol; both symbols are for C program
comments.

Note: Some comments also contain five dashes (-----) between the "/*" and "*/" to
help you separate the comment from the include. The five dashes are optional.

Include command
The "#define" command that either defines a variable or defines a variable to equal a value.
Leave one blank space between "#define" and the variable.

Value
Any collection of characters that the make processor substitutes in the source file when the
source file is reinstalled.

Note: An include does not have to contain a value.

Enclose the value within double quotation marks (" and ").

Variable
Any collection of characters that comes after the include command. Leave one blank space
between the variable and the value.

System Reference 153 Includes

Examples of Includes

Introduction
An include functions in one of the following ways:

• To define a variable to equal a value
• To define a variable to turn on and off operations

Depending on the function of an include and whether or not an institution would like the include to
turn on or turn off an operation in a C program, the include can appear inside or outside of a
comment.

Example of an Active Include Outside a Comment
An include that defines a variable to equal a value always appears outside of a comment and is
referred to as active. Placing an include outside of a comment indicates for the make processor
to activate the include in the C program.

For an example of an active include, see Contents of an Include File in this section.

Example of an Inactive Include Inside a Comment
An include that defines a variable to turn off operations in a C program appears inside of a
comment and is referred to as inactive.

Following is an example of an include that defines a variable for turning off an operation in a C
program. Notice that the include statement is inside the comment. The include is located in the
following directory path: $CARSPATH/include/custom/billing.
/* -----

 Post students with a stuac_reg_stat = "B" (boarder) or "C" (confirmed).

 Boarder status students must have a stu_acad_rec to be billed.

#define POST_CONFIRM_ONLY

----- */

Interpreting the Include Inside the Comment
The include in the previous example, #define POST_CONFIRM_ONLY, indicates the following:

The include defines turning off the operation in the Student Billing application for posting all
charges and credits to a student's account only if a student is confirmed on campus. Because
the include appears inside of the comment, it will not be substituted in the actual C program when
you reinstall the C program in the following install path: /src/stubill/billing/.

When you reinstall the C program, the make processor brings in the include file
($CARSPATH/include/custom/billing) containing the above include which defines for the C
program whether or not to turn off the operation for posting charges. Billing will always post.
This macro defines which students it posts for (e.g., "post only confirmed students" versus "post
all students").

Therefore, when menu users use the Student Billing application, the application does not post
charges and credits to student accounts once the student is confirmed.

Includes 154 System Reference

Nine Types of Include Files

How to Access the Include Files
The CX include files are located in the following directory path: $CARSPATH/include.

Include Directory Structure
There are nine subdirectories in the $CARSPATH/include directory path. The following figure
shows the include directory structure that is made up of the nine subdirectories.

$CARSPATH/include
|
|

________________________|________________________
 | | | | | | | |
 | | | | | | | |
aix applic custom hpux ptp schema system util

Types of Include Files
The following describes the types of include files located in the include subdirectory.

Aix
Includes that define the setup for the UNIX operating system on the IBM hardware platform.

Applic
Includes that define the setup for specific CX applications.

Custom
Includes that define the setup for CX applications and programs that an institution can
customize.

Hpux
Includes that define the setup for the UNIX operating system on the Hewlett-Packard
platform.

Ptp
Includes that define the setup for the process-to-process communications.

Schema
Includes that define how C programs know the data structure of CX.

Note: The make processor automatically processes the definition files (located in the
install path) for all the schema files located in the $CARSPATH/schema
directory. However, the make processor does not automatically process the
definition files for the Assessment Table and the Charge Table files located in
the following directory path: $CARSPATH/include/schema/student. CX has
hard-coded both of these files to create the definition files.

System
Includes that define the characteristics of the operating system to C programs.

Util
Includes that define how some library functions that are used by CX programs work.

System Reference 155 Includes

Include Files That an Institution Can Customize
Each institution can customize the custom include files located in the following directory path:
$CARSPATH/include/custom.

If an institution modifies an include in any of the custom include files, then it must install the
include file and reinstall the C program(s) that use the modified include.

If an institution modifies an m4 macro that is referenced in an include (e.g., the text
"DA_GVGCLUB" is a macro in the following include: #define DA_GCLUB
"DA_GVGCLUB"), then it must modify the m4 macro, install the macro file, and reinstall the
include file that uses the macro and the C program(s) that use the include (in that order).

Include Files That an Institution Should Not Customize
Do not make any changes to the following include files unless you have experience in modifying
include files.

• Aix
• Applic
• Hpux
• Ptp
• Schema
• System
• Util

An institution should never have to change an include in any of the above include files. However,
an institution can reinstall any of these files if it changes a macro that is used in an include in one
of the above include files. (In this case, the institution also needs to reinstall the include file(s)
and C program(s) that reference the include.)

CAUTION: CX processes are dependent on the includes contained in the above include files,
and any changes made to these files could corrupt an institution's entire system.

Includes 156 System Reference

Custom Include Files

Descriptions of custom include files
This table describes each custom include file used in CX and located in the following directory
path: $CARSPATH/include/custom.

Acct
Includes for defining the values and functionality of the account structure.

Bgvoucher
Includes for defining the values and functionality of the background voucher program.

Billing
Includes for defining the values and functionality of the Student Billing application.

Bursar
Includes for defining the values and functionality of the Bursar application.

Cashier
Includes for defining the values and functionality of the Cashier application.

Ckslct
Includes for defining the values and functionality of the Check Select application.

Daentry
Includes for defining the values and functionality of the Donor Accounting Entry program.

Dirdep
Includes for defining the values and functionality of the Direct Deposit program.

Employ
Includes for defining the values and functionality of the Employee program.

F1099
Includes for defining the values and functionality of the 1099 program.

Faneed
Includes for defining the values and functionality of the Financial Aid Need Analysis
application.

Finaid
Includes for defining the values and functionality of the Financial Aid application.

Fixpost
Includes for detailing the values and functionality of the Fixpost program.

Grading
Includes for defining the values and functionality of the Grade Entry application.

Libacct
Includes for defining the values and functionality of the accounting library.

Libbill
Includes for defining the values and functionality of the billing library.

Matric
Includes for defining the values and functionality of the Matriculation Entry program.

Payroll
Includes for defining the values and functionality of the payroll process and W2 forms
process.

Phonebill

System Reference 157 Includes

Includes for defining the values and functionality of an institution's telephone system
process.

Progaudit
Includes for defining the values and functionality of the Auditing application.

Purch
Includes for defining the values and functionality of the Purchasing application.

Reglist
Includes for defining the values and functionality of the program used for printing class lists.

Trans
Includes for defining the values and functionality of the Transcript application.

Voucher
Includes for defining the values and functionality of the Voucher application.

W2tape
Includes for defining the values and functionality of the program that creates the W2 report
and tape at the end of the calendar year.

Common Includes
The following lists the common CX includes.

#define ALL_SITE_CODE "ALL_SITES"
This site value indicates that all sites are to be included.

#define INST_STATE "INST_ST"
This defines the institution's state.

#define FORMENT_ALT_ID FORMENT_ALT_ID_NUMBER
This defines the FORMENT_ALT_ID used by the forment program to add alternate
addresses to certain forms. Form Entry allows you to specify an alternate ID (an ID other
than the ID for whom the form is generated) without that individual actually having an id_rec
in the database. To provide that functionality, however, forment requires an ID record that is
used as temporary storage space for this alternate recipient name and address data. This
macro specifies the ID number of that record. Make sure that the ID number you assign
here is specially created only for forment.

#define FORMENT_STU_EXIT_PASSWD "FORMENT_STU_EXIT_PASSWORD"
This defines the FORMENT_STU_EXIT_PASSWD used by the forment program to add
alternate addresses to certain forms.

#define FORMENT_PERM_CTGRY "FORMENT_PERM_CATEGORY"
#define FORMENT_PERM_CD "FORMENT_PERM_CODE"

Perm table category and perm code for allowing operator to override the charges for
transcript orders.

m4_keepif(ENABLE_FEAT_TRANS_CHG_OVERRIDE,~`Y~')
#define ENABLE_TRANS_CHG_OVERRIDE

This defines whether charge overriding is enabled in forment

m4_keepif(ENABLE_FEAT_ALLOW_TRANS_CHG_FEE_BALANCE,~`Y~')
#define ENABLE_ALLOW_TRANS_CHG_FEE_BALANCE

This defines whether a fee balance is allowed after charging for a transcript in forment.

m4_keepif(ENABLE_FEAT_IDPERMS,~`Y~')
#define ENABLE_IDPERMS

Includes 158 System Reference

This defines whether or not an entry program (one that uses libentry) will employ the
idperms functionality.

#define MERGE_WP_FILE_EXT "MERGE_WORDP_FILE_EXT"
#define MERGE_WW_FILE_EXT "MERGE_WORDW_FILE_EXT"

This defines the filename extension used for word perfect and word for windows merge files
stored in the wpvi Merge directory.

m4_keepif(ENABLE_FEAT_MULTI_SITE,~`Y~')
#define ENABLE_MULTISITE

This defines whether or not libentry program will display the site in the detail windows option
box. The site_rec will continue to be added in the background as required by the system,
but the operators will not be able to select the option. This is only valid if the institution is a
single site, as defined in the macros/custom/common macro listed below.

System Reference 159 Includes

Setting Up Includes

What is the Process?
Each institution sets up includes while installing CX. The institution can modify includes when
there is a new SMO release containing a new CX feature to enable, or when institutional policies
or functions change.

The following shows the phases in the overall process of setting up include files.

1. Access the include files located in the following directory path: $CARSPATH/include.

2. Access an include file and modify the include(s).

3. Install the include file.

4. Reinstall the source program (C program) to make the include modifications known to the
source program.

How to Set Up an Include
The following lists the steps to follow when you set up an include.

Note: Unlike macros, an institution cannot add includes to CX since the institution cannot
change the C code in C programs.

1. Enter cd $CARSPATH/include/custom to access the directory containing the include files
for implementation.

Example: cd billing

2. Enter make co F=filename to check out the specific file containing the include to be set up.
(e.g., make co F=billing)

3. Enter vi filename to edit the file containing the includes (e.g., vi billing).

4. Use the arrow keys to move through the file and set up every variable in an include that you
want to define and/or modify to as necessary.

Note: To define an include, place the include outside of the preceding comment. A
comment begins with "/*" and ends with "*/."

5. Press <Esc>.

6. Enter :wq to exit and save the file.
• Enter make cii F=filename to check in and install the file (e.g., make cii F=billing).
• Reinstall all the files (e.g., reports, screens, programs) that reference the include.

System Reference 161 Common Programs

SECTION 7 - FORM ENTRY PROGRAM

Overview

Introduction
This section provides reference information about the Form Entry (forment) program. The
forment program has the following characteristics:

• Provides a means to execute table-specified processes to create forms or reports without
using Contact records

• Produces Forms Order (formord_rec) records (whereas the normal Transcript process adds
Contact records). The Forms Order record maintains information of all form orders placed
on the system. The advantages of using the Form Entry program are:

− You can view, update, and/or add holds for the student
− This program shows where the official transcript was sent
− This program maintains the transcript request history

• Uses the Form Order (formord_table) table to control who, where, and what type of form will
be displayed and/or printed

• Enables menu users to display forms that a student previously requested
• Functions in two modes: Operator mode and Student mode

− Is available to produce official transcripts using the Operator Form Requests
menu option from the Registrar: Grading and Registrar: Transcript menus in
Operator mode.

− Must be implemented and monitored daily by a menu user when in Student
mode. Student mode allows students who have a personal identification number
to produce their own forms (e.g., unofficial transcripts and grade reports).

Program Features Detailed
This section contains details about the following features of the Form Entry program:

• Process flow
• Parameters
• Program screens and windows

Common Programs 162 System Reference

Process Flow

Diagram
The following diagram shows the flow of data in the Form Entry program.

Select History

Alternate
Recipient?

Select Form
Order Select Hold

Select the
desired form

Select the
desired form

Enter student ID
number

Displays
student's form
request history Yes

No

Enter alternate
ID number

Produces
selected form

Enter Hold
Action

Do holds
already exist? Yes

No

Enter Hold code

Enter Office
code

Maintains holds
for current
students

Displays
student's

holds

Form Entry

Data Flow Description
The following describes the data flow in the Form Entry program.

1. The forment program presents options to the user.

2. The program processes the option selected.

System Reference 163 Common Programs

In the case of the Form Order option, holds are first checked against the requested form. If
no holds exist, the form is processed and the output generated.

Program Relationships
The following libraries are used by Form Entry.

• libacct
• libbgv
• libbill
• libfee
• libgl
• Libreg

Tables and Records Used
The Form Entry program uses the following Common tables and records.

Common tables and records
• ctc_rec
• fac_rec
• formord_rec
• formord_table
• id_rec
• profile_rec

Common Programs 164 System Reference

Parameters

Introduction
CX contains parameters and compilation values for executing the Form Entry program. You can
specify parameters to compile Form Entry in a specified manner at the time of execution.

Parameter Syntax
You can display Form Entry parameters by entering the following: forment -,
The following is the correct usage for running the Form Entry program from the UNIX shell:

forment -L sitecode [-o] [-F] -s session -y year -p program [-l printer] [-f billform]
Parameters that appear in brackets are optional. Parameters that do not appear in brackets are
required.

Parameters
The following lists the parameters for running Form Entry.

-L sitecode
Required - Specifies the site at which to run the processes.

Example: forment –L CARS

-o
Optional - Specifies to run the processes in Operator mode.

-F
Optional - Specifies to use the fee collection option that calculates the current fee for the
selected student.

-s session
Required - Specifies the session in which to run the processes.

Example: forment –s FA

-y year
Required - Specifies the year in which to run the processes.

Example: forment –y 2000

-p program
Required - Specifies the academic program in which to run the processes.

Example: forment –p UNDG

-I printer
Optional - Specifies the printer to use when executing the Fees option from the Operator
mode of the Form Entry program.

Note: The default is lpr.

Example: forment –I lpt

-f billform
Optional - Specifies the billing form to use when executing the Fees option from the
Operator mode of the Form Entry program.

Notes:

• The default is SDS.

System Reference 165 Common Programs

• The -f billform parameter requires that you define Fee Collection requirements prior to
using forment.

Operational Modes
The following lists and describes the two modes in which Form Entry operates.

Student
If you do not use the “-o” parameter, CX runs the Form Entry program in Student mode.
This means that students at the institution can use Form Entry to order their own unofficial
transcripts and grade reports. In Student mode, Form Entry has fewer options and more
security controls.

Notes:

• To exit forment while in Student mode, press <Ctrl-n> (i.e., the command for starting
the exit sequence), then enter the password defined in the macro
FORMENT_STU_EXIT_PASSWORD located in the following directory path:
$CARSPATH/macros/custom/common.

• The Student Form Request menu option is linked to the profile_rec.password field in
the Profile record. The profile_rec.password field serves as a security number defined
by the institution. It is the institution’s responsibility to create the student’s password
number and notify the appropriate individuals.

Operator
The Operator mode enables you to query holds, update holds, and access the Fee
Collection module to assess a fee for the request of an official transcript.

Common Programs 166 System Reference

Program Screens and Windows

Introduction
Form Entry has screens and windows for performing the following interactive functions:

• Creating forms and reports
• Displaying a student’s form order history

Access
The screen and window files for Form Entry are located in the following directory paths:

• $CARSPATH/src/common/forment
• $CARSPATH/modules/common/progscr/forment

Note: You can access windows from each program screen in Form Entry.

Screen Files and Table/Record Usage
The Form Entry screens and windows appear in the following files and use the indicated tables
and records.

corrid
Contains the Alternate Recipient window.

Note: The trans program does not allow the menu user to select an alternate
recipient. The system runs the entire transcript process, including the print file
and printer selection.

Access: $CARSPATH/modules/common/progscr/forment

Tables/Records:
• formord_rec
• st_table
• zip_table

frmord1
Contains the Student Form Request screen.

Access: $CARSPATH/modules/common/progscr/forment

Tables/Records:
• formord_rec
• formord_table
• id_rec

frmord2
Contains the Operator Form Request screen.

Access: $CARSPATH/modules/common/progscr/forment

Tables/Records:
• formord_rec
• frmtype_table
• id_rec

ordhist
Contains the Form Order History window.

Access: $CARSPATH/modules/common/progscr/forment

Tables/Records:

System Reference 167 Common Programs

• formord_rec
• formord_table

reqnum
Contains the Order Quantity screen.

Access: $CARSPATH/modules/common/progscr/forment

Tables/Records:
• formord_rec

System Reference 169 Common Programs

SECTION 8 – COMMON PROGRAMS

Overview

Introduction
This section describes the common programs of CX. Various products of CX use the common
programs, which do not have product-specific functions. Certain common programs also provide
solutions to system-wide integration issues, such as detecting duplicate ID records.

Common Programs in this Section
The common programs described in this section are as follows:

• ID Entry (identry)
• Duplicate ID Detection (dupid)
• ID Audit (idaudit)
• Database Administration (dbadmin)
• Sortpage (sortpage)

Common Programs 170 System Reference

ID Entry Program

Introduction
To create and maintain ID records in entry program detail windows, you can use the ID Entry
program (identry) by selecting the Add-ID command from detail windows that contain an ID
number field.

Every CX user who can access any of the CX entry programs (i.e., programs that use the Library
Entry program interface) can query, add, and update ID records in entry program detail windows.
The CX entry programs include, for example, Student Entry (Stuentry), ID Entry (Identry), and
Constituent Entry (Csentry).

Accessing the ID Maintenance Feature
You can access the ID Entry program from any detail window that contains an ID number field. If
the Add-ID command appears on the command line, you can access the ID Entry program. For
example, the following detail windows contain an ID number field and enable you to access the
Add-ID command:

• First Relationship
• Second Relationship
• Employment/Work

The ID Add for Individual Screen
When you select Add-ID from a detail window that contains an ID number field, the ID Add for
Individual data entry screen appears. You can use this screen to query, add, and update ID
records for individuals, schools, or businesses.

Following is an example of the ID Add for Individual screen.

System Reference 171 Common Programs

Setup for this Feature
Your ability to use this feature depends upon the setup of each individual CX Library Entry
application. Many entry application detail windows that contain an ID number enable you to use
this feature.

Note: Consult your Jenzabar coordinator for information about the current setup of the CX
entry applications.

Results of Selecting the Add-ID Command
When you select Add-ID from a detail window that contains an ID number field, the ID Add for
Individual screen appears. You can use this screen to query, add, or update ID records. This
screen appears in Query, Add, or Update mode, depending on how you select Add-ID command
from the entry program detail window . From this screen, you can also access the School Entry
and Business Entry screens.

The following lists the ways that you can use Add-ID to access the ID Add for Individual screen.

Note: You access the Add-ID command when the cursor appears in the screen's ID number
field.

If you enter the Add-ID command from an ID number field that:
• Contains an ID number of zero, the ID Add for Individual screen appears in Add mode, and

you cannot access Query or Update modes.
• Contains a non-zero ID number, the ID Add for Individual screen appears in the Query

mode, and you can access the Update mode, but not Add mode
• Contains a non-zero ID number, and you select Finish while in Query mode, the ID Add for

Individual screen switches to Update mode, and you cannot access Query or Add modes

Common Programs 172 System Reference

Duplicate ID Detection Program

Introduction
Jenzabar designed the Duplicate ID Detection (dupid) program to assist you in maintaining the ID
record (id_rec). The program provides the following:

• Ability to add new ID records with assurance that duplicates are not added
• Display of potential duplicates for analysis

The dupid program has the ability to modify and update data stored in the database; therefore, it
should be used by:

− A Jenzabar coordinator
− A staff programmer with experience using CX
− A person responsible for maintaining the ID record

Dupid Terms
The following are definitions of terms and concepts used with the dupid program.

Test Function
A test function performs an evaluation on a section of data. Dupid performs each test on
two records:

• Selected and Matched records for interactive mode
• Temporary and Matched records for review mode

The test function has a configurable weight and returns a level of confidence that the
records are duplicates. Examples of test function:

• A test on name. The test function compares the names in both records and returns a
value based on how closely the two names match.

• A test on sex returns either an equal value or a not equal value.
• An invalid test, which tests records with missing or invalid data. The invalid test does

not affect the test function weight or the level of confidence.
• A valid test, the opposite of an invalid test, which tests good data to determine a

confidence for the data.

The searching process compares the two records with a series of test functions. At the
conclusion of the tests a normalized level of confidence and test weight are returned.

Weight
Some test functions are performed on pieces of data that have been determined to be more
meaningful than others. A test on the social security number is a much more conclusive test
than a test on street address. Thus the test function for social security numbers should have
a higher weight than a test function for street address.

Confidence
The confidence is how closely the two records in the interactive mode or the review mode
match. The level of confidence is a numeric value. The sum of all test functions performed
on two records gives a raw level of confidence. This value is normalized and ranges from
zero to one hundred. Program screens, documents and schema definitions sometimes
abbreviate level of confidence as confidence or conf. Using test data at CARS, a confidence
level greater than 70 or 80 is typically a good indicator a record is a duplicate. The program
has options allowing the user to specify the minimum level of confidence.

System Reference 173 Common Programs

Tests
The tests value indicates how much information was available to determine the confidence.
A higher value indicates more information was used. The tests value is the ratio of how
many test functions performed a valid test to how many test functions were performed. This
value is normalized from a raw number to a range of zero to one hundred. Using test data at
CARS, a test value greater than 40 is a good indication that enough data was available.

Normalization
This is a process where a number is normalized from some raw value to a value between
zero and one hundred. Rounding errors may affect a normalized value by a few percentage
points. It is unlikely that any normalized value will ever be exactly one hundred.

The example below shows some of the internal math involved in calculating the confidence
and tests values.

Primary Data: Secondary Data:
Doe, John,, Jr. Doe, Jonathan L.
123 Main Street 123 Main St.
Anywhere, OH 12345 Any Where, OH 12345-6789
 < No ss_no > 999-52-1238
05/29/53 00/00/00 <--- Birthdate
Test Weight Valid Conf Tests Total

Name 15 Y 12 15 15
Birthdate 3 N - - 3
Address 10 Y 9 10 10
City 9 Y 9 9 9
State 5 Y 5 5 5
S.S.No. 25 N - - 25

Raw Totals: ^ ^ 35 39 67
 | | ^ ^ ^
 | | |-------|-------|
The configured | | | Accumulated raw
weight of a test --+ | +--- values from each
function Was there test function
 information for
 a valid test.
Normalized Confidence: Raw Conf / Raw Tests * 100
 35 / 39 * 100 = 89
Normalized Tests: Raw Tests / Raw Total * 100
 39 / 67 * 100 = 58

Match
A match is when the Selected record from the interactive mode or the Temporary record
from the review mode is considered a possible duplicate of the Matched record from the
database table id_rec. This is usually a one to many relation. One Selected or Temporary
record should match one or more of the Matched records.

Match Table
The match record is a database table that stores potential matches between the temporary
table, idtmp_rec, and the primary table id_rec. This table is called idtmp_match_rec and is
created by the dupid program. Additional records are added to idtmp_match_rec each time
the dupid program runs in background mode.

Common Programs 174 System Reference

Program Arguments
You can use several options to enable or disable process features of dupid. The following shows
how you specify these options:

Example: dupid [-r] [-b] [-u] [-f First] [-l Last] [-c Confidence] [-t Test] [-x]

The following lists the options and what they signify to dupid.

-r
Runs dupid work in review mode.

-b
runs dupid work in background mode.

-u
Runs dupid work in update mode.

-f (First)
The first ID number to be tested.

Note: The first and last parameters permit you to designate a range of ID numbers.
Dupid tests only ID numbers in the ID record (id_rec) that fall between the first
and last ID.

-l (Last)
The last ID number to be tested (0 = Last ID).

Note: The first and last parameters permit you to designate a range of ID numbers.
Dupid tests only ID numbers in the ID record (id_rec) that fall between the first
and last ID.

-c (Confidence)
The minimum confidence level required (0-100).

Note: This is the minimum normalized confidence value required for a record to be
considered a potential duplicate.

-t (Test)
The minimum test weight required. 0-100

Note: This is the minimum normalized tests value required for a record to be
considered a potential duplicate.

-x
Run using extended debug data

Note: When this option is turned on, the error handling function will print the table
name and line number where the error function was called. This is useful when
trying to find errors.

System Reference 175 Common Programs

Dupid Modes
The following are the modes in which dupid runs.

Note: If a combination of the review, background and update options are specified, review
mode takes precedence over background mode, which takes precedence over update
mode.

Background Mode
Designed to be run overnight, this mode has no screen output. dupid will read from the
Informix database table idtmp_rec and compare those records with the database table
id_rec for possible matches.

Interactive Mode
The Interactive Mode is designed to be used in two ways:

• A single outside source check against the database table id_rec using the Input
command

• An analysis of suspected duplicates from within the database table id_rec using the
Query command.

Note: If you select the Input command, the Primary ID is set to zero.

Review Mode
After running dupid in background mode, the review mode gives you an opportunity to
interactively confirm or reject all records which are considered duplicates.

Update Mode
After running dupid in background mode and doing any necessary work in review mode, you
can use update mode to update the database as described in stage two of the Command
Options/Update section. This is useful when a large number of records are to be added and
it is not possible nor desirable to tie up a terminal for an extended period of time.

Dupid Main Menu
When you execute dupid without specifying background mode, the DUPID Main menu appears.
You use the menu options to select the mode in which to run the program. You select:

• Interactive to enter the Interactive mode
• Review to enter the Review mode
• Exit to Exit from the dupid program

The following is an example of the DUPID Main menu.

Database Tables Used by Dupid
The following tables are used by dupid:

ID record (id_rec)
Used in the following modes:

• In background mode, dupid tests the id_rec against a large number of new data about
to be added to the system.

• In interactive mode, dupid tests the id_rec against itself (Query command) or a single
outside source of new data (Input command).

Common Programs 176 System Reference

ID Temporary record (idtmp_rec)
Stores new data to be added to the system.

ID Temporary Match record (idtmp_match_rec)
Stores potential duplicates between idtmp_rec and the id_rec. It also stores the
classification between the Temporary and Matched data records from the Review mode.

Profile record (profile_rec)
Used to get birthdate and sex. It also performs an existence test for the data.

School record (school_rec)
Used as an existence test for the school record.

Business record (bus_rec)
Used as an existence test for the business record.

Church record (church_rec)
Used as an existence test for the church record.

First Relationship record (relation_rec)
Used to determine if two IDs which would normally be considered potential duplicates are in
fact the same person. An example would be John, Doe Jr., a student. His father is also on
a mailing list. Both addresses, zip codes, and many other factors are going to be identical.
If both IDs being tested are linked by a relationship record, they will be rejected.

Not Duplicates record (nodup_rec)
Used for IDs which are not duplicates. Once the Primary ID and the Secondary ID are
placed in this table, they will not appear on the screen as possible duplicates of one another
again.

Modifying Table Definitions
CX allows clients to modify database definitions of the above tables. When you modify one of the
tables, remember the following:

• If you change the length of any character field, you must recompile the following:
− The dupid program
− The libdup.a library
− Associated program source code

• CX strongly recommends that the length of character fields in the idtmp_rec table match the
length of their respective fields in the id_rec table.

Loading Data
Before running dupid, you must load new data into the ID temporary record (idtmp_rec). You can
use several methods to load data, including:

• CX tool, Tape Conversion (See Using Tape Conversion in the CX Implementation and
Maintenance Technical Manual

• INFORMIX tools, which add records to a database table (See the appropriate INFORMIX
documentation)

Note: Jenzabar recommends that you load a moderate number of records into the idtmp_rec
until threshold values can be established because:

− The loaded data is slightly different
− A degree of intuition is initially required to establish the confidence level and tests

passed

System Reference 177 Common Programs

Running Duplicate ID Detection in Background Mode

Introduction
Background mode works best as either a scheduled process or as a background task in an
interactive login.

Scheduling a Process
The following example procedure provides the commands you enter to schedule dupid as a
background process. This procedure will begin the dupid program in background mode at eight
in the evening. The minimum confidence level is set at 50. The minimum tests value is 20.

1. At the shell prompt, enter: at 2000

Note: 2000 equals 8:00 p.m.

2. Enter: dupid -b -c 50 -t 20

Refer to the Program Arguments section for more information on specifying parameters. In
this example, you specified the following arguments:

− Background mode processing
− Confidence level to 50
− Test value to 20

3. Enter the End of File (EOF) command: <Ctrl-d>

The system displays the following messages:

− “warning: commands will be executed using /bin/sh”
− “job 651888001.a at Tue Aug 28 20:00:00 1990”

Starting from an Interactive Login
The following example procedure provides the commands you enter to immediately start dupid
from the shell. This procedure will begin the dupid program in the background with a minimum
confidence level of 65 percent. The minimum test defaults to zero.

1. At the shell prompt, enter: dupid -b -c 65 &

2. The system displays the following messages:
− At the start of the process: “[1] 12345”
− At the completion of the process: “[1] Done dupid -b -c 65”

Common Programs 178 System Reference

Dupid Configuration
All parameters concerning configured weights are located in an Include table. Its location is
$CARSPATH/include/custom/dup.

The items listed below are from the Include table and are the definitions for test functions which
are either absolutely true or absolutely false. An invalid test returns DUP_NULL, which is defined
as zero.

#define DUP_EQU_BIRTHDATE (3)
#define DUP_NEQ_BIRTHDATE (-1)
#define DUP_EQU_TYPE (1)
#define DUP_NEQ_TYPE (0)
#define DUP_EQU_SEX (1)
#define DUP_NEQ_SEX (-1)
#define DUP_EQU_STATE (5)
#define DUP_NEQ_STATE (0)

In the next list, the items are for test functions which return a degree of matching. If a function
has a weight of fifty, then a return value of fifty is a perfect match. A return value of zero is totally
non-matching. Some round-off errors may occur.

#define DUP_EQU_SSNO (25)
#define DUP_NAME_WEIGHT (15)
#define DUP_ADDR_WEIGHT_A (10)
#define DUP_ADDR_WEIGHT_B (7)
#define DUP_ZIP_WEIGHT (12)
#define DUP_CITY_WEIGHT (9)

Limitations
All ID records must have matching Soundex codes before dupid will test the ID when running
dupid in interactive mode. The program, SNDXINIT, must be executed before using dupid.

System Demands
Note the following about system demands of dupid.

Background mode
In background mode, dupid uses a significant amount of system resources, including:

• Database disk I/O
• Processor time

Dupid is designed to use as little memory as possible while in background mode.

Note: Records are added to the database table idtmp_match_rec every time dupid is
run in background mode.

 If dupid is executed several times using the same data, redundancy and a large
idtmp_match_rec table will occur.

Review mode
Running in review mode, dupid uses more memory and less CPU time. Much of the
additional memory is used to store a dynamic list of the match table. Additional memory is
used for screen functions.

System Reference 179 Common Programs

Running Duplicate ID Detection in Interactive Mode

Introduction
You run the Duplicate ID Detection (dupid) program in interactive mode to find individual ID
records, which are suspected to be duplicates in the ID record (id_rec).

Jenzabar designed the Interactive Mode to be used in two ways:
• A single outside source check against the ID record (id_rec) using the Input command
• An analysis of suspected duplicates from within the database table id_rec using the Query

command

Interactive Mode Screen Example
The following is an example of the dupid interactive mode screen.

Data Displayed On The Screen
The dupid interactive mode screen contains the following two primary areas of information on the
screen.

Scrolling Area
The first area on the screen is the scrolling area where data from the match table is
displayed. The data is sorted by the largest confidence value when loaded. Two primary
fields in this section are as follows:

Current Position
Lists the position you are presently at in the Loaded records.

Loaded
Contains the number of records that are loaded into memory and not marked for deletion.

Note: The following data appears automatically when you use the Query ID command, and
must be entered when you use the Input command:

− Name

Common Programs 180 System Reference

− SS Number
− Birthday
− Sex
− Address
− City
− State
− ZIP
− Country
− ID Type

Note: ID Type lists the type of the Primary ID number (e.g., P for person, B for
business, C for church, S for school).

Statistical Area
The second area on the screen is a statistical area. Each data field contains some statistical
piece of information that will help the operator determine if the Primary and Secondary
names are duplicates. Fields in this section are as follows:

Primary ID
From the Query ID command, lists the ID number from the database table id_rec and
from the Input command, the ID number is set to zero.

SNDX
Soundex code is used to list the possible matches of the Query ID command or the Input
command.

Fields Accessed with the Parameters Command
You can access the following fields through the Parameters command.

Note: After setting the parameters to a certain value, only those possible matches that are
greater than or equal to that setting appear on the screen for the Input and/or the
Query commands.

Confidence
Lists the minimum confidence value you want listed for the Matched Records.

Tests
Lists the minimum test value you want listed for the Matched Records.

First
Lists the starting value of your search in the database table id_rec.

Last
Lists the ending value of your search in the database table id_rec.

Addree
Asks you if you want nicknames of the Primary ID to be included.

Initial Screen Commands
The following are the commands that you can initially use in the dupid interactive mode screen.

Query ID
Selects a Primary ID as the selected record. It is used to check the database table id_rec
against itself. Possible matches are listed on the screen sorted by confidence value.

Input

System Reference 181 Common Programs

Allows you to manually enter data for the Primary ID. Use this when you are checking an
outside source against the database table id_rec. Possible matches are automatically listed
on the screen sorted by confidence value.

Note: Dupid sets the primary ID to zero.

Parameters
Allows you to set:

• Minimum confidence level
• Minimum test level
• First and last ID
• Addree

These parameter settings are set globally for both the Input and Query commands. After
setting the parameters to a certain value, only those possible matches that are greater will
appear on screen for the Input and/or Query commands.

Finish
Finishes the interactive mode and places you in the dupid main menu.

Exit
Exits from the dupid program. If you made changes, exiting without updating loses all
changes. A safety prompt exists to help prevent lost data.

Screen Commands after Selecting Query ID or Input
The following are the commands that you can use after selecting the Query ID command and/or
Input command.

Add
Adds the Primary ID to the database table id_rec for the Input command. You are prompted
if the record needs a Profile_rec and also for an output table name for the added record to
the database. The default is ${HOME}/dupid.out. Dupid.out needs to be checked after the
Add command to see if there were any problems in adding the record to the database table
id_rec.

Execute
Starts the actual search for the Query ID command for the Input command after a parameter
has been changed. The Query ID and Input options set the Selected record and this option
finds the Matched records. Possible matches are listed on the screen sorted by confidence
value.

Sort
Sorts the Matched records by either name, confidence, social security number, or ID number
for the Query ID command or the Input command.

Detail
Pulls up detailed information about the two records for the Query ID command and the Input
command.

Interactive Mode Detail Pop-up Window
The following is an example of the dupid interactive mode pop-up window. You access this
window by selecting Detail from the dupid interactive mode screen.

Note: The primary ID appears in the window when you access it after selecting the Input
command.

Common Programs 182 System Reference

Command Options for Detail Window
The following are the commands that you can use in the Detail window.

Toggle ID
Toggles back and forth between the Selected and Matched records for the Query ID
selection.

Update
Allows you to update the information presented on the window.

Note: You cannot update information from the Selected Record when coming from
the Input command.

Non-dup
Places the Selected and Matched records from the Query ID command into the database
table nodup_rec.

Finish
Finishes the window and allows you to select another ID to detail on.

System Reference 183 Common Programs

Running Duplicate ID Detection in Review Mode

Introduction
You run the Duplicate ID Detection (dupid) program in review mode after running the program in
background mode. Review mode permits you to examine the records selected by dupid as
potential duplicates.

Review Mode Screen Example
The following is an example of the dupid review mode screen.

Data Displayed On The Screen
The dupid review mode screen contains the following two primary areas of information on the
screen.

Scrolling Area
The first area on the screen is the scrolling area where data from the match table is
displayed. The data is sorted by name when it is loaded. The Primary Name lists the name
from the data file; the Secondary Name lists the name from the id_rec table.

Statistical Area
The second area on the screen is a statistical area. Each data field contains some statistical
piece of information that will help the operator determine the impact of large scale operations
like remove or update. Fields in this section are as follows:

Same IDs
Lists a count of how many times a classification contains the code SAME. Marking a
record as being the same means that it will be removed from the table idtmp_rec.
Remaining records may be added to the database table id_rec.

Non-dups

Common Programs 184 System Reference

Lists a count of how many nodup_rec records will be added to the system. It is important
to note that once a record has been marked as being the same, no nodup_rec record will
be added.

To Be Added
Lists a count of how many records will be added to the id_rec table when the database is
updated.

Current Position
Lists the position you are presently at in the Loaded records.

Lowest With Same Status
Contains the lowest confidence level of the record that has a classification of SAME.

Highest With Non-dup Status
Contains the highest confidence level of the record that has a classification of NON.

Loaded
Contains the number of records that are loaded into memory and not marked for deletion.

Screen Commands
The following are the commands that you can initially use in the dupid review mode screen.

Edit
Allows you to interactively confirm or reject which records in the idtmp_rec are duplicates.
When dupid exits, the records will be processed according to the code you entered in the
Class column. Enter one of the following:

SAME
The Primary and Secondary names are duplicates of one another and thus will not be
added to the database table id_rec.

NON
The Primary and Secondary names are not duplicates and will be added to the database
tables id_rec and nodup_rec. Once the Primary ID and the Secondary ID are placed in
the nodup_rec table they will not appear on the screen as possible duplicates of one
another again.

<blank>
The Primary and Secondary names are not duplicates and will be added to the database
table id_rec.

In edit mode if you need additional information about the records, you can access the dupid
review mode detail window. This window provides details about the two records being
compared.

Global Submenu

Three items appear in the global submenu, including:

Remove

System Reference 185 Common Programs

Globally deletes match records that have a confidence value less than some specified
value. The user is prompted for this specified value. Records are marked as being
removed but are not removed from memory at this time. This allows records to be
restored if the database has not been updated.

Mark as Same
Sets the classification code to SAME for all records with a confidence greater than or
equal to some specified value. The user is prompted for this specified value. SAME
means the Primary and Secondary names are duplicates of one another and thus will not
be added to the database table id_rec.

Mark as Non-Dup
Sets the classification code to NON for all records with a confidence less than some
specified value. The user is prompted for this specified value. NON means the Primary
and Secondary names are not duplicates and will be added to the database tables id_rec
and nodup_rec. Once the Primary ID and the Secondary ID are placed in the nodup_rec
table they will not appear on the screen as possible duplicates of one another again.

Note: Marking a record as <blank> means it will be added to the database table
id_rec.

Update
Does the following:

1. Updates the database match table, idtmp_match_rec, with the data displayed on the
screen and in memory. Records marked for deletion in memory will be removed from
both disk and memory. Classification codes in memory will be stored to disk.

2. Stage two of this command will add records to the database table id_rec and add
records to the database table nodup_rec if marked as ‘NON’.

3. You are next prompted for an output table name for the added records to the database.
The default is ${HOME}/dupid.out. You need to check Dupid.out after the Update
command to determine if there were any problems in adding the records to the
appropriate database tables.

Restore
Unmarks all records marked for deletion by the Global Submenu Remove option.

Help
Displays a brief help screen. This screen is located in
$CARSPATH/modules/common/progscr/dupid/helprev.

Finish
Finishes the review mode and places you in the dupid main menu. If changes were made,
exiting without updating will lose all changes. A safety prompt exists to help prevent lost
data.

Exit
Exits the dupid program. If changes were made, exiting without updating will lose all
changes. A safety prompt exists to help prevent lost data.

Common Programs 186 System Reference

ID Audit Program

Introduction
Because CX uses identification numbers extensively, Jenzabar designed the ID Audit (idaudit)
program to assist users in locating and removing problem ID records (id_rec). You can run
idaudit to locate all the records with detached ID number(s) in the database and, if desired,
remove all unwanted records. An ID number can reside in records other than the ID record
(id_rec) because many CX programs use ID numbers during normal processing. The following
scenarios can necessitate the use of idaudit:

• Users can accidentally enter an individual into the database more than once. The assigned
duplicate IDs then appear in various records throughout the database.

• The institution no longer needs the records for an individual and wants to delete them

Note: You can run idaudit with or without command line options. Idaudit does not identify
duplicate ID numbers.

The Process
The ID Audit program (idaudit) provides a means of removing old, unused, and unwanted ID
records and records with detached IDs from the database. It uses the following process.

1. Idaudit selects and reports ID records that have a purge date earlier than the date the
program is run (usually the system date).

2. Idaudit searches for and reports detached IDs, which are records in other files that no longer
have an ID record associated with them.

Permissions
Idaudit does not attempt to delete any records unless you specify the -p (purge) or -u (delete)
options. However, if you run idaudit with the -u or -p option, and idaudit cannot delete record(s)
from a file, idaudit does the following:

• For the -u option, prints a "NOT DELETED" message beside the non-deleted record as well
as indicating the deleted records

• For the -p option, prints a “NOT PURGED” message beside the un-purged ID number as
well as indicating purged ID’s, and informs you to run idaudit using the -i option on the
particular ID number(s).

Note: An error message can occur if you do not have permission to delete certain records.

Running Idaudit Without Program Arguments
When you pass no options to idaudit, the program does the following:

1. Processes an informational run

2. Presents the data in a report as follows:
• IDs with a purge date earlier than the run date (usually the system date) and the

message: “Scheduled for purging”
• Detached ID data showing:

− The ID number
− The field in the record that references the ID number
− The record where the ID number is referenced, the number of times that the ID

number was found in the record, and the delete_allow status of the dbfile_rec

Note: Idaudit does not delete any records from the database unless specifically instructed by
using one of the delete/remove options described below.

System Reference 187 Common Programs

Idaudit Program Arguments
You can use several options to enable process features of idaudit. The following examples
indicate how you can specify the options for idaudit:

Example: idaudit [-v] {-u or -i ID1 [ID2 ID3 ...] or -p [-d MM/DD/YY] }

 idaudit [-v] [-s ID1] [-e ID2] [-f FIRST_RECORD] [-l LAST_RECORD]

The following lists the options and what they signify to idaudit.

-i (Information)
Specifies that idaudit search for specific ID numbers and report all occurrences of these
numbers. You can use this option to locate all instances of duplicate IDs in the database.

For example, if the ID numbers 10583 and 13495 refer to the same individual, enter the
following: idaudit -i 10583 13495

Idaudit will produce a report that provides the primary keys and their values for every record
in the database where these ID numbers are found. You can examine these records and
manually transfer the necessary data from one ID to another.

CAUTION: Take care in selecting what ID number to use. Please call Jenzabar
before making the data transfer. Some records may require some
additional changes or processing to maintain the data integrity of CX.
There may also be preferred ways of doing the transfer.

Note: You can mark an ID for purging, and then later run idaudit using the -p option to
purge the ID.

-u (Update)
Signals idaudit to update (delete) those records in the database that reference an ID number
that is no longer in the ID record and have the allow_delete row of the dbfile_rec marked
with a Y or y. If the allow_delete row of the dbfile_rec is marked N, or is blank, idaudit
places the following in the report:

• The specific ID number
• The field in the record that references the ID number
• The record where the ID number was found
• The message: “NOT DELETED”

You can use the -f, -l, -s, -e options in conjunction with the -u option (ex: idaudit -u -f
alpha_rec -l beta_rec).

CAUTION: Use this option with extreme care, and only after the general report run of
the process and a full (Level 0) backup. Jenzabar recommends that you
schedule an overnight run of idaudit when using this option.

-p (Update Purge IDs)
Deletes those IDs in the ID record that are marked for purging and that are not referenced
anywhere else in the database. If idaudit finds an ID referenced elsewhere in the database,
a “NOT PURGED” message is printed beside the particular ID number in the report. For
more information on an ID with this message you can run idaudit with the -i option.

Note: You can use the -d, -s, -e options in conjunction with the -p option (ex: idaudit -
d 11/11/95 -p -s 100 -e 105).

CAUTION: Entry order of options is important when you use -d in conjunction with -p.
Specify -d before -p. Jenzabar recommends that you schedule an
overnight run of idaudit when using this option.

-d (Date)

Common Programs 188 System Reference

Specifies a run date. Use this option in conjunction with -p. Idaudit ordinarily uses the
system date as the date to check the purge dates in the ID record (id_rec). You can use this
option to delay the deletion of records marked for purging. Enter the date in the standard
mm/dd/yy or mmddyy format.

Note: Idaudit purges an ID only if:
− The ID is not referenced anywhere else in the database
− The purge date is prior to the date of the process

CAUTION: The -d option is not used to schedule a purge to be run at a later time/date.
Entry order of options is important when you use -d in conjunction -p.
Specify -d before -p.

-v (Verbose)
Outputs progress messages indicating the various phases of operation as well as the
records and keyed fields used in accessing the database.

Note: The verbose option prevents other processes from being initiated from the
same terminal/PC during the operation of the program.

-s (Starting ID Number) and -e (Ending ID Number)
Specifies a range of ID numbers. You can use these options separately or in conjunction.
Unless you specify these options, idaudit examines the entire ID record and considers all ID
numbers as initially valid candidates for processing. You can use these options to examine
portions of the ID record.

Note: When you use the -s and -e options, the report provides purge and detached
data on the IDs in the specified range.

-f (First Filename) and -l (Last Filename)
Specifies a range of filenames. You can use these options separately or in conjunction.
Unless you specify these options, idaudit searches all the files in the database during ID
processing. You can use these options to examine a specified range of records.

Note: When you use the -f and -l options, the report provides purge data on all IDs
and detached information on only the records in the specified range.

System Reference 189 Common Programs

Running ID Audit

Processing Time
The processing time of idaudit can vary depending on the following:

• The choice of command line options used with idaudit
• The number of ID records in the database
• The total number of records in the database
• The system load

Because of the above considerations, idaudit could take anywhere from fifteen minutes to more
than a day to finish. Jenzabar recommends that Idaudit not be run during the day since database
activity in the ID record and in other database files during the run could produce inaccurate
reports.

Note: Depending on the number of records in the file that idaudit is reading, it could take
hours just to look through one file, and the CX database has well over 250 files to be
considered.

Processing Notes
Remember the following about running idaudit:

• Jenzabar recommends that you run idaudit without command options on a quiet system.
The -s, -e options will shorten the run time and output. You should then carefully review
the data on the report.

• When finished searching through the entire database, idaudit writes a report to a file of the
format, mm-dd-yy.hhmmss, in the $CARSPATH/audit/common/idaudit directory.

• If idaudit discovers a problem with the ID numbers in a file, the program may not be able to
finish a run. This error should only occur when many records exist in the database that
reference nonexistent IDs, or when many IDs need to be purged. If the report contains no
data, check for the report files in the /tmp directory under idaudit.

Note: See below for more information about the idaudit report.

• Files exist in the database that should never be deleted. To protect these files, idaudit only
deletes those files which have Y or y in the allow_delete field of the file’s dbfile_rec. The
only exception to this is the ID record. Jenzabar recommends that you contact Jenzabar
before you run idaudit with the update option.

• If you have any questions about selecting one ID number when duplicate ID numbers exist
for an individual, or any other questions about the use of idaudit, contact Jenzabar for
further instructions.

• If a fetch error occurs, run the report again and/or attempt to determine who has the record
locked. The process will complete when a fetch error occurs, but the data may be
incomplete.

Common Programs 190 System Reference

The Idaudit Report
Idaudit creates a report that contains information on IDs. The report’s appearance is the same
for most idaudit run options; only the -i option produces a report that is appreciably different.

In general, the report’s features are as follows:
• The start time for the idaudit run appears at the beginning of the report
• The end time for the idaudit run appears at the end of the report
• Prints purge record data first, followed by detached record data, sorted by ID number then

by record
• If the same ID appears in a detached record more than once, the report notes the total

number of occurrences (e.g., (14 times)
• The report also reflects the status of the dbfile_rec.allow_delete field for each of the

detached records by listing a (Y) or (N) after the record. You can only delete those records
indicated with a y or Y.

All runs of idaudit create a file in the audit/common/idaudit directory, and four files on the /tmp
directory. Options -d and -p create their output directly in audit/common/idaudit even though they
also create the files in /tmp. Idaudit run without options and with options -i and -u use the files in
/tmp to create the report before the data is deposited in the file in audit/common/idaudit.

Note: You can identify the idaudit report files in the /tmp directory by their name:
idaudit.#####.

 The report(s) is named for the year, hour, minute, and second that the report was run,
arranged in yy, hh, mm, ss format.

Running Idaudit With the Update Options
Running idaudit with either of the two update options has the potential to create major changes in
the database. Jenzabar recommends that you do the following:

• Before running idaudit with either -u or -p, you first run idaudit without either of these
options

• Carefully review the report to find exactly what will be deleted
• If possible, query the records that the report gives and make sure that they really should be

deleted
• If it is possible, check each ID and record to insure of the validity of the report

CAUTION: Remember that when idaudit deletes the record, you can only recover the record
by restoring the data file from a backup. Do not run idaudit with an update option
until you have thoroughly examined the output of your initial run of idaudit without
options and have run a full (level 0) backup.

System Reference 191 Common Programs

The allow_delete Flag
CX contains records in the database that you should never delete. To guard against unwanted
deletion, idaudit checks the allow_delete field in each record’s Database File record (dbfile_rec).
Unless the field’s flag is set to Y or y, idaudit does not delete any records from that file.

Note: This processing feature assumes that the records, dbfile_rec and dbfield_rec, have
been built and maintained on the system.

With the -p command, idaudit will delete ID records that have been marked for purging and that
are not linked to any other records in the database, even though the allow_delete field in id_rec is
set to N or n. The allow_delete flag is only meant to prevent the accidental deletion of records
during a large scale update of the database, not to prevent the deliberate deletion of records that
have been assigned a purge date.

Note: Idaudit will not delete those records with the allow_delete flag set to Y that also have a
prev_name_id flag that refers to an ID no longer in existence.

 Records like the Profile records (profile_rec) and the Education records (ed_rec) in the
system no longer have meaning when associated with an ID record that is deleted.
These records can safely have allow_delete flags of Y. Other records that have
additional meaning, like the Subsidiary Account record (suba_rec) and the Course
Work record (cw_rec), should have allow_delete set to N.

If you are unsure which records should and should not be deleted, please contact Jenzabar
before running idaudit in an update mode.

Crash Recovery
If a crash occurs while running a version of idaudit, you need to:

1. Determine where the process stopped. Do the following:
• If you ran idaudit with the -d, -p options, look in: audit/common/idaudit
• If you ran idaudit with the -i, -u, or with no options, look in /tmp

2. Remove the files from both directories. If partial data is appropriate for your use of idaudit,
you can print the output from the -d, -p options run before removing the files.

Common Programs 192 System Reference

Merge ID Program

Introduction
This section describes Merge ID (mergeid), a program that allows users to maintain ID records by
merging information from duplicate ID records into one ID. When you identify the existence of
two IDs for the same person, you designate one of the IDs as the primary ID and the other as the
secondary. The primary ID should be the ID that you want to retain. Mergeid will locate every
occurrence of the secondary ID and merge it into the primary ID.

This section contains information about the following:
• Features
• Terms
• Modes
• Procedures

Merge Logic
The foundation of the merge process is to change the duplicate (secondary) id number to the
valid (primary) ID number across all ID columns within the database. When the column holding
the secondary ID is not part of an index on the table (such as ctc_rec.corr_id), then the logic just
updates the column to the primary ID. When the column is part of a unique or logical index (such
as profile_rec.id), then the logic is to remove the secondary row with the possibility of using the
COPY_1ST option to fill in any blank or NULL columns of the primary row with the values of the
secondary row before it is deleted.

To enhance performance, foreign key logic is provided. This functionality assumes that certain
ID fields obtain their value only from ID fields in a specific table, and if that table does not have an
entry for the ID being processed, further searching is not performed. For example, if an ID being
merged does not have a sch_rec, then the ed_rec.sch-id field would not be searched for the ID.

Overview of the Process
Below is a broad overview of the steps to take in the mergeid process.

1. Define merge types and table and column level merge actions.

2. Enter one or more IDs thought to be duplicates into the Merge ID Interactive screen. This
step must be done in interactive mode.

3. Run the merge preview process.

4. Preview the results in interactive mode.

5. Update the database with the results of the merge.

You access the mergeid options from the System Management: Data Dictionary Menu.

System Reference 193 Common Programs

What is an ID Column?
The Merge ID process considers every table containing an ID column. It examines the
database’s system tables (systables and syscolumns) to find ID columns. A column is
considered an ID column if it matches the following criteria:

• The type is smallint, integer, or serial, AND...
• Ends with the three characters “_id”, OR...
• The column name is id_no, id_used_by, id_add_by, or subs_no, OR...
• The column name is id, prim_id, sec_id and is not part of the of the id_rec or mergeid_rec

tables

ID columns meeting any of the above criteria can be specifically excluded from the Merge ID
process by adding an entry in the mergefield_rec with a merge type of IGNORE..

Common Programs 194 System Reference

Merge ID Features
The mergeid program contains the following features:

Batch and Interactive Modes
The Merge ID process runs in either interactive or batch mode. You must establish ID pairs
and review merge action results interactively. However, you may perform the following
steps interactively or by letting the process perform them in batch mode:
1. Generate merge actions
2. Perform the merge actions and update the database

Preview Merge Action Results
Running mergeid in interactive mode allows you to preview the results of the merge actions
before choosing to update the database with the changes to the ID records. This allows you
to detect data conditions that would result in an illogical data condition but would be
technically accurate based on the data dictionary merge table setup.

Invoke Audit Programs When Necessary
When running mergeid in interactive or batch mode, you can inform the process to run
saaudit , daaudit or trans. This will reconcile differences between totals and correct any
balances in summary records that may have occurred as a result of running mergeid.

If the Merge ID process does not run an audit after performing a merge or if the audit fails,
you can manually run saaudit, daaudit, or trans and reconcile the results. The mergeid
program will send messages (online in interactive mode, by e-mail in batch mode) regarding
the audits whether they were successful or not. From the message returned, you can
determine whether you need to run an audit manually.

Error conditions are corrected outside the Merge ID process through the mergeid table setup
or appropriate data modifications. For a viable audit trail, the actions taken by the Merge ID
process must be accepted in their entirety.

Merge ID Terms
The following are definitions of terms and concepts used with the mergeid program:

Unique Index
A unique index is a database concept stating that a column, or group of columns, in a table
cannot have more than one occurrence of a specific value or combination of values. For
example, in the sample record below the unique index = SSN + Name. There can be only
one occurrence of that exact combination. Even though the values in the two records are
similar, they are not the same, and therefore, qualify as being unique.

NAME SSN ADD1 ADD2 STATE ZIP

Dave Smith 540-54-9871 17 Elm St. OH 45208

David Smith 540-54-9817 17 Oak St. Apt. 2 OH 45208

System Reference 195 Common Programs

Logical Index
 A logical index is a concept whereby a column (or a series of columns) is viewed by
mergeid as a unique index even though the unique index is not specified at the database
level. (This usually occurs if the index was not required for normal processing against the
table.) A table with a serial number would by virtue of the serial number be considered
unique, so the database would technically allow duplicate values to exist. However, the ID
information may need to be considered by the process and merged. You may create a
logical index that causes mergeid to “overlook” the serial number and then consider the
fields. For example, in the sample aid_rec below the unique index is AID# + SSN. The
mergeid process would not detect any duplicate values because the aid #s are serially
assigned and therefore all different.

AID # SSN YR CODE AMT
1 549-88-0734 9899 pell 800
2 549-88-0734 9899 staf 2000
3 549-88-0734 9899 pell 800
4 549-88-0743 9899 perk 400
5 549-88-0743 9899 staf 19999

However, there are duplicate records in the table. The information in the shaded columns
below exists for the same person as evidenced by the SSN column. For the merge process
to detect this, you would need to create a logical index which does not include the Aid#
column. The logical index could be ssn+yr+code. Using that information it’s obvious that
two aid records exist with the same values.

AID # SSN YR CODE AMT
1 549-88-0734 9899 pell 800
2 549-88-0734 9899 staf 2000
3 549-88-0734 9899 pell 800
4 549-88-0743 9899 perk 400
5 549-88-0743 9899 staf 1999

 Merge Index
The merge index is the index chosen by mergeid to merge a table. Several indexes may
exist for the same table. The logical index has the highest priority and if it exists, it will be
used by mergeid. A unique index has the next highest priority and will be used if it does not
contain a serial field. If neither index exists for a table, then duplicate values are not
considered.

Duplicate
The Merge ID process examines the value(s) of the column(s) of the primary index and
searches the database for rows that match on the secondary ID. For each row found for the
secondary ID, the Merge ID process searches the same table for a match on the primary ID.
If the primary ID search results in a row found, a duplicate has been detected. The
existence of a duplicate is the basis upon which the Merge ID process determines the
actions to take.

Common Programs 196 System Reference

Serial Number
A column with a serial number always contains a unique value. In other words, a serial
column has a unique constraint (and usually it is indexed). The Merge ID process uses the
serial column of a table (if one exists) to identify a single row to be updated. Since an index
usually exists on a serial column, this approach saves time during the update phase of the
merge process. This approach ensures that a single row is updated, and also saves space
because only one “where” condition must be stored in the database for the audit trail. Also
the audit trail will be easier to follow--a row’s identity will change when its ID column is
updated, but its serial number will remain the same.

System Reference 197 Common Programs

Merge ID Tables and Records

Introduction
This section provides reference information about common tables and records associated with
the Merge ID program. They are located in $CARSPATH/common/schema.

Merge Type table (mergetype_table)
This table identifies the types of merge actions supported by mergeid and defines the
parameters for the functions of the program. It controls the behavior of mergeid and the
effect its actions have at the table and column level. Merge types define the actions that are
performed on tables and records when you run mergeid. They are contained in the Merge
Type table (mergetype_table). The following is the mergetype_table PERFORM screen.
PERFORM: Query Next Previous View Add Update Remove Table Screen ...
Searches the active database table. ** 3: mergefield_rec table**

 MERGE TYPE TABLE
 Merge Type Code........... COPY_1ST
 Description............... Copy Data, then Discard
 Ignore Table/Column....... N
 Logical Index............. N
 Copy First................ Y
 Special Algorithm......... N
 Audit to Run.............. N
 Applicable to Table....... Y
 Applicable to Column...... Y
==
 TABLE-LEVEL MERGE ACTIONS
 Table Name................ adjust_table
 Merge Type Code........... IGNORE Do Not Merge
==
 COLUMN-LEVEL MERGE ACTIONS
 Table Name................[accommod_rec]
 Column Name...............[accommod]
 Merge Type Code...........[LOGICAL] Include in Logical Index

109 row(s) found

The mergetype_table screen is divided into three main sections:

• Merge Type Table
• Table-Level Merge Actions
• Column-Level Merge Actions

Common Programs 198 System Reference

Merge Type Table Section
The Merge Type Table section lists the seven merge types included with the mergeid
program. The Merge Type Code and description are listed first, followed by seven yes or
no qualifiers which further define each merge type and its behavior. The mergeid
program supports the following seven merge types:

COPY_1ST
The COPY_1ST merge type controls whether or not a value from a column in the
secondary ID will overwrite a null value in the corresponding column in the primary ID.
For example, in the sample pair below the COPY_1ST merge action would cause the null
in the ADD 2 column for Dave Smith to be overwritten by the Apt. 2 value from David
Smith.

NAME SSN ADD1 ADD2 STATE ZIP

Dave Smith 540-54-
9871

17 Elm St. OH 45208

David Smith 540-54-
9817

17 Oak St. Apt. 2 OH 45208

DAAUDIT
The DAAUDIT merge type stipulates that the Donor Accounting Audit program be run for
the specified tables after the merge has completed.

FINANCE
The FINANCE merge type controls how mergeid deals with financial records. The
Finance merge action is a special algorithm created especially for dealing with financial
records.

IGNORE
The IGNORE merge type specifies certain columns within tables that will be ignored by
the merge process.

LOGICAL
The LOGICAL merge type defines the columns that make up the logical index of a table.

RUNTRANS
The RUNTRANS merge type stipulates that the Run Transcript Audit program be run for
the specified tables after the merge has completed.

SAAUDIT
The SAAUDIT merge type stipulates that the Subsidiary Audit program be run for the
specified tables after the merge has completed.

Merge record (merge_rec)
This table tracks the primary key of each row to be updated or deleted by mergeid. It serves
as an audit trail.

Merge Details record (mergedtl_rec)
This table tracks columns of a row to be updated as identified in the merge_rec. It also
stores every non-null column value that has been deleted by the process. It serves as an
audit trail.

System Reference 199 Common Programs

Merge Field record (mergefield_rec)
This table tracks columns that require exceptional processing by mergeid, such as excluding
particular fields as ID fields, and determining logical and foreign keys.

Merge File record (mergefile_rec)
This table tracks tables that require exceptional processing by mergeid, such as ignoring
specific tables, determining foreign keys, and running audits.

Merge ID record (mergeid_rec)
This table tracks the primary and secondary IDs to be merged by mergeid.

Merge Detail Blob Table (mergedtl_blob)
This table tracks large binary or text columns (blobs) that were deleted. Rather than
overwriting a blob column through an update process, mergeid reports the blob column that
would have been updated. The user can then determine which picture, photo, or text to
replace.

Configuration Macro
Permissions to update live data using the Merge ID process are restricted. You can use the
Configuration table entry MERGE_ID_UPDATE_GROUP or create a new group to determine
user privileges. The MERGE_ID_UPDATE_GROUP table entry controls whether or not the
update option displays on the menu. The financial tables have additional restrictions and grant
delete permissions only to the database super user. The Merge ID process must be run with set-
user-id enabled.

Common Programs 200 System Reference

Running Merge ID in Interactive Mode

Introduction
Run mergeid in interactive mode to establish ID pairs and review merge action results before
actually updating the database with the new information. You use the following screens in
interactive mode:

• Merge ID Interactive screen
• Merge ID List screen
• Merge Table List window
• Expanded Merge Item window

The following sections describe these screens.

Entering ID Pairs for Merge Processing
The steps below describe the procedure for entering ID pairs into the Merge ID Interactive screen
for merge processing.

1. From the System Management: Data Dictionary main menu select Merge ID--Interactive.
The Merge ID--Interactive parameter screen will appear asking you if you would like the
appropriate audit process to be run when you run the merge process.

2. Enter Yes or No and select Finish. The Merge ID--Interactive screen appears.

3. While in Query mode, do one of the following:
• If you know the Primary ID, enter it now and the corresponding Secondary ID will

appear on the Merge ID screen
• Select <CTRL-T> to access the ID Lookup screen and query an ID
• Enter 0 to view the current Merge ID list of qualifying IDs

4. When you have reached the Merge ID results screen using one of the above methods, select
Add from the ring menu. The Merge ID--Interactive screen will appear in Add mode:
ADD: ESCAPE finish. CTRL-C cancel.

 MERGE ID--INTERACTIVE 0 of 0
 Primary ID......[0]
 Secondary ID.... 0
 Name Prior to Merge.......

Enter ID or zero (0) to select all qualifying ID#'s. Use CTRL-T for table lookup

5. Enter the Primary ID in the Primary ID field and press Enter.
6. Enter the Secondary ID in the Secondary ID field and select Finish.

If you need to interrupt your mergeid process, set the Status to Hold for the IDs you have already
processed until you are ready to perform the merge with update.

System Reference 201 Common Programs

Merge ID Interactive Screen

Introduction
You use the Merge ID Interactive screen to enter the primary and secondary IDs for processing.

The following is an example of the Merge ID Interactive entry screen:
MERGE ID: Query Add Next Previous Id-list List eXpand ...

 MERGE ID--INTERACTIVE 1 of 99
 Primary ID...... 1253395 Babbette, Borris (MERGED:112286)
 Secondary ID.... 1258449 Babbette, Borris ON HOLD
 Name Prior to Merge.......

 UPDATE audin_rec
 SET id = 1253395
 WHERE id = 1258449
 AND subaud = ELECUG93

Query an existing pair of IDs to be merged.

Data Displayed on the Screen
The interactive Merge ID Interactive screen in update mode displays the following two main areas
of information:

Entry Area
The first area on the screen is the entry area where you enter the IDs. There are two
principle fields in the entry area:

Primary ID
In this field, enter the ID that you want to save and into which you want to merge all
column information. All column values (that are not blank or null) in records with the
primary ID will override column values in records with the secondary ID. If a column has
a blank or null value, the value from the secondary ID will be used if the merge type is
COPY_1ST.

Secondary ID
In this field, enter the ID whose records will be permanently removed or merged into the
primary ID.

Common Programs 202 System Reference

Results Area
The second area on the screen is the results area. The results of a merge appear here as a
set of SQL statements describing the changes made by the merge. These results reflect
how records will be amended when you choose to update the database.

Example: In the example below the process will update the ctc_rec by setting the ID to
1253395 in the record that it found to have a ctc_no of 1153851.

UPDATE ctc_rec
 SET id = 1253395
 WHERE ctc_no = 1153851

Commands on the Merge ID Interactive Screen
The following are the commands that appear on the Merge ID Interactive screen and their
descriptions:

Add
Displays the Merge ID Interactive screen in Add-mode.

Expand
Displays the Expanded Merge Item window that lists records with merge activity. It includes
complete values for each record of the merge process for the primary and secondary IDs.

Id - List
Displays the Merge ID List screen that lists ID pairs entered into the merge id entry screen.
It also lists the merge status of the IDs.

List
Displays the Merge Table List window that presents a summary of records that have been
updated and deleted by the active merge.

Next
Displays the next merge action results for the current pair of IDs.

Previous
Displays the previous merge action results for the current pair of IDs.

Query
Displays the Merge ID Interactive screen in Query mode which allows you to query and
locate a new pair of IDs. A query on 0 (zero) will bring up the Merge ID List screen.

System Reference 203 Common Programs

Merge ID List Screen

Introduction
The Merge ID List screen displays a list of the ID pairs that have been entered in the Merge ID
Interactive screen and their statuses. The value in the config_table for
MERGE_ID_DISPLAY_AGE determines how long IDs appear on this list. Below is an example
of the screen:

Select Letter Next to Choice. CTRL-C cancel.
 CTRL-F forward. CTRL-B back.
+--- ---
| MERGE ID LIST |
| |
| Prim ID Primary Name Sec ID Secondary Name S |
| -------- ------------------------- -------- ------------------------- -
| a. 112286 Babbette, Borris 1253395 Babbette, Borris (MERGED: D |
| b. 1253395 Babbette, Borris (MERGED: 1258449 Babbette, Borris H |
| c. 1266990 Boyd, John T. 1266964 Jackson, Hailey (MERGED:1 D |
| d. 20270 Litvee, Deborah L. A. 20250 Litvee, Duane T. Q |
| e. 20250 Litvee, Duane T. 20205 Litvee, Dwayne T. Q |
| f. 23317 SMITH ,DICK 23318 SMITH (MERGED:23317) D |
| g. 22380 Costa, John P. 22420 Costa, John (MERGED: D |
| h. 12345 Doe, Jane 12346 Robinette, Duane Lee V |
| i. 20339 Evilsizor, Jeremy R. 20225 Evilsizor, Jerem (MERGED: D |
| j. 20202 Evilsizor, Michele B. 48350 Evilsizor, Dougl (MERGED: D |
| k. 1258239 Krekeler, Bill A 1258240 Krekeler, Bill (MERGED: D |
| l. 1258251 Krekeler, William G. 1258256 Krekeler, William H. Q |
| m. 1258456 Krekeler, William M. 1266941 Krekeler, William N. Q |
| n. 48353 Moore, Kelly R. 1242932 Moore, Kelly (MERGED:48353 D |
+--- ---

Fields on the Merge ID List Screen
Below is a list of the fields on the Merge ID List screen and their explanations:

Prim ID
The ID that has been entered as the primary ID into which all duplicate information will be or
has been merged (depending on the status at this point).

Primary Name
The name associated with the Prim ID.

Sec ID
The secondary ID that will be or has been marked as not valid and whose information will be
or has been merged into the primary ID.

Secondary Name
The name associated with the secondary ID.

S
A code identifying the status of each entry.

Common Programs 204 System Reference

Merge Table List Window

Introduction
The Merge Table List window displays a summary of records that were updated and deleted in
the merge process. It displays the record name and the number of records that were updated or
deleted.

 MERGE TABLE LIST
 Table Name
#UPD #DEL
------------------------- --- -------
| a. aa_rec 2 0 |
| b. acadsum_rec 1 0 |
| c. aid_rec 10 0 |
| d. ctc_rec 26 0 |
| e. edepell_rec 2 0 |
| f. faedit_rec 1 0 |
| g. fana_rec 2 0 |
| h. faneed_rec 3 0 |
| i. gle_rec 8 0 |
| j. hold_rec 2 0 |
| k. naf_rec 3 0 |
| l. profile_rec 0 1 |
| m. prog_enr_rec 0 1 |
| n. prsm_id_rec 1 0 |
+--- -----------------------------

Column Descriptions
The following lists the columns on the Merge Table List window:

Table Name
The name of the table or record being reported.

#UPD
The number of rows that were updated by the merge for the primary ID.

#DEL
The number of rows that were deleted by the merge for the secondary ID.

System Reference 205 Common Programs

Expanded Merge Item Window

Introduction
The Expanded Merge Item window is a snapshot of the record and its current values. If you view
it before you update the database, the values will display as they exist before the merge. After
the merge has been processed, you cannot view this window.

To print the contents of this screen, press <CTRL-N>.

The following is an example of the Expanded Merge Item window.
| EXPANDED MERGE ITEM |
| |
| site_rec Primary Row Secondary Row |
| ------------------ --------------------- ---------------- |
| site_no N/A 1647 |
| id N/A 112286 |
| beg_date N/A 05/02/1996 |
| site N/A CARS |
| home |

Fields on the Expanded Merge Item Window
The following are the fields on the Expanded Merge Item window and their descriptions:

<record name>_Rec
The active record whose columns have experienced merge activity.

Primary Row
The values contained in each row associated with the Primary ID.

Secondary Row
The values contained in each row associated with the Secondary ID.

Common Programs 206 System Reference

Running Merge ID in Batch Mode
To run mergeid in batch mode, go to the System Management menu. Select Data
Dictionary, and then select the Merge ID – Batch option. You can run batch mode for an
individual pair of IDs or all pairs with a status of Q. You can preview the merge results in
interactive mode prior to updating the database by setting the Update option to N.

When batch processing completes, mergeid sends an e-mail containing any error
messages, the number of actions saved, and the process command line.

System Reference 207 Common Programs

Database Administration Program

Introduction
The Database Administration program (dbadmin) maintains user access and permissions. You
can do the following using dbadmin:

• Add and remove user logins
• Update user login permissions and connection levels to CX
• View users’ permissions to database tables
• View a table’s permission settings for groups and users
• View users’ permissions to stored procedures
• View a stored procedure’s permission settings for groups and users
• Run audits to locate and correct problems with database tables

Note: Jenzabar designed dbadmin to be a fast alternative to the process of adding a user
where you must run a make build on every table just to add one user. If you need to
add 12 or more new users, using make processor may be a faster alternative.

Program Arguments
You can use several options to execute dbadmin from the shell. The following example shows
how you can specify the options for dbadmin:

Example: dbadmin [-d database] [-s output] [-a audit] [-z]

The following lists the options and what they signify to dbadmin.

-d (database)
The name of an Informix database

Example: dbadmin -d train

Note: The above example selects a database named train. To get full access to
dbadmin functions, the user running dbadmin must have DBA access to that
database. Otherwise, a restricted subset of functions is allowed.

Note: Dbadmin selects the default database from the environment variable,
CARSDB.

-s (output)
Display SQL statements at they are executed [Y/N]

-a (audit)
Run the specified audit script

-z
Allow dbadmin to run as non-informix user

Common Programs 208 System Reference

Dbadmin Screen
The dbadmin screen’s User Name and Table Name fields perform partial name lookups on
names. For example, if you want to choose the stu_serv_rec table, you can enter stu in the table
name field., and select Finish. Dbadmin locates the first table that begins with stu. You can
then move up and down the list by pressing the up and down arrow keys.

The following is an example of the dbadmin screen after you select Permissions For
Procedures in the Procedures submenu. The screen displays a list of users and their
permissions for the stored procedure displayed in the Proc. Name field.

Menu Options
This section describes the menu options that you use to initiate the features of dbadmin.

Note: You access the menu options from the Commands menu.

Database
Allows you to select a database. When you select Database, the cursor advances to the
Database field. You can specify the database name or select Lookup to view a list of
database names.

Note: Dbadmin selects the default database from the environment variable,
CARSDB.

Users
Activates a submenu. This submenu is only available to DBA users of a database. The
submenu options are described below.

Add User
Adds a new user to the database. The user will be asked to enter a login name. The
login name must exist in UNIX file /etc/passwd and the login name must not exist in the
database table sysusers.

Note: Dbadmin prompts for the three access level (Connect, Resource or DBA) to
grant to the user. Then, the program prompts whether or not to grant
permissions for all the tables on the database.

System Reference 209 Common Programs

 See The GRANT statement in Section 2 of the Informix SQL Reference Manual
or more information about the access levels of Connect, Resource and DBA.

Remove User
Removes a user from the database. If a user leaves the school or is transferred to some
other department where that user does not use CX, the CX system coordinator should
disable the login and the database access for security. This works exactly opposite to
the Add User option discussed earlier. First the connection will be revoked, then the
operator will be prompted if all table permissions should be revoked.

Update Perms
Re-grants table access permissions for a user. This is designed to do the same tasks as
the second half of Add User. This presumes that a user has already been granted
access to the database, and you want to re-grant table access for that user.

Note: Dbadmin checks the /etc/group file when updating user permissions. If you
remove a user from a group, run this option to revoke any table permissions
that are based solely on that group.

Modify Connect
Changes the access level for a user. For example, if Joe has Connect level access and
needed Resource level access, this is the option to use. Dbadmin will ask which user
need to be changed then prompt for which of the three access levels (Connect,
Resource, DBA) the user should be granted.

List Users
Displays a detail window of users who have access to the current database. The window
shows the login name and the access level.

Tables
Activates a submenu. The options are functions that relate to table permissions. The
submenu options are described below.

Permissions For Table
Examines the real privileges that a specific user has for a specific table. When you
select Permissions For Table, the cursor advances to the Table Name field. Enter the
following:

• The table name
• The user name

The output also includes entries for the public user since a user also has privileges
through public permissions. You can scroll through the output with Up and Down
buttons.

View Systabperm Entries
Displays a table’s group and individual user permissions. When you select View
Systabperm Entries, the cursor advances to the Table Name field. Enter the table name.

Note: The information comes from the same tables used by dbadmin to grant
permissions to new users. You can use this option to verify that make is
correctly running on schemas. You can scroll through the output with Up and
Down buttons.

Procedures
Activates a submenu. The options are functions that relate to stored procedure permissions.
The submenu options are described below.

Permissions For Procedures
Examines the real privileges that a specific user has for a stored procedure. When you
select Permissions For Procedures, the cursor advances to the Proc. Name field. Enter
the following:

• The procedure name

Common Programs 210 System Reference

• The user name
You can scroll through the output with Up and Down buttons.

View Sysprocperm Entries
Displays a stored procedure’s group and individual user permissions. When you select
View Sysprocperm Entries, the cursor advances to the Proc. Name field. Enter the
procedure name. You can scroll through the output with Up and Down buttons.

Audits
Starts the Audit process. See below for more information.

Options
Displays a pop-up window for you to set various switches and define file locations. See
below for more information.

Options Pop-Up Window
The options pop-up window allows you to set various switches and define file locations.

Note: The defaults for these options come from the screen located in
modules/util/progscr/dbadmin/options.

The following is an example of the Options pop-up window.

Options Pop-Up Window Fields
The following are the fields in the Options pop-up window.

Read Only
Specifies if dbadmin is allowed to modify the database.

Note: Users learning to use dbadmin should set this field to Y.

On-Screen Output
When set to Y, displays SQL statements, which are sent to the database, on the screen.

Setting the Output File
When set to Y, sends the SQL statements, which are sent to the database, to the file name
specified in the next field.

First Unlabeled Field
Use to specify an output file name for SQL statements sent to the database.

Second Unlabeled Field
Use to specify the default path to use to search for dbadmin audit scripts.

Audit Processing
Audits locate and correct tables that might have invalid values or extra rows and cleans up /tmp
directories. This option is only available to DBAs. The following occurs in an audit process:

1. The audit process searches for scripts in its search path and displays the list in a dialog box.

2. You select the audit desired and dbadmin begins searching for rows that meet the audit
criteria.

3. Dbadmin displays the rows selected by the query, if any, in the detail window for your

System Reference 211 Common Programs

review.

4. After you review the data returned by the query, you select Finish.

5. Dbadmin notifies you whether or not to repair the records. Depending on the audit, you
might be prompted to review each record in the query.

6. If you respond yes to repair the records. The repair operates on each row of the query,
updating or deleting items that the query detected.

Audit Scripts
An Audit script contains five parts. The parts are described below.

Audit Keyword
Informs dbadmin that the script is an audit script. This prevents dbadmin from getting
confused by real Informers. This part must be the first keyword. The other parts can be in
any order.

Name of the audit
The name of the audit. It is displayed in the selection menu box.

Query Statement
A single, complete SQL select statement that retrieves information about corrupted data.

Repair Statement
A complete SQL statement that corrects one row. This statement may be called for every
row returned by the select statement. String substitution is performed on the statement
before execution. Values from selected columns are substituted where column names are
enclosed in square brackets.

For example, the following repair statement:
− update my_table set valid = "Y"
− where tabid = [tabid] and username = "[username]";

1. A query returns the following rows:
− select * from my_table where valid = "N";
− tabid username perms valid
− 203 |eric |su-id--|N
− 203 |ken |su-id--|N
− 213 |john |su-----|N

2. The repair statement expands to the following:
− update my_table set valid = "Y"
− where tabid = 203 and username = "eric ";
− update my_table set valid = "Y"
− where tabid = 203 and username = "ken ";
− update my_table set valid = "Y"
− where tabid = 213 and username = "john ";

Note: If you use the M option under the prompt section, the repair sends a message
that dbadmin cannot perform a repair.

Prompt
Specifies how to handle the repair. You can specify one of four values, which are:

• Y (indicates that you should be prompted on every cycle)
• N (indicates to not notify you whether or not the records need to be repaired)
• U (allows you to choose Y or N at run time)
• M (displays informative messages from the repair section when no repair is possible)

Common Programs 212 System Reference

Example Audit Script
Audit scripts are created by default in $CARSPATH/modules/util/informers. The following is a
sample audit script that looks for systabperm rows that no longer refer to a valid table.

audit
name = 'Extra Systabperm Entries'
query = '
select username, usertype, tabid from
 systabperm
where
 tabid not in (select tabid from systables) or
 tabid < 100;
'
repair = '
delete from systabperm where
 username = "[username]" and
 usertype = "[usertype]" and
 tabid = [tabid];
'
prompt = 'U'
Parts of an audit script

Additional Table
Dbadmin creates the following table based on /etc/passwd.

create temp table passwd
 (
 username char(8),
 uid int,
 gid int
) with no log;

System Reference 213 Common Programs

Schedule Entry Program

Introduction
To create and maintain Schedule records for individuals or entities, you can use the Schedule
Entry program (schdentry). Like other entry programs, it retrieves and maintains information by
ID number, and enables users to track scheduled activities (e.g., admissions counselors’ trips to
high schools or the registrar’s appointments with students).

Similar to other CX entry library programs, Schedule Entry displays a query screen from which
the user accesses the ID lookup feature. Typically, Schedule Entry does not permit the entry of
ID records, but with appropriate permissions it is possible for users to add IDs.

Windows Available in Schedule Entry
Schedule Entry offers access to many of the same records as other entry programs, and enables
users to view or update record information through detail windows. Detail windows available
from Schedule Entry are:

• Address runcodes
• Contacts
• First relation
• Second relation
• Schedule activities
• Other address
• Other name

Of these windows, the Schedule Activities window is unique to Schedule Entry. It displays the
contents of the Schedule record (schd_rec).

Records Used in Schedule Entry
Records used in Schedule Entry are:

• aa_rec
• addree_rec
• adr_rec
• ctc_rec
• profile_rec
• relation_rec
• relsec_rec
• schd_rec
• userid_rec

Setup Issues for Schedule Entry
Consider the following table setup and permissions issues for implementing Schedule Entry:

• If you enable users to add id recs through Schedule Entry, you must have already set up
the standard common tables (i.e., st_table, title_table, ctry_table, zip_table, aa_table).

• To use Schedule Entry most effectively, you must also establish the tables used by the
scroll screens; none, however, relate directly to Schedule Entry.

• To add records through Schedule Entry, a user must be a member of one of these groups:
− student
− admissions
− development
− carsprog

• Only members of the carsprog group can delete Schedule records.
• Only members of either the carsprog or addid group can add ID records.

Common Programs 214 System Reference

Sortpage Program

Introduction
Jenzabar created the Sortpage program (sortpage) to handle the sorting of output when records
get out of their original order. The following example explains a use for sortpage:

• The ACE report sorts the output by zip code from the zip code value in the ID record
(id_rec)

• The Address program (ADR) takes the ACE report output and inserts the correct address
for an individual, which may not be the address in the associated ID Record (id_rec).

• The output, therefore, is no longer sorted in the original zip code order.

Sortpage uses the UNIX sort utility and values supplied by ACE to do the sorting.

Macros You Must Set
You must set the following macros to allow for placing the sortpage script into any ACE report
used for letter/label production.

SRT_DEFINE
Defines the variables needed for the ACE report to function using sortpage. To use
sortpage, you must place SRT_DEFINE in the define section of ACE (See Informix manual
on ACE reporting).

Note: The macros are structured so that the SRT_DEFINE macro can be included at
the top, even though sortpage will not be used. The key macro for inclusion is
the following macro, SRT_SORT_BY.

The following is the expanded version of SRT_DEFINE:

 function _dbtype
 function _dbsize
 variable _srt_type type integer
 variable _srt_long type long
 variable _srt_double type double

SRT_SORT_BY
Used to tell sortpage what fields are to be used in sorting. You can use SRT_SORT_BY in
addition to or in place of the ACE sort clause. The format of the macro is

SRT_SORT_BY(VALUE1 [descending],...,VALUEn)

Note: The optional word 'descending' reverses the order, ascending order is the
default. An example of a SRT_SORT_BY clause would be:

 SRT_SORT_BY(ADR_ZIP_VALUE,ADR_NAME_VALUE)

 The macro parameters, ADR_ZIP_VALUE and ADR_NAME_VALUE are keywords to the
SRT_SORT_BY macro. These are replaced by ADR commands to include the named
values from the output of ADR on the ID number processed. For example, the record being
processed by ADR has the ID number of 100, and the zip code from the ID record is 45056.
ADR checks and finds an alternate address for that ID and replaces the address with a zip
code of 89000. The macro ADR_ZIP_VALUE will pass the zip code supplied by ADR,
89000, instead of the home address zip code, 45056.

Note: The SRT_SORT_BY macro expands to nothing in ACE, but rather is used later
by the SRT_HEADER and SRT_VALUES macros.

 The sortpage macros within ACE are set up to automatically include everything
needed by sortpage if the macro SRT_SORT_BY is found in the ACE report.

System Reference 215 Common Programs

Note that even if the macro is commented out, the sort information will still be
included since the macro pre-processor does not check for ACE comments.

SRT_HEADER
Automatically included with the LTR macros, expands to create the necessary first page
header information needed by sortpage. The number of sort fields and length are defined by
this macro. This also begins the sorting process, which continues when the program
reaches the SRT_END macro.

You can subsort within one ACE report output by using multiple combinations of
SRT_HEADER and SRT_END. The actual ACE commands generated are as follows:

 print "$$$", "fields", ":";
 print "10", "", "";
 print ",";
 print "32", "", "";
 print
 print "$$$", "names", ":";
 print "zip", "", "";
 print ",";
 print "name", "", "";
 print

The above produces the following output:

$$$fields:10,32
$$$names:zip,name

SRT_VALUES
Expands to put the actual values to pass to sortpage. The macro expands to the following
ACE commands (using our zip,name sort example):

 print "$$$", "values", ":"
 print "&&&","value",":","zip";
 print
 print "&&&","value",":","name";
 print

The above produces the following output:

 $$$values:
 &&&value:zip
 &&&value:name

Note: The '&&&value:' is interpreted by the ADR program and replaced by the actual
values passed back from ADR. Thus, from the example, the output passed to
sortpage would look like:

 $$$values:
 89000
 Smith, John R.

SRT_SORTBREAK
Instructs sortpage that this is the end of a group of data. The data are sorted then printed.
Text from this point until the next values command is copied directly to stdout. The actual
ace commands generated are:

print "$$$", "sortbreak", ":"

SRT_END

Common Programs 216 System Reference

Automatically included by LTR macros, marks the ending point of sorting. The actual ace
commands generated are:

print "$$$", "end", ":"

The above produces the following output:

 $$$end:

Sample ACE Report
The following is an example ACE report that uses sortpage macros.

define
 .
 .
 SRT_DEFINE
 end
 .
 .
 read into a
 .
 .
 end
 SRT_SORT_BY(ADR_ZIP_VALUE,ADR_NAME_VALUE)
 format -------------
 first page header |
 . |
 . |
 SRT_HEADER |
 | -----> Combined into one
 on every record | macro for ADR
 . |
 . | LTB_FORMAT
 SRT_VALUES |
 . |

 on last record --------------
 . |
 . |
 SRT_END | -----> Combined into macro
 . |
 . | LTB_LAST_REC
 end --------------

System Reference 217 Common Programs

Program Flow
The following diagram summarizes the logic flow followed by sortpage.

 <---<
 | ^ |
 v | |
 -------------------------- | |
 (1) | Read input line from | | |
 | file or CRT | ---------------------- |
 -------------------------- | Store information in | |
 | | temporary file | |
 | ---------------------- |
 | End of file ---------------- ^ |
 |--------------->| Exit Program | | |
 | ---------------- | |
 | Not SORTPAGE command | |
 |-------------------------------------> |
 | |
 v |
 -------------------------- |
 (2) | Process Command | |
 | (expanded below) | |
 -------------------------- |
 | |
 v |
 --^
 |
 <-------------------------------------<--------------------<
 | | |
 v | |
 -------------------------- | |
 | Process Command | | |
 -------------------------- | |
 | | |
 v | |
 -------------------- | |
 (2.1)| Header command | -------------------- |
 | Open sort file |-------------------->| Store information | |
 ------------------- | in sort file | |
 | -------------------- |
 v | |
 ----------------- | |
 (2.2)| Values |------------------------------>| |
 ----------------- |
 | |
 v |
 ----------------- ------------------- |
 (2.3)| End Command |----------------------->| Sort sort file |-------^
 ----------------- | Merge with inter- | |
 | | mediate file | |
 | --------------- ------------------- |
 >------| Bulk sorting | |
 | Option |-----------------------------------^

Sortpage Processing
The system passes information to sortpage until an End of File is reached, at which time the
intermediate file is closed. The file is not sorted at this time unless an End command had already
been reached.

• If no End command was passed, sortpage, does not perform sorting.
• If the line is not a sortpage command (sortpage command must be on a separate line than

the other data lines), sortpage places the line in a temporary file for later merging with
sorted information.

Common Programs 218 System Reference

Sortpage Process Commands
The following are the commands executed by the sortpage command.

Process Command
Executed if a sortpage command is found.

Header Command
Opens the sort file and defines the lengths for each sort field.

Values Command
Defines the value for each sort field for the record, and places the value in the sort field.

End Command
Sorts the sort file and merges the temporary file (holding the non-sortpage input) in with the
sorted information, which is passed to the output file or device.

Note: If the End of File has not been reached, Step 1 is continued until all lines have
been read and processed.

Bulk Mailing Mode
Sortpage has a bulk mailing sorting mode, based on Postal Service guidelines for third class
mail. To use this mode, sortpage must have zip and state specified in the sort key as ascending
keys. You can also add additional keys, (e.g., the resource) either before or after state and zip.

Sortpage will create packages of ten pieces or more of data that have the same:
• Five digits
• Three digits
• State
• Leftover values

Note: The system sends mail to the user with a report of the size, type and contents of each
package.

The following is an example of bulk mail sorting output.

Sample Mail File:
 Information:
 19 5-Digit 'D'-Package 01002
 20 5-Digit 'D'-Package 01201
 44 3-Digit '3'-Package 010xx
 17 3-Digit '3'-Package 012xx
 16 3-Digit '3'-Package 013xx
 11 State 'S'-Package ME
 11 State 'S'-Package CT
 9 Mix State 'MS'-Package

Setting Up Bulk Mail Sorting
You can set up bulk mail sorting using one of the following methods.

• Add the -b option to the sortpage command line
• Add the macro SRT_BULKMODE before or just after the SRT_HEADER macro.

Note: The system automatically uses the SRT_BULKMODE if the tctc_bulkmode field
contains any one of {S, P, B, Y or X}.

System Reference 219 Common Programs

Program Error Messages
Sortpage sends error messages through user mail. The following error messages can occur
while running sortpage:

• “Cannot open temporary file.”
• “Cannot open sort file.”
• “Could not sort input”
• “Fields exceed Names”
• “Names exceed Fields”
• “The number of fields in the fields record is different from the names record.”
• “The temporary file being used for intermediate storage of all the lines of input could not be

opened (created). Probably due to permissions.”
• “The temporary file being used for sorting, i.e., the file having the fields and values in it,

could not be opened (created). Probably due to permissions.”
• “The UNIX sort command failed for some reason. Possibly the lengths were incorrect or

the wrong data type was specified.”

Crash Recovery
Since sortpage does not access the database directly, but rather files storing data read from
these files, the database will remain intact if the system crashes while running sortpage. The
final sorted output file may not have finished, so the sortpage option may be restarted from the
beginning. The input file passed to sortpage is never updated; all information is passed to
temporary files for subsequent sorting.

System Reference 221 Entry Library

SECTION 9 – JENZABAR CX ENTRY LIBRARY

Overview

Introduction
This section describes the uses of the Entry Library program. The design of CX Entry Library
(libentry) program provides the ability to customize entry programs to fit your institution’s
individual requirements. CX products perform data retrieval and database maintenance using the
entry library. Data retrieval and database management is controlled for each individual entry
program through the use of a set of arrays that describe the following for the library:

• What tables are to be used
• What the relationships are between the tables
• What tables have detail windows associated with them
• What the update processing order of the tables should be

You make the above specifications to the Entry Library program’s definition file, the def.c file. In
addition, you can specify special processing conditions for a table or column within the array
definitions. In the def.c file, you can also:

• List the tables and detail windows (or scroll screens) accessible by the program
• Specify table relationships and other special processing considerations

Entry Library 222 System Reference

Adding Tables for Use in Entry Library Programs

Introduction
By modifying the def.c file for an Entry Library program, you can do the following with tables:

• Add a table
• Add a scroll table (detail table)
• Control the display of table data

Adding a Table
To specify a table for use in an Entry Library program, you must add a line to the filename array
of the program’s def.c file. When you specify a table in the filename array, remember the
following:

• For each component column in the specified index, specify a line in the common fields
array

• You can add additional lines in the check fields array to provide special column processing

Adding a Detail Table
To specify a detail window in an Entry Library program, you must add the following to the
program’s def.c file:

• Add the detail table to the filename array, if the table is not already present
• Add the detail table to a line to the scrollfiles array

Displaying Specific Detail Table Rows on a Form
While you can only process one detail table row at a time on a form, you can display multiple
rows through the use of table lookups. You can control the display of rows by using the match
attribute in the screen definition file. By default, the first detail row loaded from the database
displays in the form.

For example, for a form concerned with processing undergraduates, specify a match value of
UNDG for the program column. This specification causes one of the following in the form screen:

• Display of an undergraduate Program Enrollment record
• Creation and display of a new defaulted undergraduate Program Enrollment record

Adding a Lookup Table
You specify table lookups in the screen file for the entry program form. The CX screen package
(SRC) can perform table lookups directly against the database. For more information on
specifying table lookups, see the following section of this document: Creating Screen and Form
Definition Files.

Limiting the Number of Detail Tables in a Form
To limit the number of detail windows accessed in an entry program form, do the following in the
attributes section of the form:

• Add a new field: scroll_files_limited_to:
• Set the text attribute to the comma or space separated list of detail windows that should be

accessible.

The following is an example:

scroll_files_limited_to: optional,
 text = "aa, ctc, rel, relsec";

System Reference 223 Entry Library

Entry Library Def.c Macros

Introduction
The def.c file for an Entry Library program contains macros for specifying default values for the
associated entry program. You specify the macro values in the filename array of the def.c file.

Def.c Macro Definitions
The following macros are specified in the def.c file.

Note: Each of the macros are used in the prog_param array. You can override the macros
with a command line parameter.

SCREEN_PATH
Specifies the first default path to be searched under $CARSPATH/install/scr for screens
referenced by the program. If screens are not found in the SCREEN_PATH then the
program will search in $CARSPATH/install/scr/Lib/libentry for the screen.

DEFAULT_MENU
Specifies the name of the default menu screen.

IDTYPE_SCREEN
Specifies the location of the default Idtype window, invoked with the ID-Type command from
any ID field.

MENU_TITLE
Specifies the default title on the main ring-menu.

Example of Macros
The following is an example specification of macros in a def.c file.

#include "mac.h"
#define SCREEN_PATH "admit/admentry/"
#define DEFAULT_MENU "admmenu"
#define IDTYPE_SCREEN "Lib/libids/type"
#define MENU_TITLE "ADMISSIONS ENTRY"

Entry Library 224 System Reference

Entry Library Def.c Variables

Introduction
The def.c file for an Entry Library contains variables for specifying program parameters for the
associated entry program. You specify the variable values in the Local variables and program
parameters array of the def.c file. You must define and initialize variables in the variables section
of the array before the variables can be used in the program parameters (prog_param) section,
the section of the file where program parameters are defined. The program parameters section
of the array makes variables available for use by the entry library.

Note: The actual variable names used are not important; however, the labels associated with
these variables in the Local variables and program parameters array are important to
the processing of the program.

 Typically, parameters can be passed to override the initial value of these variables.

Variables That You Can Specify
The following are definitions and initializations of variables used by the program associated with
the def.c file.

Auto_mode
Specifies to the entry library to automatically select the appropriate mode: Query, Insert, or
Update. To set this mode, you must define this variable as True. If you define this variable
as False, the user must manually specify a query and then an update.

Force_query
Specifies to the entry library that an unsuccessful query must occur before initiating Insert
mode. To set this mode, you must define this variable as True. If you define this variable as
False, the user can initiate Insert mode at any time.

Sel_2nd_query
Specifies that, when the Find ID command is selected by the user, the entry library allows
the user to specify an additional table in which to restrict the ID search. For example, the
program could restrict the ID lookup to those who are alumni. The list of possible tables in
which to restrict the search depends on those tables that are bound on the associated form.
To set this mode, you must define this variable as True.

Debug_level
Specifies the level of progress messages to display. Normal messages appear from level 1
to 7. You can increase the level of debugging messages from levels 9 through 60. The
system displays messages set at or below the debug level that you specify.

Pause_level
Specifies the message level, and higher, for which the program should be paused. If a
message appears, and the pause level is less than or equal to the level of the message, the
program pauses for the user’s response.

System_uid
Tracks the user ID that last added or updated a row. The library initializes the variable,
which is used during an add or update to a row.

System_gid
Tracks the group ID that last added or updated a row. The library initializes the variable,
which is used during an add or update to a row.

System Reference 225 Entry Library

Today
Tracks the last add and update of a row. The library initializes the variable, which is used
during an add or update to a row.

Example of Variables
The following is an example specification of variables in a def.c file.

/* Local variables and program parameters */
int auto_mode = FALSE;
int force_query = FALSE;
int sel_2nd_query = FALSE;
int debug_level = 0;
int pause_level = 1000;
int system_uid; /* buffer for system user id */
int system_gid; /* buffer for group id */
long common_id; /* buffer for common id */
long today; /* today's INFORMIX date */
char ofc_addby[] = "ADM "; /* Default office add by code */
char prog_code[] = "UNDG"; /* Default program code to use */
char site_code[] = "CARS"; /* Default site code to use */
char tick_code[] = "ADM "; /* Default tickler code to use */

Entry Library 226 System Reference

Entry Library Def.c Local Functions

Introduction
Jenzabar designed Entry Library to allow for easy addition of local functions to perform necessary
business logic in the application. There are two types of functions:

• Check functions, which the user triggers when modifying a value of a column. You specify
check functions in the check field array.

• Special functions, which operate at the table/row level. You specify special functions in the
filename array, specifically in the special flags and special function sections of the filename
array.

You should declare any local functions that you create in the Local functions array of the library
entry def.c file.

Note: Typically, locally created functions are located in the select.c or chklocal.c source files
in the program directory.

Check Functions
The following are check functions that exist in the library.

ent_setdefault
Sets column value based upon a lookup-joining clause, only if the current value is zero or
blank.

ent_setfield
Sets column value based upon a lookup-joining clause.

ent_chk_id
Verifies that an ID column value exists in some other table to ensure that the ID is a faculty
member, business, or any other ID-related entity.

ent_chk_ss
Verifies that the entered social security number does not already exist in the database.

Special Functions
The following are special functions that exist in the entry library.

idperm
Specifies to the program to perform a table lookup to verify that a user's UID or GID exists in
the ID Permissions table (idperm_table) for the office code on one of the following
associated records being updated:

• ID record (id_rec)
• Profile record (profile_rec)

Note: This function requires the use of the ENT_FLGET and ENT_FLUPD special
flags. This function does not stop you from changing values on the ID and
profile columns on the screen, but disallows any changes from being written to
the database.

ent_spcfunct
Implements the sorting and filtering logic available on scroll tables viewed in detail windows.

Note: This function uses the setup information from the following tables:
− Entry Selection table (entsel_table)
− Entry Selection Criteria table (entselcrit_table)

 You must set the special function flags, ENT_SCSTART and ENT_SCGET, in
the filename array for the table that you want to sort and filter.

System Reference 227 Entry Library

When you enter the scroll region set for a scroll table (set with ENT_SCSTART), the system
sorts the rows based upon the current sort criteria. Upon retrieving rows for display (set with
ENT_SCGET), the system checks the row for meeting display criteria and either displays or
skips the row.

Local Functions Example
The following is an example specification of local functions.

/* Local functions */
int chk_id();
int idperm();

Entry Library 228 System Reference

Entry Library Def.c Program Parameters

Introduction
The Program Parameters array (prog_params) of an Entry Library program’s def.c file does the
following:

• Identifies which options are expected and recognized by the program
• Provides the label mapping to the parameters that is used by the entry library to gain

access to the locally defined program variables

Parameter Types
The prog_params array identifies which options are expected and recognized by the program.
The param_type structure consists of the following seven elements.

Note: The seven elements are true for all programs using the CX parameter routines.

1. option
 Defines a recognized option to the program with a single character. If you use a \0, the

parameter being defined is not accessible on the calling line of the program.

2. buffer address
 Points to the current value of the option. The option should be a character pointer and

therefore there is a (char *) in front of non-character type variables. If a string is used
here, such as ADMMENU, the length variable must be zero.

3. type
 Identifies the type of variable. Valid values are:

• PRM_CHAR
• PRM_LOGICAL
• PRM_INT
• PRM_LONG
• PRM_DATE
• PRM_DOUBLE
• PRM_FLOAT

4. length
 Identifies the length of PRM_CHAR type variables.

Note: The value should be zero for all non-char type variables and also on those char
type variables where a string was given for the buffer address.

5. mask
 Identifies special characteristics of the option.

Note: Remember the following about the mask element:
− If the option is required, PRM_REQUIRED should appear in the field.
− If the type is PRM_LOGICAL, PRM_TRUE or PRM_FALSE should be

specified. PRM_TRUE/PRM_FALSE means that if the option is specified
the variable should be set to TRUE/FALSE.

− To place two attributes in the mask field, place a single vertical bar
between the attributes, for example: PRM_REQUIRED|PRM_TRUE.

6. label
 A short identifier for the option, usually one word. This name, along with the

PROG_BUFFER macro, is used in the arrays below to specify relationships between
this option and columns from the database.

7. description

System Reference 229 Entry Library

 A longer multi-word string used for producing usage messages.

Parameter Labels
The single character option letter and the variable name are of no importance to entry library.
Jenzabar recommends that the single letter options are associated with the same labels across
all entry programs for the sake of consistency. The entry library requires the following parameter
labels:

• auto_mode
• debug_level
• display_only
• form_selected
• idtype_screen
• menu_title
• menuname
• pause_level
• sel_2nd_query
• scr_path

Program Parameters Example
The following is an example specification of program parameters.

struct param_type prog_params[] = /* array of common db fields */
 {
 {'d', (char *)&display_only, PRM_LOGICAL, 0, PRM_TRUE, "display_only",
 "pass parameter to limit to display only"},
 {'p', prog_code, PRM_CHAR, 4, NULL, "prog",
 "program code to be used, default is 'UNDG'"},
 {'T', tick_code, PRM_CHAR, 4, NULL, "tick",
 "tickler code to be used, default is 'ADM '"},
 {'o', ofc_addby, PRM_CHAR, 0, NULL, "ofc_added_by",
 "specify office running program, default is 'ADM'"},
 {'m', DEFAULT_MENU, PRM_CHAR, 0, NULL, "menuname",
 "name of menu screen, default is 'admmenu'"},
 {'f', (char *)NULL, PRM_CHAR, 0, NULL, "form_selected",
 "name of desired form instead of using a menu"},
 {'t', (char *)&today, PRM_DATE, 0, NULL, "today",
 "effective date for changes"},
 {'L', site_code, PRM_CHAR, 4, NULL, "site",
 "site code to be used"},
 {'P', SCREEN_PATH, PRM_CHAR, 0, NULL, "scr_path",
 "path for screens, default is 'admit/admentry/'"},
 {'a', (char *)&auto_mode, PRM_LOGICAL, 0, PRM_TRUE, "auto_mode",
 "pass parameter to automatically enter query mode"},
 {'M', MENU_TITLE, PRM_CHAR, 0, NULL, "menu_title",
 "pass parameter to change the ring menu title"},
 {'D', (char *)&debug_level, PRM_INT, 0, NULL, "debug_level",
 "specify higher level for more messages (1,3,5,7,9)"},
 {'S', (char *)&pause_level, PRM_INT, 0, NULL, "pause_level",
 "specify lower number for more pauses (1-9)"},
 {'\0', (char *)&system_uid, PRM_INT, 0, NULL, "system_uid",
 "system's user id of person running program"},
 {'\0', (char *)&system_gid, PRM_INT, 0, NULL, "system_gid",
 "system's group id of person running program"},
 {'w', IDTYPE_SCREEN, PRM_CHAR, 0, NULL, "idtype_screen",
 "path for type window, default is 'Lib/libids/type'"},
 {'\0', (char *)&common_id, PRM_LONG, 0, NULL, "id",
 "buffer to hold id number, will soon be obsolete"},
 {'q', (char *)&sel_2nd_query, PRM_LOGICAL, 0, PRM_TRUE, "sel_2nd_query",
 "allow additional selection restrictions on name query"},
 };
int max_params = (sizeof(prog_params)/sizeof(struct param_type));

Entry Library 230 System Reference

Detail Tables

Introduction
The def.c file for an Entry Library program contains the scrollfiles array for specifying detail tables
for the associated entry program. The scrollfiles array identifies files from the def.c’s filename
array that have multiple records and a related scrolling form. The detail tables are displayed in
detail windows (scroll screens).

Def.c Scroll Tables Array
The scrollfiles array structure (scfile_type) consists of five fields, which are as follows:

filename
The name of the database file

screen name
The name of the progscr for this detail window

option
The character used to select this detail window from the pop-up menu

line 1 description
The user-friendly description of the detail window. The description appears in the detail
window pop-up menu, displayed when you select Scroll.

line 2 description
The user-friendly description of the detail window, if the description of line 1 is an empty
string, this description line appears in the pop-up menu.

Note: This field should typically be set to the empty string, "".

Example Scroll File Array
The following is an example specification of a scroll file array.

struct scfile_type scrollfiles[] = /* array of scroll files */
 {
 { "accomp_rec", "accomp", 'A', "Accomplishments ", ""},
 { "ctc_rec", "ctc", 'C', "Contacts ", ""},
#ifdef ENABLE_FIN_AID
 { "aid_rec", "aid", 'D', "fin aiD awards ", ""},
#endif
 { "ed_rec", "ed", 'E', "Education ", ""},
 { "enr_stat_rec", "enrstat", 'T', "", "enrollmenT status "},
 { "relation_rec", "rel", 'F', "First relation ", ""},
 { "relsec_rec", "relsec", 'R', "", "second Relation "},
 { "hold_rec", "hold", 'H', "Holds ", ""},
 { "int_rec", "int", 'I', "Interests ", ""},
 { "involve_rec", "invl", 'V', "inVolvements ", ""},
 { "aa_rec", "aa", 'O', "", "Other address "},
 { "addree_rec", "addree", 'N', "", "other Name "},
#ifdef ENABLE_MULTISITE
 { "site_rec", "site", 'S', "Sites ", ""},
#endif
#ifdef ENABLE_IMMUNE
 { "immune_rec", "immune", 'U', "immUnizations ", ""},
#endif
 { "exam_rec", "exam", 'X', "", "tests/eXams "},
 { "emp_rec", "emp", 'W', "", "Work"},
 };
int max_scfiles = (sizeof(scrollfiles)/sizeof(struct scfile_type));

System Reference 231 Entry Library

Tables for Entry Library Screens

Introduction
The filename array of the Entry Library def.c file identifies the tables that are bound to the
screens used by the entry program. The file_type structure consists of two required fields and
three optional ones. The fields are as follows:

• filename
• getkey
• putkey
• special flags
• special function

Filename Array Fields
The following fields are in the filename array.

filename
Specifies the name of the database table.

getkey
Specifies the index to be used for retrieving rows from this table

Note: The columns that compose the getkey must appear in the common fields array
below so that the program will know what values to fill into the index columns
before loading rows from the database table. In addition, the order in which the
tables are listed in the filename array are important when the loading of one
table’s rows is dependent upon the values of another table.

putkey
Specifies the index to be used for updating rows from this table. This information is
determined by the library if the value is set to NULL

special flags
Specifies any special processing on the table

special function
Specifies a locally written function or a standard entry library function prepared to handle
specified conditions. You must enter the above if any special flags were specified other
than: ENT_LOCK, ENT_AUTOINS, ENT_FORCELOAD, and ENT_ADDID.

Special Flags You Can Specify
The following are the special flags that you can specify:

ENT_LOCK
Locks the row and disallows selection or update by other users

CAUTION: Locks can seriously affect the ability of others to perform queries against
the database. The application update logic verifies that no one else has
modified the row.

ENT_AUTOINS
Allows new rows to be added due to defaulted values without requiring modification by the
user.

Note: If you do not use this flag, the program only adds rows if the user changes a
column value within the row.

ENT_FORCELOAD

Entry Library 232 System Reference

Causes the row to be loaded even when none of the fields from the table are bound on the
screen currently in use.

Note: By default, the program retrieves rows only if the table name is bound to the
currently active form.

ENT_SCSTART
Provides an alternate sorting of the rows. This is a special function flag that is checked at
the start of entry in a scrolling region (or detail window).

ENT_SCGET
Filters out rows that are not of interest, or you do not want to see. This is a special function
flag that is checked during the retrieval of each row within a scrolling region (or detail
window).

ENT_ADDID
Allows the ability to add or update an ID from within the related scroll region via a PTP
(process-to-process) connection to identry.

Other Special Function Flags
The following special flags work in conjunction with special functions:

• ENT_FLADD
• ENT_FLUPD
• ENT_FLDEL
• ENT_FLGET
• ENT_FLWRITE
• ENT_FLALL
• ENT_SCADD
• ENT_SCUPD
• ENT_SCDEL
• ENT_SCCHK
• ENT_SCALL
• ENT_ALL
• ENT_READONLY
• ENT_NOREAD
• ENT_UPDATE
• ENT_NOINSERT
• ENT_NODELETE
• ENT_NOPERMS

Table Level Functions
Two table level functions come with Entry Library. They are as follows:

ent_spec_func
This special function manages the appropriate calls to sort and filter routines based on
criteria as defined in the Entry Selection table (entsel_table) and Entry Selection Criteria
table (entselcrit_table).

Note: You must use the ENT_SCSTART and ENT_SCGET special flags with this
function.

idperm

System Reference 233 Entry Library

This special function performs a table lookup to verify that a user's UID or GID exists in the
ID Permissions table (idperm_table) for the office code on the ID record (id_rec) or
associated Profile record (profile_rec) being updated.

Note: You must use the ENT_FLGET and ENT_FLUPD special flags with this
function.

Special Flag Example
The following is an example specification of special function flags.

struct file_type filename[] = /* array of filenames */
 {
#ifdef ENABLE_IDPERMS
 { "id_rec", "id", NULL, ENT_LOCK|ENT_FLGET|ENT_FLUPD,idperm},
#else
 { "id_rec", "id", NULL, ENT_LOCK},
#endif
 { "adm_rec", "adm_prim","adm_prim", ENT_LOCK|ENT_AUTOINS},
 { "tick_rec", "id", "tick_prim",
 ENT_LOCK|ENT_FORCELOAD},
#ifdef ENABLE_IDPERMS
 { "profile_rec", "id", NULL,
 ENT_LOCK|ENT_AUTOINS|ENT_FLGET|ENT_FLUPD,idperm},
#else
 { "profile_rec", "id", NULL, ENT_LOCK|ENT_AUTOINS},
#endif
 { "church_rec", "id", NULL, ENT_LOCK},
 { "bus_rec", "id", NULL, ENT_LOCK},
 { "milit_rec", "id", NULL, ENT_LOCK},
 { "disab_rec", "id", NULL, ENT_LOCK},
 { "sch_rec", "id", NULL, ENT_LOCK},
 { "prog_enr_rec", "prog_prim", NULL,
 ENT_LOCK|ENT_FORCELOAD},
 { "ctc_rec", "id", "ctc_no", ENT_AUTOINS|ENT_SCSTART|ENT_SCGET,ent_spec_func},
 { "site_rec", "id", "site_no", ENT_AUTOINS},
 { "enr_stat_rec", "id", "enrstat_key1"},
 { "exam_rec", "id", "exam_no", ENT_SCSTART|ENT_SCGET, ent_spec_func},
 { "hold_rec", "id", "hld_no"},
 { "immune_rec", "id", "immune_no"},
 { "int_rec", "id", "int_prim", ENT_SCSTART|ENT_SCGET, ent_spec_func},
 { "involve_rec", "id", "invl_no"},
 { "aa_rec", "id", "aa_prim"},
 { "aid_rec", "id", "aid_prim", ENT_SCSTART|ENT_SCGET, ent_spec_func},
 { "addree_rec", "prim_id", "addree_prim"},
 { "accomp_rec", "id", "accomp_no"},
 { "relation_rec", "prim_id", "rel_no", ENT_ADDID},
 { "relsec_rec", "sec_id","relsec_no", ENT_ADDID },
 { "ed_rec", "id", "ed_no", ENT_SCSTART|ENT_SCGET, ent_spec_func},
 { "emp_rec", "id", "emp_no", ENT_ADDID},
 };
int max_files = (sizeof(filename)/sizeof(struct file_type));

Entry Library 234 System Reference

Table Update Order

Introduction
The updateorder array of the Entry Library def.c file specifies the order in which the program
performs table updates. The update order can be an important processing concern.

For example, it is absolutely necessary that the Contact record (ctc_rec) be processed before the
Tickler record (tick_rec). This is because if a Contact record is updated, the program is
supposed to reset the Tickler record's nextreview date value. If the Tickler record is written
before the new or updated Contact record, then the update of the Tickler record’s last_upd_date
will not get written to the database.

Update Order Array Fields
The updateorder array ffile_type structure consists of the following two fields.

filename
This field is the name of the database file.

index
This field is set by the program. Leave as 0.

Matching Entries in the Filename Array
The number of entries in the updateorder array must match the number of entries in the filename
array. The entry library checks that both arrays have the same number of entries and prints an
error message if they do not match. The entry library only verifies the number of entries. It is
important that all tables listed in the filename array are also listed in the updateorder array.

System Reference 235 Entry Library

Update Order Array Example
The following is an example specification of an update order.

/* file update order */
struct ffile_type updateorder[] =
 {
 { "id_rec", 0 },
 { "adm_rec", 0 },
 { "church_rec", 0 },
 { "bus_rec", 0 },
 { "sch_rec", 0 },
 { "ctc_rec", 0 },
 { "tick_rec", 0 },
 { "prog_enr_rec", 0 },
 { "profile_rec", 0 },
 { "milit_rec", 0 },
 { "disab_rec", 0 },
 { "enr_stat_rec", 0 },
 { "exam_rec", 0 },
 { "hold_rec", 0 },
 { "immune_rec", 0 },
 { "int_rec", 0 },
 { "involve_rec", 0 },
 { "aa_rec", 0 },
 { "aid_rec", 0 },
 { "addree_rec", 0 },
 { "accomp_rec", 0 },
 { "relation_rec", 0 },
 { "relsec_rec", 0 },
 { "ed_rec", 0 },
 { "emp_rec", 0 },
 { "site_rec", 0 },
 };
int max_updfiles = (sizeof(updateorder)/sizeof(struct ffile_type));

TABLENAME Array in an Entry Library Program
The following two lines satisfy the linking requirements of the entry library for a table.

struct table_type tablename[1];
int max_tables = 0;

Note: The tablename array is now obsolete due to enhancements in the screen package.

Entry Library 236 System Reference

Table and Field Links

Introduction
The Entry Library def.c file contains arrays for specifying links to tables and common fields
between tables to be used by an entry program. The arrays are as follows:

• Common Fields array
• Update Field array
• Add Field array

Common Field Array Structure Definition
The three linking arrays all use the tfield_type structure for specifying relationships between fields
of different files. The tfield_type structure consists of five fields. The fields are as follows.

tablename
Name of the database table used by the program

destination column
Name of the column in the destination table that is to be set to the value of the common field

destination tablename
Name of the tablename that contains the destination column. A NULL in this field indicates
that the destination tablename is the same as the tablename specified in the first field of the
structure.

Note: This field is always set to NULL in this array.

common column
Name of column whose value will be copied into the destination column buffer.

common table
Name of the table that the common column is located in. If you specify PROG_BUFFER,
the common column name corresponds to the label in the prog_params array.

Common Field Array
Entry Library programs use the commonfld (common field) array to determine the common fields
between tables. The entry program uses this information when:

• Binding fields to forms
• Loading rows
• Updating row buffers before writing the row to the database.

Note: The common table specified must appear in the filename array before the destination
file appears in the common field array.

Information for Loading Rows
When loading rows from a table, an Entry Library program uses the following in the def.c file:

• The getkey field of the filename array to identify which key to use to retrieve rows.
• The common field array for locating the correct row using the specified getkey.

Before loading the row(s), the program sets the key fields with the desired values from common
fields of other rows (or parameters passed to the program) as specified in the common field
array.

Note: All fields specified in the getkey field (in the filename array) must also appear in the
common fields array.

System Reference 237 Entry Library

Buffers for Binding Columns and Updating Records
A Entry Library program uses one buffer for multiple fields for both of the following:

• Binding columns to forms
• Updating records before writing them to the database

The use of one buffer has the following advantages:
• Immediate update of screens when two common fields are bound to the same form. If the

value changes in one column, the value in another common column also changes.
• Change of all files with the fields in common with the changed field when the program

writes records to the database

Common Fields Array Example
The following is an example specification of a common fields array.

struct tfield_type commonfld[] = /* array of common db fields */
 {
 {"id_rec", "id", NULL, "id", PROG_BUFFER},
 {"adm_rec", "id", NULL, "id", "id_rec"},
 {"adm_rec", "prog", NULL, "prog", PROG_BUFFER},
 {"church_rec", "id", NULL, "id", "id_rec"},
 {"bus_rec", "id", NULL, "id", "id_rec"},
 {"milit_rec", "id", NULL, "id", "id_rec"},
 {"disab_rec", "id", NULL, "id", "id_rec"},
 {"sch_rec", "id", NULL, "id", "id_rec"},
 {"tick_rec", "id", NULL, "id", "id_rec"},
 {"tick_rec", "tick", NULL, "tick", PROG_BUFFER},
 {"profile_rec", "id", NULL, "id", "id_rec"},
 {"prog_enr_rec","id", NULL, "id", "id_rec"},
 {"prog_enr_rec","site", NULL, "site", PROG_BUFFER},
 {"prog_enr_rec","prog", NULL, "prog", "adm_rec"},
 {"relation_rec","prim_id", NULL, "id", "id_rec"},
 {"relsec_rec", "sec_id", NULL, "id", "id_rec"},
 {"aa_rec", "id", NULL, "id", "id_rec"},
 {"aid_rec", "id", NULL, "id", "id_rec"},
 {"addree_rec", "prim_id", NULL, "id", "id_rec"},
 {"accomp_rec", "id", NULL, "id", "id_rec"},
 {"accomp_rec", "site", NULL, "site", PROG_BUFFER},
 {"immune_rec", "id", NULL, "id", "id_rec"},
 {"involve_rec", "id", NULL, "id", "id_rec"},
 {"int_rec", "id", NULL, "id", "id_rec"},
 {"hold_rec", "id", NULL, "id", "id_rec"},
 {"enr_stat_rec","id", NULL, "id", "id_rec"},
 {"enr_stat_rec","prog", NULL, "prog", PROG_BUFFER},
 {"exam_rec", "id", NULL, "id", "id_rec"},
 {"exam_rec", "site", NULL, "site", PROG_BUFFER},
 {"emp_rec", "id", NULL, "id", "id_rec"},
 {"ed_rec", "id", NULL, "id", "id_rec"},
 {"ed_rec", "site", NULL, "site", PROG_BUFFER},
 {"ctc_rec", "id", NULL, "id", "id_rec"},
 {"ctc_rec", "tick", NULL, "tick", PROG_BUFFER},
 {"site_rec", "id", NULL, "id", "id_rec"},
 };
int max_cmnflds = (sizeof(commonfld)/sizeof(struct tfield_type));

Entry Library 238 System Reference

Update Field Array
Entry Library programs use the updatefld (update field) array to determine the columns to be set
if the user updates a row.

Note: Columns set in this array are typically the following column types:
− last update date, which you set to the today field from the program parameters

array.
− last updated by user ID, which use the system_uid field from the program

parameters array.
− next review date in the Tickler record (tick_rec), which is set to the current date if

the user updates a Contact or Tickler record.

Update Field Array Example
The following is an example specification of the update field array.

struct tfield_type updatefld[] = /* array of common db fields */
 {
 {"id_rec", "upd_date", NULL, "today", PROG_BUFFER},
 {"sch_rec", "upd_date", NULL, "today", PROG_BUFFER},
 {"profile_rec","prof_last_upd_date", NULL, "today", PROG_BUFFER},
 {"church_rec", "upd_date", NULL, "today", PROG_BUFFER},
 {"bus_rec", "upd_date", NULL, "today", PROG_BUFFER},
 {"ctc_rec", "next_rvw_date","tick_rec", "today", PROG_BUFFER},
 {"tick_rec", "next_rvw_date", NULL, "today", PROG_BUFFER},
 };
int max_updflds = (sizeof(updatefld)/sizeof(struct tfield_type));

Add Field Array
Entry Library programs use the addfld (add field) array to determine the columns to set if the user
adds a record.

Note: Columns set in this array are typically those columns which have common fields from
the PROG_BUFFER.

 An example entry in this array is when you do not want to link two similar fields as the
same field with a common field entry. The following example specifies that when
adding a Program Enrollment record (prog_enr_rec), the major1 field will be set to the
current value of the adm_major field from the Admission record (adm_rec).

Add Field Array Example
The following is an example specification of the add field array.

struct tfield_type addfld[] = /* array of common db fields */
 {
 {"id_rec", "ofc_add_by", NULL,"ofc_added_by",PROG_BUFFER},
 {"enr_stat_rec","ofc_add_by", NULL,"ofc_added_by",PROG_BUFFER},
 {"hold_rec", "add_date", NULL, "today", PROG_BUFFER},
 {"prog_enr_rec","major1", NULL, "major", "adm_rec"},
 {"church_rec", "upd_date", NULL, "today", PROG_BUFFER},
 {"bus_rec", "upd_date", NULL, "today", PROG_BUFFER},
 {"ctc_rec", "next_rvw_date","tick_rec","today",PROG_BUFFER},
 {"sch_rec", "upd_date", NULL, "today", PROG_BUFFER},
 {"site_rec", "site", NULL, "site", PROG_BUFFER},
 };
int max_addflds = (sizeof(addfld)/sizeof(struct tfield_type));

System Reference 239 Entry Library

Special Check Functions

Introduction
The Entry Library def.c file contains the chkfld (check field) array to identify columns that have
special check functions.

Check Field Array Fields
The check field array chkfld_type structure consists of the following four fields.

column name
The name of the column in which to perform special checking

tablename
The name of the table that contains the column

function
The check function to execute

string
The parameter passed to the check function.

Check Functions You Can Specify
The following are check functions that you can specify.

Note: The column level check functions that exist within the library include:
− ent_chk_id
− ent_setdefault
− ent_setfield
− ent_chk_ss

ent_chk_id
Uses the string parameter to specify an additional table in which the ID must exist, in order
for the ID to be valid.

ent_setdefault
Fills in looked up values for columns that are blank, zero or NULL. The function uses the
string parameter to specify what column should be filled with which value. The format of the
string parameter is:

Example: [dest_table.]dest_column = [src_table.]src_column joining
src_table.join_column

ent_setfield
Fills in looked up values for columns that are blank, zero or NULL. The function is similar to
ent_setdefault except that the function sets the column regardless of the column’s current
value.

ent_chk_ss
Verifies that the ss_no entered is not a duplicate of one existing in the database.

Entry Library 240 System Reference

Check Function Array Example
The following is an example specification of the check function array.

struct chkfld_type chkfld[] = /* array of fields for special checking */
 {
 { "church_id", "profile_rec", ent_chk_id, "church_rec"},
 { "adv_id", "adm_rec", ent_chk_id, "fac_rec"},
 { "sch_id", "ed_rec", ent_chk_id, "sch_rec"},
 { "sch_id", "ed_rec", ent_setfield,
 "ed_rec.ceeb = sch_rec.ceeb joining sch_rec.id"},
 { "ceeb", "ed_rec", ent_setfield,
 "ed_rec.sch_id = sch_rec.id joining sch_rec.ceeb"},
 { "zip", "id_rec", ent_setfield,
 "city = zip_table.city joining zip_table.zip"},
 { "zip", "id_rec", ent_setfield,
 "st = zip_table.st joining zip_table.zip"},
 { "zip", "aa_rec", ent_setfield,
 "st = zip_table.st joining zip_table.zip"},
 { "ref_id", "adm_rec", ent_chk_id},
 { "cnslr_id", "adm_rec", ent_chk_id},
 { "ctc_id", "bus_rec", ent_chk_id},
 { "news1_id", "profile_rec", ent_chk_id},
 { "news2_id", "profile_rec", ent_chk_id},
 { "adv_id", "prog_enr_rec", ent_chk_id},
 { "grd_rpt_id", "prog_enr_rec", ent_chk_id},
 { "prim_id", "relation_rec", ent_chk_id},
 { "sec_id", "addree_rec", ent_chk_id},
 { "id_used_by", "addree_rec", ent_chk_id},
 { "bus_id", "emp_rec", ent_chk_id},
 { "sec_id", "relation_rec", ent_chk_id},
 { "prim_id", "relsec_rec", ent_chk_id},
 { "sec_id", "relsec_rec", ent_chk_id},
 { "id", "involve_rec", ent_chk_id},
 { "corr_id", "ctc_rec", ent_chk_id},
 { "prev_name_id", "id_rec", ent_chk_id},
 };
int max_chkflds = (sizeof(chkfld)/sizeof(struct chkfld_type));

System Reference 241 Entry Library

Process to Process (PTP) Functionality

Introduction
The Entry Library def.c file contains an area for specifying programs and parameters for Process
to Process (ptp) functionality in the entry program. You can indicate the source and destination
files and fields to send via ptp.

Process to Process Field Structure
The process to process section ptpfld_type structure consists of four fields. The fields are as
follows:

source file
The name of file on server side containing source field.

source field
The name of field on server side to be copied to client.

dest file
The name of file on client side containing dest field.

dest field
The name of field on client side to receive copied value.

Specifying PTP Functionality
The following two items appear in this section of the def.c file. The entry program uses both items
to implement the ENT_ADDID functionality, which allows adds and updates to referenced IDs
from within detail windows.

ent_ptpprog
Represents the invocation string used to start a child (client) process. The value must:

• Be a BINPATH-relative string
• Reference another entry library program
• Contain appropriate and relevant parameters

The entry library appends a -o parameter followed by an office_add_by code to the string
provided. The targeted entry program needs to recognize each of these parameters, and
the current entry program should have a program parameter with an ofc_add_by label.

ptpfld (ptp field) array
Used to identify fields that are copied across the PTP pipe when the program invokes the
ENT_ADDID functionality within a detail window (or detail window). The system copies
columns specified in this array across the PTP pipe and populates the fields on the client
side to eliminate key strokes. For example, when both the parent and child in Parent-Child
relationship reside at the same address, a user can copy over relevant address information
when creating the related ID.

Note: The original intent of this feature was to provide the ability to add a new ID
number on-the-fly from a scroll region such as the Relationship detail window,
associating the ID being added with the currently queried ID.

Entry Library 242 System Reference

Process To Process Example
The following is an example specification of process to process functionality.

/* specify program and parameters for ptp, relative to BINPATH */
char *ent_ptpprog = "identry -f ptpid -p";
/* indicate the source and destination files/fields to send via ptp */
struct ptpfld_type ptpfld[] =
 {
 { "id_rec", "addr_line1", "id_rec", "addr_line1" },
 { "id_rec", "addr_line2", "id_rec", "addr_line2" },
 { "id_rec", "city", "id_rec", "city" },
 { "id_rec", "st", "id_rec", "st" },
 { "id_rec", "zip", "id_rec", "zip" },
 { "id_rec", "ctry", "id_rec", "ctry" },
 { "id_rec", "phone", "id_rec", "phone" },
 { "id_rec", "phone_ext", "id_rec", "phone_ext" },
 };
int max_ptpflds = (sizeof(ptpfld)/sizeof(struct ptpfld_type));

System Reference 243 Entry Library

Address Maintenance

Introduction
The Entry Library def.c contains the relationship field (relfld) so that it can automatically maintain
address information for related IDs as well as for the currently selected ID. This ability is partially
table-driven and partially def.c driven. The relfld array exists to allow custom specification of
columns in the ID record (id_rec) which, when modified, cause the invocation of the relationship
maintenance functionality.

Note: Currently, only modifications to columns of the ID record (id_rec) can invoke this logic.

Relationship Field Structure
The Relationship Field relfld structure consists of one field:

column name
The name of the id_rec column to consider for maintenance

Address Maintenance Example
The following is an example specification of address maintenance functionality.

/* indicate the id_rec fields on which to maintain relationship info */
struct relfld_type relfld[] =
 {
 { "addr_line1" },
 { "addr_line2" },
 { "city" },
 { "st" },
 { "zip" },
 { "ctry" },
 { "phone" },
 { "phone_ext" },
 };
int max_relflds = (sizeof(relfld)/sizeof(struct relfld_type));

Entry Library 244 System Reference

GET_PRIMARY_REC Functions

Introduction
The entry library calls the GET_PRIMARY_REC function to retrieve:

• A row from the first table in the filename array
• Rows for the rest of the tables based upon column values from the retrieved row and

parameters in the program

Note: The entry library can work against other records besides the ID record (id_rec) and
related tables.

The GET_PRIMARY_REC function is typically defined in the getrec.c source file of each entry
program. The function calls, in turn, the ent_getprim_rec function from the entry library designed
to retrieve an ID record.

The following is the code from a typical getrec.c source file:

#include "dec.h"
/* -----
==
 get_primary_rec(pscr, pfile) - get primary record to be processed
 returns: SCR_DONE - record found, enter display/update mode
 SCR_OK - record not found, enable insert mode
 SCR_ABORT - record not selected, exit query mode
 SCR_ERR - unexpected error occurred, exit
==
----- */
get_primary_rec(pscr, pfile)
SCREEN *pscr; /* current screen pointer */
struct file_type *pfile;
{
 return(ent_getprim_rec(pscr, pfile));
}

GET_PRIMARY_REC Processing
The purpose of this function is to find the desired row and load it into the current record buffer
(rec_c) of the table and return an SCR_DONE status. Otherwise, an error return status is
expected.

The possible return values for the function are: SCR_DONE, SCR_OK, SCR_ABORT, and
SCR_ERR. See the above example for descriptions of these values.

The parameters passed to the get_primary_rec function provides a pointer, pscr, to the currently
displayed screen and a pointer, pfile, to a file type structure which holds valuable information
about the targeted table from which a row is to be selected.

Suggestions for Writing a GET_PRIMARY_REC Function
Following are suggestions for writing your own get_primary_rec function:

• If you want to keep the function simple, you can hard-code an scr_get against a single
column and select the desired row in this way.

• If you want to make the function more complex, such as allowing the user to enter selection
criteria in certain columns and then build a select statement that retrieves the matching
rows, refer to the following:

− If multiple rows are found, the user can use a pop-up window to select the row
desired. You can implement this feature by adding a new screen group field to
the screen definition and doing a scr_getset on the group field.

− In addition, you can specify a check function for the scr_getset that would track
the criteria that was entered for the different columns.

In either case, you must create an SQL select statement that:

System Reference 245 Entry Library

• Returns all of the expected columns in the order specified by the fields dbview structure
array

• Copies the returned buffer into the buffer pointed to by rec_c

File Type Structure Example
The file_type structure is defined in the entry.h include file. Its definition follows:

struct file_type
 {
 char *name; /* pointer to informix filename */
 char *getkey; /* pointer to get key */
 char *putkey; /* pointer to put key */
 long spcflag; /* perms and special funct calls */
 int (*spcfunct)(); /* pointer to special functions */
 /* spcfunct(type,pfile,pscr,errbuff) */
 /* where type - type of call */
 /* pfile - pointer to file */
 /* pscr - pointer to screen */
 /* buff - pnt to error buff */
 struct dbview *fields; /* pointer to fieldlist dbview array */
 long *fieldperms; /* pointer to fields permission array*/
 int numfields; /* number of fields in file */
 int totfields; /* number of fields in file */
 char *where; /* pointer to where clause (SQL) */
 char *wheresqlda; /* pointer to where sqlda */
 int rec_len; /* record length */
 char entsel[9]; /* current entry sort/selection code */
 struct dmm *pdmm; /* pointer to scroll file dmm */
 char *rec_status; /* record status (ONE character only)*/
 char *rec_c; /* pointer to current record buffer */
 char *rec_p; /* pointer to previous record buffer */
 char *rec_a; /* pointer to add compare rec buffer */
 char *rec_d; /* pointer to defaulted rec buffer */
 char *rec_i; /* pointer to initialized rec buffer */
 char *rec_m; /* pointer to deflt match rec buffer */
 };

File Type Structure Members
The following are some of the more important structure members.

name
A pointer to the database table name.

fields
A pointer to an array of dbview structures, which holds column names (vwname), column
offsets (vwstart) into a buffer (rec_c), column types (vwtype), and column lengths (vwlen).

numfields
The number of selectable columns in this table.

totfields
The number of columns to be bound from this table.

rec_len
The record length in bytes (very useful for copying record structures from one place to
another.

pdmm
A pointer to a dmm that holds multiple rec_status, rec_c, rec_p, and rec_a groups.

rec_c
A pointer to the current buffer. This is the buffer that the get_primary_rec function is to fill in.

rec_p
A pointer to the previous buffer. The previous buffer is initialized with a copy of the current
buffer just before entering update mode.

rec_a

Entry Library 246 System Reference

A pointer to the copy of the table buffer

rec_d
A table buffer pointer that holds the default values from the current form.

rec_i
A table buffer in which all columns are blank or zero.

rec_m
A table buffer that holds the match values from the current form.

System Reference 247 Entry Library

IS_DISPLAY_ONLY Functions

Introduction
The IS_DISPLAY_ONLY function allows the programmer to indicate to the entry library that this
user should not be allowed to update any of the displayed information. You can specify an
IS_DISPLAY_ONLY function in an Entry Library program’s def.c file.

Normally you define the function in the display.c source file as follows to not restrict update:

#include "mac.h"
/* -----
==
 is_display_only() - determine if selected row may be modified
 return - non-zero to enter display only mode.
 - zero to allow update of related information.
==
----- */
is_display_only()
{
 return(0);
}

Determining a Column’s Value
The IS_DISPLAY_ONLY function does not provide any parameters. Since there are no compile
time structures of the data rows, all column values must be referenced as offsets from a buffer or
through other pointers.

Following is an example of how to determine the value of a column.

 struct file_type *pfile;
 struct dbview *pfld;
 long idno;
 pfile = ent_get_pfile("id_rec");
 pfld = dbe_getpview("id", pfile->fields, pfile->numfields);
 idno = *(long *)(pfile->rec_c + pfld->vwstart);

Note: In this example, the following is determined:
− The value of the ID record (id_rec), id column
− The current record buffer

Note: The type of the column is assumed to be long. These variables should be declared as
static and then set just the first time into the function since the value of pfile and pfld in
this example would not change over the course of the application execution.

Entry Library 248 System Reference

Check Functions

Introduction
A check function can be triggered/executed when a user directly modifies a specific database
column. When a change of value in one column immediately causes other things to happen, a
check function is needed. You can specify a check function in an Entry Library program’s def.c
file.

An example check function declaration follows:

ent_chk_ss(pchkfldp, doscr)
struct chkfldp_type *pchkfldp; /* Field name to be checked */
SCREEN *doscr; /* do any scr functions */

Check Function Return Statuses
The return statuses from a check function include the following.

ENT_OK
Indicates that the check function was successful and that the cursor may move on to the
next column.

ENT_INVALID
Indicates that the check function was not successful and that the cursor should remain on
the same column.

Check Function Parameters
If a non-NULL value is passed for doscr, the check function should handle any necessary screen
refreshing. If the value of doscr is NULL, no screen is currently active and the screen should not
be refreshed by the check function.

The parameters passed to the function include the following.

doscr
A pointer to currently displayed screen

pchkfldp
A pointer to the column that has been modified.

Check Function Pointers
The pchkfldp parameter is a pointer to a chkfldp_type structure. An example of the chkfldp_type
structure is as follows:

/* ----- This structure is used in both the file_dmlt and form_dmlt ----- */
struct chkfldp_type
 {
 char *scrcode; /* screen name of code */
 struct chkfld_type *pchkfld; /* ptr to chkfld array structure */
 };

The chkfldp_type structure provides the unique screen name of the modified code value and a
pointer to the chkfld_type structure.

Note: This structure provides additional characteristics that are useful within the
check function.

An example of the chkfld_type structure is as follows:

System Reference 249 Entry Library

struct chkfld_type
 {
 char *dbcode; /* db name of field to check */
 char *filename; /* db file containing dbcode */
 int (*function)(); /* function to perform checking */
 char *tablename; /* string passed to the function to
 specify additional information */
/* The following field are filled in by ent_formload */
 char *codebuff; /* buffer that dbcode is bound to */
 };

Entry Library 250 System Reference

Special Functions

Introduction
A special function is triggered/executed during different table and row level processing operations
and allows the programmer to affect the normal sequence of events in a program’s processing.
You can specify a special function in an Entry Library program’s def.c file.

Return Statuses
The expected return statuses from a special function can differ depending upon the program
event being checked. A special function’s return status of:

• ENT_FATAL causes the program to display an error and terminate processing
• ENT_WARN causes the program to display a warning message, yet continue processing
• ENT_OK causes all normal processing to continue

Note: Additional return statuses of ENT_SKIP, ENT_INVALID, and ENT_QUIT are also
possible.

Events
The currently recognized events are the following

ENT_FLGET
Triggered whenever a row is read from the database and after the rec_c buffer is copied into
the rec_p buffer.

Note: This event ignores return statuses.

ENT_FLADD
Triggered after a row has been inserted. Because it appears that a partial update will be
committed to the database, a non-ENT_OK return status stops the update process for all
subsequent.

ENT_FLUPD
Triggered after a row has been updated. Because it appears that a partial update will be
committed to the database, a non-ENT_OK return status stops the update process for all
subsequent..

ENT_FLDEL
Triggered after a row has been deleted. Because it appears that a partial update will be
committed to the database, a non-ENT_OK return status stops the update process for all
subsequent.

ENT_FLWRITE
Triggered after the program determines that the row must go to the database, but before the
row is written to the database. This event provides one last opportunity to update the
column information in the rec_c buffer before updating the database. Because it appears
that a partial update will be committed to the database, a non-ENT_OK return status stops
the update process for all subsequent.

ENT_FLALL
Specifies all FL (File Level) events.

Note: This event is shorthand for specifying all file level events.

ENT_SCADD
Triggered just before a new scroll row is inserted into the dmm. A non-ENT_OK return
status cancels the insert.

ENT_SCUPD

System Reference 251 Entry Library

Triggered when the user moves off of a modified scrolling row. A ENT_OK return status
causes the dmm to be updated and normal processing to continue.

ENT_SCDEL
Triggered when a user attempts to delete a scrolling row. Any return status other than a
ENT_OK aborts the delete operation.

ENT_SCCHK
Triggered when a user closes a detail window. Anything return status other than a ENT_OK
re-displays the same detail window.

ENT_SCALL
Specifying all of the SC (SCrolling level) events.

Note: This event is shorthand for specifying all scrolling level events.

Special Function Parameters
The parameters passed to the special function are as follows.

type
The event that has triggered the function.

Pfile
A pointer to the file structure for the table that is currently being processed.

Pscr
A pointer to the currently active screen. The special function is responsible for refreshing
the screen if needed.

Errbuf
A pointer to a entry library error buffer. If the return status from the special function is not
ENT_OK or ENT_SKIP, this error buffer is displayed.

Special Function Example
An example special function specification is declared as follows:

spc_func_name(type, pfile, pscr, errbuf)
int type;
struct file_type *pfile;
SCREEN *pscr;
char *errbuf;
{
 switch (type)
 {
 case ENT_FLGET:
 break;
 case ENT_FLUPD:
 break;
 default:
 break;
 }
 return(ENT_OK);
}

Entry Library 252 System Reference

Transaction Procedures

Introduction
The transaction procedure function provides hooks around the database transaction related to
the updating of rows. There are three possible flags that an Entry Library program can pass to
this function, including:

• ENT_START
• ENT_END
• ENT_AFTER

The entry program calls the transaction procedure with ENT_START after starting the
transaction, but before processing any tables. The entry program passes ENT_END to the
function after completing all table processing but before committing the database transaction.
And lastly, the entry program passes the ENT_AFTER flag to the function after committing the
transaction.

Transaction Procedure Example
The following is a skeletal version of the transaction procedure function that appears in the entry
library.

Note: Return statuses for the following function are ENT_OK or ENT_FATAL. If
ENT_FATAL is returned on the ENT_END event, the database transaction is rolled
back.

spc_trans_proc(type)
int type;
{
 int status = ENT_OK;
 switch(type)
 {
 case ENT_START:
 break;
 case ENT_END:
 break;
 case ENT_AFTER:
 break;
 default:
 break;
 }
 return(status);
}

System Reference 253 Screens and Forms

SECTION 10 – SCREENS AND FORMS

Overview

Introduction
This section describes CX screens and forms. CX uses the following screens:

• CARS-designed screens, defined in screen definition files and presented using the CX
Screen Package (SCR)

• PERFORM screens provided by INFORMIX, Inc.

This section describes the features that you can specify for a screen in a screen definition file.

Typical Entry Screens
An entry screen can display profile information, such as name, identification number, and social
security number, if that information has been previously entered. Entry windows are designed for
the following purposes:

• To be models of typical forms that come through an office
• To hold specific information about students, such as which church a student belongs to and

which school a student attends
• To hold information about individuals and institutions, such as vendors and foundations

Typical Detail Windows
A detail window is a data entry window that enables you to view and access information that is
not currently displayed on the window. A detail window holds multiple-item information, such as
interests and involvements. When you access a detail window, it appears in a small window over
an entry screen. Each detail window may contain one or more records.

Screens and Forms 254 System Reference

Using the PERFORM Screen Commands

PERFORM screen commands
Using PERFORM screens, you can add and update tables in the CX database. The following
lists the commands that appear on the PERFORM screens, as well as the key entries and the
purpose corresponding to each command listed.

For further details on how to use each command, see The PERFORM Screen Transaction
Processor in Informix SQL Reference Manual.

Add
Creates a new row in the active table.

Cancel
Cancels the last command you selected.

Current
Recalls the most up-to-date version of the screen you were viewing before you moved to
another table.

Detail
Automatically selects, causes to display, and queries the active table’s detail level, but only if
a master-detail relationship exists for two tables.

Exit
Leaves the PERFORM screen, and returns you to the last menu you were on when you
selected a table.

Finish
Proceeds to the next sequential screen.

Master
Moves to a master table from a detail table, but only if a master-detail relationship exists for
two tables.

Next
Shows the next sequential row in the current list.

Output
Produces an output file in which rows appear just as they do on the screen, including data,
field titles, and lines.

Previous
Shows prior row in the current list.

Query
Searches the database based on values you enter into the fields on a PERFORM screen.

Note: You can query on any field, or combination of fields, in a PERFORM screen.

Remove
Deletes the row on the screen from the active table.

Screen
Cycles through the screen pages of the form.

Table
Shows a new active table when there is more than one table displayed on the screen.

Update

System Reference 255 Screens and Forms

Places the cursor in the first field of the current table for you to modify as many fields as
necessary.

View
Shows the contents of a field of data.

Screens and Forms 256 System Reference

Creating Screen and Form Definition Files

Introduction
CX programs use screen definition files to display data on your screen and receive input from
you. Screen definition files are a part of CX Screen Package (SCR), developed by Jenzabar to
assist the application programmer with the presentation of data to screens and the input of data
from the user. Jenzabar designed the package to work with the INFORMIX relational database
management system.

In addition to the SCR program's screen interaction with the user, SCR also provides interaction
with printer devices through the Form Production System (FPS). FPS allows the program to
spool the printing of data and allows you greater control over the timing and error correction of
each spooled job.

Screen Section
The definition file provides the layout of a screen in a text file which can be changed without
affecting the program that uses it. Screens are changed by editing the definition file.

Note: The screen definition is very similar to those used by PERFORM. If the file is a form
definition instead of a screen definition, the word screen (beginning the screen section)
is replaced by the word form.

Types of Fields
A screen definition can have two types of fields.

Text fields
Used to label the data fields displayed to the user

Data fields
Used for data that is displayed or to be modified by the user. Data fields are delimited by
brackets ([and] and are called by the screen field name, defined by an ASCII label found
between the brackets. The field can also have a database field name defined in the
attributes section, similar to a PERFORM screen (e.g., screen-field-name = database-field-
name).

Screen Section Features
The features of the Screen section in the screen definition file are described below.

Multiple Use of Field Names
You can use the same screen field name in more than one location on the screen section by
using the alias instruction.

Note: For more information on the alias instruction, see Instructions You Can Specify
in this section.

Single Spaces Between Adjacent Data Fields
In the screen section, a caret (^) is a special character substituting the combination of
adjacent closing and opening brackets (][), thus allowing a single space between two
adjacent data fields instead of two spaces.

System Reference 257 Screens and Forms

Display of Brackets in Text Fields
You can add brackets ([and]) into the text fields of the screen using the backslash (\)
character. The backslash prevents SCR from interpreting the text field as a data field
definition because of the presence brackets. For example, the string [name] would be
encoded as a data field called name, but the string “\name\ “ would be part of a text field
displayed as [name] to the user.

Note: The results of the backslash character is toggled between opening ([) and
closing (]) brackets, so the brackets to be displayed to the user must be
balanced.

Multiple Screen Sections
The feature of PERFORM that allows multiple screen sections in one screen definition file is
not available in the SCR package.

Opening Brackets as a Field’s Beginning of Line
When defining display-only data fields in the screen section, you can make the beginning of
the line to represent the opening bracket ([) of the field. When the system finds a closing
bracket (]) or caret (^) on a line of the screen definition with no opening bracket ([), the
system assumes that the beginning of the line is the beginning of the data field. This feature
allows the data from a field to appear in the leftmost column of the CRT screen.

For example, you can use this feature to display 80 columns of data on an 80 column screen
by beginning the data field name in the first column of the screen and placing the closing
bracket (]) in column 81.

Use of Most ASCII Characters
You can use most printable, non-blank ASCII characters that are not data field names. This
feature allows you to define the maximum number of data fields, especially when you want
to define many one- or two-character fields on one screen. The following are the characters
you cannot use:

• / (slash)
• " (double quote)
• { } (braces)
• = (equal sign)
• [] (brackets)
• ^ (caret)
• > (greater than)
• < (less than)
• : (colon)
• () (parentheses)
• , (comma)
• . (period)
• $ (dollar sign)
• ; (semi-colon)

The following field names cannot begin with the following reserved words:
• _scr
• alias
• attributes
• autonext
• blank
• center
• comments

Screens and Forms 258 System Reference

• default
• downshift
• dwshift
• end
• errdefault
• form
• group
• gui_noproportional
• gui_nostrip
• gui_title
• include
• instructions
• joining
• length
• lookup
• noentry
• noj
• noupdate
• optional
• qclear
• qualifier
• queryclear
• required
• reverse
• right
• screen
• scroll
• type
• upshift
• verify
• void
• zerof
• zerofill

Attributes Section
The following are attributes that you can give to fields in the attributes section of a screen
definition file.

Note: Since you can set and unset some of these attributes from within the application
program, adding or taking away attributes may not always change the behavior of the
program.

 There are some differences between PERFORM screens and SCR screens in the
attributes section:

− Most of the attributes that have the same names are identical, but some have
different meaning, such as autonext, and some have different syntax, such as
lookup and joining.

− The PERFORM feature of specifying joined fields does not apply to SCR (i.e. f1
= name = *dbname).

System Reference 259 Screens and Forms

Attributes Section Format
The format of lines in the attributes section is as follows:

screenname = dbname, attribute1, attribute2, ... ;
screenname: attribute1, attribute2, ... ;

Remember the following:
• When you omit the database field name (dbname), you should not use the equal sign (=)
• The comma may be replaced with a colon (:)
• All attribute lines must end with a semicolon (;)
• The white space (space, tab, newline) is always optional around the punctuation characters

(equal sign, comma, colon, semicolon)

The following is an example of the Attributes section:
screenname = dbname, optional,
 attribute1,
 attribute2,
 ...;
screenname: optional,
 attribute1,
 attribute2,
 ...;

Guidelines for the Attributes Section
To enhance the readability and maintainability of the screen definition files, use the following
guidelines:

• Attributes should appear in alphabetical order one per line and indented 4 spaces

Note: The one exception is the “optional” attribute which, if used, should appear
directly after the '“dbname'“ or colon of the first line.

• A blank line should separate fields in the attributes section

Attributes You Can Specify
The following are the attributes you can specify for a screen.

Autonext
Specifies that the fields in a group may be input in a circular manner. For example, when
you press the return key after the last field in the group, the cursor moves to the first field in
the group.

Note: Unlike PERFORM screens the autonext attribute only applies to group fields

Blank
Causes the display of a numeric field to be blank when the value is zero (0). This attribute
may be used in addition to the format attribute. In the case where a format has also been
given and the value is zero, the field will be blank.

Button
Sets the button attribute flag causing the field to appear as a button in QuickMate.

Buttontext=“string”
Performs the functions of the button and text attributes (binds a buffer to the field and sets it
as a QuickMate button).

Center or Centerj
Centers a field in the field display. Remember the following:

• The system performs all justification on character fields when the field is input rather
than when it is output. This causes the data received by the program to be centered.

Screens and Forms 260 System Reference

• The system assumes that character data is already justified properly for output, so no
centering is done when the field is displayed. This allows program screens to specify
the format of character data as it will exist in the database.

• The system performs all justification of numeric fields when the field is output rather
than when it is input, since numeric data is always stored the same way in the
database.

Comments
Defines a string to be displayed to the user when any input is done on the field.

Example: comments = "Enter the due date"

All characters between the double quotes (") appear on the next to last line of the screen.
The comments attribute has special meaning on lookup fields (fields that are part of a lookup
clause). In this case, the comment value allows you to assign a value to the field in the
event that the lookup value is not found.

Default
Defines the initial value of a field. SCR assigns the default value to the data associated with
the screen field every time the program causes SCR to clear the field. Since programs may
initialize the data outside the control of SCR, changing this attribute may or may not affect
the screen display.

Example: default = "USA"

 default = 123.45

 default = "01/31/88"

 default = today

Note: The value of the default is not quoted with double quotes (") if the field contains
numeric data or is the word today. The word today may be used to default a
date field to the current date.

 The default attribute should NOT be used on lookup fields (fields that are part
of a lookup clause). Refer to the qualifier attribute for more information.

Dwshift or downshift
Converts all upper-case letters to lower-case when the field is input. Data containing upper-
case letters may appear in the field, but it will be down shifted if the field is modified during
data input.

Errdefault
Defines a string to be displayed to the user when a table lookup fails. You can assign an
errdefault value to fields that are part of a lookup clause. The value is used in:

• The screen or form
• Lookups based on this field (until data is changed)

Example: errdefault = "USA"

 errdefault = "Not found."

 errdefault = "0"

Format
Controls field displays. This attribute is useful for numeric fields and character fields.

Note: When formatting numeric fields the string defining the format of the data closely
resembles the using clause of an INFORMIX ACE report.

Example: format = "$$,$$&.&&"

System Reference 261 Screens and Forms

The following characters in a numeric format string have special meaning:

*
Asterisk fill (affects position)

&
Zero fill (affects position)

Blank fill (affects position)

<
Shift left (affects position)

,
Comma separator (affects position)

.
Decimal point (affects position)

-
Sign if negative (floats left)

+
Sign, negative or positive (floats left)

(
Parenthesis if negative (floats left)

)
Parenthesis if negative (affects position)

$
Dollar sign (floats left)

You can also format character fields, but the format string is set up differently. The
character data from the field is represented by the field name surrounded by braces ('{' and
'}') or parentheses ('(' and ')'), preceded by a dollar sign ('$'). The following screen example
uses a character format string:

screen
{
Character field...[cfld]
}
end
attributes
cfld: format="** ${cfld} **";
end

Screens and Forms 262 System Reference

The results after entering the data, My Data, into the field would be:

Example: Character field...[** My Data **]

The field name feature may also apply to any other field on the screen. Using this method
we can print the data from any other fields on the screen into the character field, as in the
following example:
screen
{
Character field...[cfld]
}
end
attributes
codefld: optional;
datefld: optional;
cfld: format="Code and date: ${codefld} ${datefld}";
end

The results if the codefld data contained ABCD and the datefld data contained 01/01/89
would be:

Example: Character field...[Code and date: ABCD 01/01/89]

Note: The character field formatting is the most useful when applied to forms and
display-only fields. Also, with the character field formatting the justification
attributes may be applied to the resulting format to allow centering and right
justified displays.

Group
Allows a program to deal with more than one screen field as one entity. The group attribute
field list is one or more field names inside parentheses separated by commas, where the
field name is either a screen field or database field name defined in the screen section or
earlier in the attributes section (i.e. name1, name2, ... nameN). This attribute is very
closely connected to the inner workings of the program and should not be added or removed
from a screen field without checking how it is used in the program. Group fields are
normally used for defining the list of fields to be used for data input, or to define one line of a
detail window.

Example: group = (amt,desc,type,flag)

Gui_noproportional
Communicates to CARS' GUI front-end that the text fields on the screen should be displayed
using the fixed width data font instead of the default proportional font, usually used for
displaying text fields.

Note: The gui_noproportional attribute is only appropriate for use on the special
screen field, SCREEN_INFO.

 This attribute currently maps to the verify attribute. The verify attribute should
not be used on the SCREEN_INFO field.

Gui_nostrip
Communicates to CARS' GUI front-end that the text fields on the screen should be displayed
as defined without the customary stripping of trailing periods.

Note: The gui_nostrip attribute is only appropriate for use on the special screen field,
SCREEN_INFO.

Note: This attribute currently maps to the void attribute. The void attribute should not
be used on the SCREEN_INFO field.

Gui_title

System Reference 263 Screens and Forms

Communicates to CARS' GUI front-end what the title of the window displaying this screen
definition should be.

Note: The gui_title attribute is only appropriate for use on the special screen field,
SCREEN_INFO.

 This attribute currently maps to the 'default' attribute. The 'default' attribute
should not be used on the SCREEN_INFO field.

You can also use the gui_title attribute to specify the title of the screen in character mode.
You specify a location in the screen layout for the display of the title. Following is an
example:

screen
{
 [SCREEN_INFO]
}
end
attributes
SCREEN_INFO:
 center,
 [gui_noproportional,]
 [gui_nostrip,]
 gui_title = "Screen Title Text";
end

Help=“string”
Sets the help struct element to “string” for linking into online help files.

Include
Restrict the values allowed on a screen. The include list is one or more values or ranges
inside parentheses separated by commas. A value is any data value appropriate for the
type of field. A range is two values separated by either a colon (:) or the word to. All ranges
are inclusive (i.e., the lower and upper range values are valid along with any value(s)
between the two).

Example: include = (0,100 to 5000,7000)

 include = ("A":"D", F, P, " ")
Note: When users perform a table lookup, the window that opens displays all the data from
within the parentheses. If you want the data to display with an accompanying definition or
explanation, use the following syntax:

Example: include = (Y = Yes, N = No)
In the above example, the values Y and N will appear (associated with the text "Yes" and
"No" respectively) when the user performs a lookup.

When the definition contains more than one word, use quotes around the string as in this
example:

Example: include = (H = "Head of Household", S = Single, J = "Married Filing Joint",
M = "Married Filing Separately")

White space is ignored outside of the quoted information. The equal sign (=), quotes ("), and
commas (,) serve as delimiters.

Joining
Joins a screen field to a database field name. You can use this attribute for looking up the
value of a field in the database. Remember the following:

• The database name contains the database file name and the database field name
separated by a period (.).

• If the database name is preceded by an asterisk (*), the value of the screen field must
be found in the database field being joined.

Screens and Forms 264 System Reference

• Unlike PERFORM, if the screen field is blank and the required attribute is not set, the
value does not need to exist in the database, even if the asterisk is included on the
database name. This allows four modes of database validation:

− Optional blank and optional in the database
− Optional blank and required in the database if a value is entered
− Value required and optional in the database
− Value required and required in the database

Example: joining *ctry_table.tctry_tbcode

 joining vnd_rec.vnd_ID

The joining attribute causes the database file name to be opened for use as a table and
enables the table lookup command (CTRL-T) to be entered by the operator when input is
being done on the field. The join field will be displayed in the window along with any fields
(without constant default values) given in the lookup attribute. The database values
displayed for the field may be restricted by using the default attribute on the lookup fields.

Lookup
Specifies one or more field names separated by commas that will be filled in based on the
joining attribute for the field. In addition to reading values from the database, you can fill in
other screen fields from data read out of the database. The field names may be:

• Screen field names or database field names that appear in the screen
• Screen field names that have been specified previously in the attributes section

Example: lookup text, amount

Note: When the you select the Table Lookup command, the fields in the lookup,
which do not have a constant qualifier value specified, appear in the table
window (in addition to the join field). This allows the screen to determine how
much data to display in the Table Lookup command.

 If a database field appears in the table lookup command but not on the screen,
you can specify the field in the attributes section as optional and not displayed
in the screen section.

Match=“string”
Sets the default attribute to “string”, and sets the noentry and noupdate attributes. These
three attributes are needed to define a field as a “match field” for library entry program
screens.

Noentry
The noentry attribute is not handled internally by SCR; however, some application programs
use this attribute.

Nojustify or Noj
The SCR Package uses these attributes for character fields. The default for this type of field
is left justification, with other attributes allowing right and center justification. if you want the
character field to remain exactly as it is entered by the user, use one of these attributes.

Noupdate
Disallows any changes to the screen field. This feature prevents the cursor from entering
into the screen field.

Note: Unlike PERFORM, which allows noentry to apply to record additions and
noupdate to apply to record updates, SCR is unaware of the status of the
current record. For this reason, SCR only deals with the noupdate attribute
internally.

Optional

System Reference 265 Screens and Forms

Allows a field to be taken off the screen display without affecting the application program. If
the program is expecting a particular screen field to exist on the screen and attempts to
manipulate the data, it will receive an error if the field is not defined for the screen. This
attribute allows the program to deal with the screen field without actually displaying it on the
screen.

Note: Some fields in the screen section are not required to appear in the attributes
section. If one of these fields is removed from the screen section, you must
add the field to the attributes section with the optional attribute.

Qclear or queryclear
Specifies that the field should be cleared on queries. SCR does not handle this feature
internally.

Qualifier
Specifies additional criteria for a lookup field. Use this attribute on lookup fields (fields that
are part of a lookup clause) only. The qualifier value allows you to make additional
specifications that the table record must meet in order to be considered valid. The attribute
value should always be in double quotes and may have any of the following formats:
qualifier = "FA" : field must be equal to "FA"
qualifier = "=FA" : field must be equal to "FA"
qualifier = "<>FA" : field must not be equal to "FA"
qualifier = ">FA" : field must be greater than "FA"
qualifier = "<FA" : field must be less than "FA"
qualifier = ">=FA" : field must be greater than or equal to "FA"
qualifier = "<=FA" : field must be less than or equal to "FA"
qualifier = "FA:FZ" : field must be greater than or equal to "FA" and
 less than or equal to "FZ"
qualifier = "field:SCR_FIELDNAME"
 : field must be equal to the current value of the
 screen field 'SCR_FIELDNAME'
qualifier = "#value1,value2,..."
 : field must be equal to one of the listed values

Required
Determines that the field cannot be left blank (or zero if the field is numeric) when you
perform data input. If you move the cursor into a required field, the cursor cannot leave that
field until you make a valid non-blank entry.
If the program performs data input on a group of fields within the control of SCR, the Finish
command causes SCR to verify that all required fields in that group have been entered. If
any required field contains blank (or zero) data, the cursor moves to that screen field where
data entry is required.

Note: The program has ultimate control over the order of field input and determines
which groups of fields can be entered; therefore, adding this attribute might not
always accomplish the desired result.

Reverse
Causes the field to appear with highlighting (e.g., reverse video), depending on the terminal
capabilities.

Right or Rightj
Makes a field right justified in the field display. The system does justification on character
fields when the field is input rather than when it is output. This causes the data received by
the program to be right justified. SCR assumes that character data is already justified
properly for output; therefore, SCR performs no right justification when the field is displayed.
This feature allows program screens to specify the format of character data as it exists in the
database.

Note: The system performs all justification of numeric fields when the field is output
rather than when it is input since numeric data is always stored the same way
in the database.

Scroll

Screens and Forms 266 System Reference

Allows a group of fields on the screen to scroll data values. The scroll attribute field list
contains one or more field names separated by commas inside parentheses. Field names in
the list are screen field names defined in the screen section or earlier in the attributes
section (i.e. name1, name2, ... nameN). Because it is very closely connected to the inner
workings of the program, you should not add or remove the attribute from a screen field
without checking how it is used in the program.

Example: scroll = (id1,id2,id3,id4)

Note: The scrolling capability of screen fields allows more than one record of data to
be displayed on the screen at a time. All attributes assigned to the scroll group
apply to all fields within the scroll list. This allows the screen section to contain
each screen field while the attributes section only contains the scroll field with
all appropriate attributes assigned to it. For example, if the scroll field is
numeric a format attribute could be specified, causing all fields in the list to be
displayed in the given format.

Text=“string”
Sets a field buffer to “string”; thus, binding a buffer to that field.

Upshift
Converts all lower-case letters to upper-case when the field is input.

Note: Data containing lower-case letters may be displayed in the field, but data will be
up shifted if you modify the data.

Verify
Specifies that the field should be entered twice before accepting the data. SCR does not
handle this feature internally.

Void
Allows multiple pages of the same form to void specific fields until the last page is printed.
For example, if you print payroll checks and an employee's check stub contains more
deductions than will fit on one form, the system prints multiple forms with the check amount
included only on the last form. If you specify the void attribute for the check amount field, all
forms before the last will contain the value of the default attribute.

Example: ckamt: format="$$,$$$,$$&.&&", default="*****VOID****", void;

Note: The void attribute is only used for forms.

 The void attribute is only used if the voiding instruction is given in the
instructions section (See Voiding).

 In this special use of default, you can use a character string in a numeric field.
For example, the default value could be *****VOID****, if the check amount field
is large enough to hold the message.

Zerof or Zerofill
Displays a numeric field with leading zeros. The result is a right justified number with all
unused screen field positions to the left of the number containing zeros.

System Reference 267 Screens and Forms

Instruction Section Format
The format of lines in the instructions section is as follows:

Example: instruction = value;
 instruction;

Note: All instruction lines must end with a semicolon (;). The white space (space, tab,
newline) is always optional around the punctuation characters (equal sign, semicolon).

Instructions You Can Specify
The following are the instructions you can specify in the instructions section of the screen
definition file.

CAUTION: SCR screens differ greatly from PERFORM screens in the instructions section.
Do not attempt to use any instructions other than those described below.

Alias
Allows the data from one field to be displayed in more than one location on the screen. The
instruction’s primary purpose is to allow forms the ability to duplicate data for forms, such as
check stubs and return forms.

• The alias name (on the left-hand side of the equal sign) must be a screen field name
either defined in the screen section or listed in the attributes section as optional.

• The original field name (on the right-hand side of the equal sign) may be either a
screen field name defined in the screen or attributes section or a database field name
assigned in the attributes section.

• Neither the alias name nor the original field name may be a group or scroll field, i.e.
they MUST NOT contain the group or scroll attribute. The alias name will receive all
attributes assigned to the original field name unless that attribute is already specified
for the alias in the attributes section. Following is an example:

form
{
ID Number...[id1] [id2] [id3]
}
attributes
id1 = id_no, format="#######";
id3: format="&&&&&&&";
instructions
alias id2=id1;
alias id3=id1;
end

Note: In the example, note the following:
− The alias field id2 is identical to id1. The only difference between id3 and the

other two fields is the display format.
− If the ID number is zero, both id1 and id2 will display blank, while id3 will display

seven zeros.
− In both alias instructions, the field id1 could be replaced with id_no, the database

field name.
− In the alias of id3, the field id1 could be replaced with id2. The database name,

as in the example, should only be given for the original field and not for the
aliases. Repeating the database name will cause an error during translation.

Alignment
Specifies that FPS allows the user to verify the placement of the printed data on the form.
This instruction gives you opportunity to ensure that the data will fit into the predetermined
locations on printed forms.

Note: This instruction is only used for forms.

Formtype

Screens and Forms 268 System Reference

Defines the name for the form as it will be used by FPS. The name assigned as the form
type should not be quoted.

Example: formtype = grade reports;

 formtype = prcheck;

Note: This instruction does not apply to screens.

Number
Defines a screen field name that contains the physical form number printed by FPS. As
each form prints, FPS increments the physical form number and prints it in the specified
field.

Example: number = ckno;

 number = receipt;

Note: This instruction is only used for forms.

Tracking
Causes FPS to create tracking information when printing the spooled job. The tracking
information records:

• The voided forms
• The printed forms
• The logical data record printed on each physical form.

Other programs can record this information in the database.

Note: This instruction is only used for forms.

Skip
Causes FPS to skip one blank line after every other form as it is printed.

Note: Some printed form stock has perforations that are not evenly spaced, or two
forms can be combined on one page where the space between them is one line
less than the space between the pages.

 This instruction is only used for forms.

Voiding
Causes the void attribute to take effect.

Note: If you omit the void attribute, the system ignores the voiding instruction

 This instruction is only used for forms.

System Reference 269 Reports and Output

SECTION 11 – REPORTS AND OUTPUT CONTROL

Overview

Introduction
This section describes the design of CX reports and output control. CX uses the INFORMIX
report writer to create reports. This section provides information on ACE reports:

• Using ACE report commands
• ACE report formatting
• CX enhancements to ACE Reports (acearray functions and the runreport script)
• Tips for improving the design of ACE reports

This section also describes CX print spooling software for printing reports or other output. The
print spooling software provides:

• Output device control
• Spool queue management

ACE Reports Sorting Program
Jenzabar created the Sortpage program (sortpage) that you can use to re-sort ACE report output
when records get out of their original order. This change in ordering primarily happens because
of the use of adr on the ACE report output. Sortpage uses the UNIX sort utility and values
supplied by ACE to do the sorting. See the Sortpage Program in the Common Programs section
of this manual for more information.

Reports and Output 270 System Reference

ACE Report Writer Commands

Introduction
These pages describe the commands that you can specify in an ACE report.

Running an ACE Report
Use the following commands to run an ACE report.

saceprep {reportname}
This command creates an operating system file reportname.arc containing the ACE
commands. It does this by compiling the reportname file to create a platform independent
file that the sacego interpreter can run.

Note: Any errors that occur when running aceprep are syntactical errors, not logic or
read errors.

sacego {reportname}
This command runs the ACE report with runtime messages. These messages inform the
user which select statement is being processed.

Note: Use this command to test the report for select statements. If any errors occur
during the read or formatting process, you will find them at this time.

sacego -q {reportname}
This command suppresses the runtime messages that precede the standard output of the
ACE report.

ACE Commands
The ACE report source has three mandatory sections:

• DATABASE
• SELECT
• FORMAT

All other sections are optional.

The following are the commands and the syntax used by the ACE report writer.

DATABASE
database CARS_DB end

Note: The DATABASE command defines the name of the database that is being
accessed. Using CARS_DB utilizes the database name in your environment
variable CARSDB. This is particularly useful when your system has more than
one database. Once compiled, the value of CARSDB is fixed in the .arc file.
However, the run reports script uses the CARSDB variable to override the
value compiled into the program. Reports run from the shell or from a script not
using this feature will use the compiled value for the database name.

DEFINE
define={function name}

 ={variable name type}
 ={param[number] name type}
end

System Reference 271 Reports and Output

Note: Some functions and their definitions are the following:
− _getcars - Use to call environmental variables.
− _midstring - Use to center a piece of text.
− _full_name - Use to extract the first name from the id_rec name field.
− _last_name - Use with array of days of the week.
− _first_name - Justifies three parts of the line (left, center, right)
− _dashdays - Formats the RCS header and source lines.
− _toupper - Changes lowercase to uppercase.

INPUT
Prompt for variable-name using "string > "

OUTPUT
page length N {default=66}
right margin N {default=132, but not enforced; only used in conjunction with word wrap}
left margin N {default=5}
top margin N {default=3}
bottom margin N {default=3}
report to "filename"
report to pipe "printername" {default to CRT}

SELECT
select [*] from filename [whereclause] [orderbyclause] end
select field-name [whereclause] [orderbyclause] into temp tmpfile end
read “filename” delimiter “:” order by ordfield end

Note: The read command causes the ACE report to get its data from an ASCII file,
but act as if the data came from the database.

ORDER BY {maximum of 8 sort fields}
order by fieldname [ascending,descending] [fieldname]

FORMAT
The Format section is used to print the accessed data and may contain the following
subsections:

first page header

Note: Executed only once to place the header on the first page. One-time variable
initializations should go here.

page header

Note: This subsection is executed to place a header on every page after the first if
there is a first page header section. If there is no first page header section,
then it is executed for the first page also.

before group of {sortfield}
on every record
after group of {sortfield}
page trailer
on last record

The following commands may be used in any of the subsections of the Format section.
 print [using "###.##"]
 let {variable} = {value}
 if-then-[else] (may be nested)
 while
 WHILE EXPRESSION DO STATEMENT
 FOR VAR = EXP TO EXP [STEP EXP] DO STATEMENT

Reports and Output 272 System Reference

Aggregates
percent of
[group] count
[group] total of
[group] average of
[group] min of
[group] max of

Other
pageno (prints current page number)
date (prints current date in format Day, Month, Year)
time (prints time report is run in format HH:MM:SS with HH = 1-24)

System Reference 273 Reports and Output

Defining Variables and Functions
You provide definitions to variables and functions in the DEFINE section of the ACE report. This
section comes after the DATABASE section and before the SELECT section. The following
provides the syntax for defining variables and functions.

Defining Variables
define
 variable counter type integer
 variable special total type double
 variable selection value type char(10)
end

Defining Command Line Variables
define
 param[1] salary type double
 param[2] daysworked type integer
 param[3] empname type character length 20
end

Defining Functions
define
 function _getcars
 function _midstring
end

Note: The variable associated with param[1] will contain the first value on the command line
that occurs after the name of the ACE report that is being run.

Defining For Input Variables:
define
 variable input item type character length 20
 variable input quantity type integer
end

 input prompt for inputitem using "Type item for selection " prompt for inputquantity
 using "Type quantity for selection "
end

Information Macros in the Define Section
You can specify macros in the define section of the ACE report, including:

• The `REP_DEFLOC' macro, which tells the location of the report.
• The `REP_DEFREV' macro, which tells the revision information and status (including the

last date and time revised, who revised it.)

The following is an example define section:
define
 param[1] inputno type long
 REP_DEFINE
 REP_DEFLOC($$)
 REP_DEFREV($$)
end

Reports and Output 274 System Reference

An example revision number for an ACE report is 6.1.4.1, where:
• 6 = release number
• 1 = CX revision number
• 4 = CX client number
• 1 = local client revision number

Output Commands
You specify the page specifications and margins for the ACE report in the Output section. The
section comes after the DATABASE and DEFINE sections and before the READ section.

Default values
top margin = 3
bottom margin = 3
left margin = 5
right margin = 132
page length = 66
output to = CRT

Example for Changing Default Values:
output

page length 24 {typical CRT size}
right margin 80 {typical CRT size}
left margin 0
top margin 2
bottom margin 1
report to "ace_output" {write report to a file}
end

Example to send report directly to a line printer:
output
 report to printer
 OR
 report to pipe "lpr"
end

Print Commands
You can use the print statement to print quoted strings such as characters, character fields,
arithmetic fields, and expressions.

Examples of print statements are:
• print name
• print name, id_no
• print name," ",id_no," ",state
• print "The name is", name,"."
• print x
• print temp

Examples of print statements without trailing blanks are:
• print name without trailing blanks
• print city clipped

System Reference 275 Reports and Output

Aggregate Commands
You specify an aggregate, a total or gross amount, using the following commands:

• Count
• Percent
• Total
• Average
• Group Count (used within AFTER GROUP OF clauses)

Examples of aggregate commands are:
print "There were ", count using "#####", "attendees at the"
print "meeting this year."
print
print "We expect ",2 * count using "#####", "attendees at the"
print "meeting next year."

after group of lead_city

print group count using "######"

Pause Command
You use the pause command to stop the report processing for a user’s response. The format for
the command is as follows: pause "textstring"

Example: pause "Type a carriage return to continue."

Skip Commands
SKIP n LINES

Used to create blank lines, rather than using print.

SKIP TO TOP OF PAGE
Used to return control of the report to the page header upon specified conditions

Reports and Output 276 System Reference

Example ACE Reports

Introduction
The following reports provide simple examples for specifying database reads and the sorting of
information.

Report to Print All Names in the Database
To print all names in the database, you specify the following simple statements.

Example: database cars end

 select fullname from id_rec end

 format every record end

1. Specify the database: database {cars} end

2. Specify what to read: select {fieldnames} from {table names} end

3. Specify to print the data (format): do default format for every record end

Select and Sort Report
To specify a select and order by clause in an ACE report, do the following.

1. Specify the Select statement:
 select fieldlist from [tables][where clause] [order by clause][into temp x] endsymbol

2. The parameters that you specify are:

x
Any temporary file that is used to hold data during the reading of the database before
formatting begins. It is required if any testing or calculations of the data read is to occur.

fieldlist
One or more fieldnames separated by commas.

tables
One or more table names separated by commas.

where clause
The keyword 'WHERE followed by a Boolean-expression.

Note: You can express the Boolean-expression as a field relop constant (relop is a
relational operator: =, <>, <, >, <=, >=), or as logop Boolean-expression (logop
is one of the logical operators: AND, OR)

endsymbol
Either the word end or a semi-colon.

3. Specify the ORDER BY clause:

order by fieldnames [ascending|descending] end

Note: You can combine the use of ascending and descending within the same sort
clause. Any field listed in the sort clause must be an indexed field within the
database.

Example: sort by name ascending state descending end

System Reference 277 Reports and Output

Example SELECT and ORDER BY Reports
The following are example ACE reports that contain SELECT and ORDER BY clauses.

 database cars end

 select id_number,
 fullname,
 state
 from id_rec

 order by fullname end

 format every record end

 database cars end

 select id_number,
 name,
 state,
 sex
 where ((state = "OH" or
 state = "MA") and
 (id_number = profile_id))

 order by fullname, state descending end

 format every record end

Reports and Output 278 System Reference

Formatting ACE Reports

Introduction
The following specifies the command clauses you can specify in the FORMAT section of an ACE
report.

FORMAT Command Clauses
The format command is composed of combinations of up to 7 clauses. All of the clauses are
optional. However, you must specify at least one clause.

FIRST PAGE HEADER
Statements contained in this clause will be executed immediately after the top margin of the
first page is printed.

PAGE HEADER
Statements contained in this clause will be executed immediately after the top margin is
printed on every page. If a first header page is present, this clause is not active until the
second page.

BEFORE GROUP OF
Can only be used when using a sort clause. This format clause is followed by one of the
fieldnames in the sort clause. The statement in this clause will be executed immediately
before any new value occurs in the fieldnames specified.

ON EVERY RECORD {fieldname}
Used for processing, printing, and calculating information on every record that was selected.

AFTER GROUP OF {fieldname}
Can only be used when using a sort clause. Used in a similar fashion to BEFORE GROUP
OF, except it occurs after every new value in the fieldname specified.

ON LAST RECORD
Similar to AFTER GROUP OF, except statements are executed after the last record has
been processed. For the last record, the order of action is: BEFORE GROUP OF, ON
EVERY RECORD, AFTER GROUP OF, and ON LAST RECORD.

PAGE TRAILER
Statements contained in this clause will be executed at the bottom of each page, just above
the bottom margin.

Page Headers
In page headers, print the parameters that are passed to the ACE report, not the actual field
values. If you use the actual field values, and the system does not choose any records, the field
values print on the report as blank or zeros.

For example, in a report that prints the session and year, use the following in the page header
(where sess and yr are parameters defined in the Define section.):

'print sess clipped, 1 space, yr using "####"',

Do not use the following:

'print adm_plan_enr_sess clipped, 1 space,

 adm_plan_enr_yr using "####"'

Note: In page headers, use the 'REP_JUSTIFY' macro or the '_midstring(text)' function for
centering text.

System Reference 279 Reports and Output

Page Trailers
ACE reports in CX have footers generated by code matching this format:

 on last record
 REP_LAST_REC
 page trailer
 REP_TRAILER

The REP_TRAILER macro expands to code which will produce the path of the ACE report at the
bottom of the last page of the output.

Note: If you use an IF-THEN-ELSE statement to put a different footer on all of the pages
except the last, then the number of lines printed by the IF part must be the same as
that in the ELSE part. This is an ACE requirement.

ON LAST RECORD Statements
The following are the statements that you can specify that are executed when the last record is
processed.

LET STATEMENT
Assignment to variables that were defined in the DEFINE command.

Example: let runningcount = runningcount + 1

IF-THEN-ELSE STATEMENTS:
FORMAT = If condition then action end

Note: You only need to use "begin - end" if there are two or more executable
formatting statements within the "if-then" statement.

Note: Jenzabar recommends that if and else line up, and that begin and end
line up for readability.

Example: if (salesprice > average of salesprice) then

 begin

 print "Above average."

 end

 if (salesprice > average of salesprice) then

 print "Above average."

 else

 print "Below average."

 end

Reports and Output 280 System Reference

Troubleshooting ACE Reports

Introduction
The following is a set of suggestions which may help in debugging Ace reports.

Apparent problem with data
In this case the report output appears to be wrong with no indication of the cause. This is a
common problem with summary type reports since the data leading to totals is not visible on
the output. If the Ace report is an old one, the problem is probably the data. On the other
hand if the Ace report is just being written, then the logic or select statements may be
incorrect. Two standard techniques are useful in this case.

a) Cut out the select portion of the report using the editor and put it in a file. Replace the
parameter variables with suitable literal constants. Then use this file as input to isql (or
dbaccess). This step should give the actual data rows which were available to the Ace
report.

b) Put a section in the “on every row” section to produce a formatted output for each data
row. It is a good idea to leave this section in the Ace report when done so that if a change is
desired, the debugging code is already there. This may be done in two different ways. The
first is to just comment out the debugging code. Of course this method precludes there
being any comments in the debugging code since comments may not be nested in Ace. The
second method makes use of the fact that the Ace report is passed through the m4 macro
processor when it is translated. To use this method, place the following line of code at the
beginning of the Ace report:

 m4_define(`DEBUG’, `Y’)

Then for each group of lines of debugging code use the following syntax:

 m4_keepif(DEBUG, `Y’)

 some lines of debugging code

 m4_keepend

In use, the Y in the define is changed to N prior to checkin so the debugging code is not in
the production report. However, if a change is to be made in the report, then after check out,
the N is changed back to a Y for debugging.

Core dump when translating the report
This problem is usually due to one of two problems. The first is that the Ace has become two
large. The second is that the Ace report is a new one and the problem is caused by the
REP_DEFLOC macros. There are techniques to handle both of these.

a) Report too large. Ace has not been updated very much since Informix version 3.3. In
fact when they went from isql to dbaccess the main change was that the direct support for
Ace reports and Perform screens that existed in isql was dropped. Many severe hard-coded
limitations exist in Ace. For example, there is a limitation of 100 variables in the Ace report.
Other limitations relate to other areas; for example, there appears to be a limitation on the
number of temp tables that may appear in the select statements. Unfortunately the
preparation program, saceprep, does not effectively handle reports that become too large.

System Reference 281 Reports and Output

Many times it just gives up with a core dump. The error message may be segmentation fault
or bus error from the operating system.

If this error occurs then either one of the built-in limitations has been reached, or the report
code has just become too large. In either case, an approach is to selectively remove code
until the Ace report will compile. One method to do this is to comment out regions.
However, the technique shown above using the m4 macros is actually better especially if
you have been placing comments in the code. Selected regions may be surrounded by the
m4_keepif and m4_keepend lines, or a “binary search” technique may be used to locate the
region with the problem.

b) The REP_DEFLOC macros are used to create the line in the trailer on the last page
which identifies the Ace report source path so that a user may readily identify a report for
someone who wishes to make a change or fix a problem. Unfortunately, there are
conditions under which this macro will cause a core dump. A simple fix is to comment out
these macros, or to check in the report as soon as it will compile cleanly so that the macro
has a defined path.

Core dump when the Ace report is run
Unfortunately the saceprep program is not a good “compiler” so many actual program errors
will not be found until runtime. This error may also be due to a report becoming too large.
Another cause is improper string manipulation. If the report steps through a string looking
for a substring and in doing so steps off the end of the string, then this movement usually
causes a segmentation fault.

If the problem is found to be that the Ace report has become too large, there are two
techniques for resolution. Both techniques involve breaking the report into multiple reports.
The first Ace report only collects the data and stores it in large arrays using the acearray
functions. Then in the “on last row” clause, the arrays are dumped out to be used as input
for another Ace report. The difference between the two methods lies in the location where
the data is stored.

a) Now that the Ace report may execute an SQL statement directly to store data, the
intermediate data may be stored in a table (see later section on SQL functions). The follow-
on Ace report(s) may then select data from this intermediate table. This table may be a
standard database table with a schema, or it could be a “temporary” table created on the fly
by the _exec_sql() function. Unlike the normal temp table created in the select statement,
this table will not disappear when the Ace report terminates.

b) Ace reports may read data from an ascii file as if a select statement had been used. In
this case, pseudo fields must be defined so the report knows how to deal with them since
the report cannot get this type data from the database as it normally would. Then a read
statement is executed which brings the data in from the ascii file. The data needs to be
stored in the file in a delimited format similar to unload format. The delimiting character may
be specified so that one interesting approach is to use a “,” (comma) to delimit the fields in
the ascii file. This way the data could be loaded directly into a spreadsheet or other utility
that can read CDF files in addition to being used by the follow-on report.

Reports and Output 282 System Reference

Acearray Functions in ACE Reports

Introduction
CX has expanded the capability of the ACE report writer by adding functions to it. These
functions include:

• Functions that interact with the RCS system.
• A set of functions allowing you to greatly exceed the normal limit on the number of

variables.
• Functions that add arrays to ace

The following pages describe how to use the latter two types of functions, called acearray
functions. These functions all have a name starting with _var, which distinguishes them from the
other CARS-added functions.

Access to Acearray Functions
The acearray functions are C language functions and are supplied to all clients in the directory:
$CARSPATH/src/common/sacego
Since ACE is supplied as an object library, the actual sacego executable is created by the
command make install in the above directory.

Summary List of Acearray Functions
The following briefly describes the functions and their usage.

_vardef
Defines a variable or an array of variables

_varget
Gets data from a previously defined variable

_variget
Gets data from a variable using an index variable (a loop variable)

_varstore
Stores data into a variable

_varistore
Stores data into a variable using an index variable (element defined by a variable)

_varaccum
Accumulates data into a variable using several methods

_variaccum
Accumulates data into a variable specified by an index using several methods

_varpct
Calculates a percentage from two parameters passed and correctly handles the case of
divide by zero

_varpctold
Calculates a percentage from two parameters passed (old version of _varpct)

System Reference 283 Reports and Output

Use of the Acearray Functions
CX added the acearray functions to gain additional variables that can be used in the ACE report.
By also adding arrays of variables, CX made it possible to have several thousand variables in the
ACE report. You must define each variable and then data can be stored or received in the
variable. When defining each variable, you must give a name to each variable (or array of
variables). For example, you could define a variable called somevar. Alternatively, you could
define an array of 100 such variables which you could call somevar[100].

Note: The string somevar is referred to as the tagname. In the following descriptions, N
refers to the number of elements in an array, while n, n1, and n2 refer to some
particular element in the array.

Because of the manner in which ACE deals with variables internally, most of these functions work
with most of the datatypes that are allowed in ACE. They may or may not work with the newest
data types such as datetime, interval, and varchar. They were initially written before these types
were available and this update did not address that issue.

Note: Variable tagnames are case sensitive.

Acearray Function Variables
The following lists the acearray functions and their arguments.

_vardef(“name", "type", value)
name: the variable tagname optionally followed by [N]
type: the type of value ("char”,"integer”,"money",...)- desired
value: a type-similar initializer for all elements of name

_varstore(“name", value)
name: the variable tagname optionally followed by [n]
value: a type-similar value to store in the appropriate element(s) of name

Note: If “name” was defined as an array and this call does not include a specific
index, the value will be stored in all locations.

_varistore(“name", index, value)
name: the variable tagname without any [n] specifier
index: the 1 relative index into the name array (1 < =index< = N)
value: the type-similar value to store in name[index]

_varget(“name")
name: the variable tagname, followed by [n] if name is an array

_variget(“name", index)
name: the variable tagname without any [n] specifier
index: the 1 relative index into the name array (I < =index< = N)

_varaccum(“name",{factor | ”+” | ”-” | ”*” | ”/”}, {“array” | value})
name: the variable tagname optionally followed by [n] or [nl-n2]
factor: a numeric multiplier or an operator {“+”, “-”, “*”, or “/”)
array: a variable tagname optionally followed by [n] or [nl-n2]
value: the type-similar value to accumulate into each element of name

Reports and Output 284 System Reference

_variaccum(“name",{factor | ”+” | ”-” | ”*” | ”/”}, {“array” | value}, index)
name: the destination variable tagname optionally followed by [n] or [nl-n2]
factor: a numeric multiplier or an operator {“+”, “-”, “*”, or “/”)
array: a source variable tagname optionally followed by [n] or [nl-n2]
value: a type-similar value to accumulate into each element of name
index: an integer value which specifies the element of “name” desired.

_varpct(subtotal, total) or _varpct(“array1[n]”, “array2[m]”)
subtotal: a numeric value dividend
total: a numeric value divisor

Note: This version of _varpct handles overflow.

_varpctold(subtotal, total)
subtotal: a numeric value dividend
total: a numeric value divisor

Note: This is the old version of _varpct that did not handle overflow well.

The _vardef Function
This function defines a variable or an array of variables for an ACE report and requires three
parameters. The first two must be character strings.

• The first parameter identifies the name of the variable and, if it is to be an array, its array
dimension is a positive integer surrounded by brackets.

• The second parameter designates the type of the variable. Allowable variable types are
"smallint”, "integer", "float", "smallfloat", “char”, "decimal", "money" and "date". Type
specifiers must be in lower case as shown here since they will have a string compare
operation performed by the functions to determine the variable’s type.

• The third parameter is the initial value to be stored in each element of the variable. Its type
must be similar to the defined type of the variable. The call to this function normally will go
into the first page header section of the ACE report so that it will only be called once.
These variables are not known by ACE which is why you can circumvent the ACE limit.

Note: Defining a variable which has already been defined during this run of the ACE
report results in an error.

_vardef Examples
Some examples of _vardef usage are as follows:

let ret_value = _vardef(“student”, “char”, " ")
Defines a variable called "student” which can hold ANY size character string. It is initialized
to contain a single blank.

let ret_value = _vardef(“student[10]”, “char”, " ")
Defines a character array of ten elements (from 1 through 10), each of which may store a
different size string.

let ret_value = _vardef(“num_students[10]”, “integer", O)
Defines an integer array which has a tagname of num_students. This array can hold up to
ten integers all of which are initialized to zero. The individual elements are
num_students[1]...num_students[10].

System Reference 285 Reports and Output

The _varstore Function
This function places data into a variable previously defined by _vardef and requires two
parameters.

• The first parameter must be a character string identifying the variable. If the variable was
defined as an array of size N, the name usually will include an index into the array as an
integer surrounded by brackets. The index (of type integer) must range inclusively from 1
to N.

• The second parameter is the data to be stored into the variable and must be of a type
similar to that which was used in the _vardef statement.

_varstore Examples
Some examples of _varstore usage are as follows:

let ret_value = _varstore(“student”, "Smith, John")
Stores the string “Smith, John" into the variable "student"

let ret_value = _varstore(“num_students[3]”, 25)
Stores the integer 25 into the array “num_students" in element 3, which is the third element.

let ret_val = _varstore(“num_students”, 15)
Stores the integer 15 into the array “num_students" in ALL 10 locations.

The _varistore Function
This function places data into an array previously defined by _vardef and requires three
parameters. Its purpose is to allow one to store values into an array while in a loop by using the
value of an integer variable to determine the element of the array to use.

• The first parameter must be a character string identifying the name of the variable
(tagname).

• The second parameter must be a numeric value. If the variable was defined as an array of
size N, the value must range inclusively from 1 to N. If the variable was not defined as an
array then a value of 1 is valid; however, you should use the varstore function in that case.
This value will usually be supplied by a variable rather than a literal constant.

• The third parameter is the data to be stored into the variable and must be of a type similar
to that which was used in the _vardef call for this array.

_varistore Examples
Some examples of _varistore usage are as follows:

let ret_value = _varistore("student” ,1,"Smith, John")
Stores the string “Smith, John" into the variable "student." (_varstore should probably have
been used.)

let ret_value = _varistore(“num_students", 3, 25)
Stores the integer 25 into the array “num_students" in element 3, as does the following two
lines:

let index = 3
let ret_value = _varistore(“num_students”, index, 25)

The _varget Function
This function retrieves data from a variable previously defined by _vardef. It requires one
parameter, a character string that identifies the name of the variable. If the variable was defined
as an array of size N, the name must include an index into the array as an integer surrounded by
brackets. The integer index must range inclusively from 1 to N.

Reports and Output 286 System Reference

_varget Examples
Some examples of _varget usage are as follows:

let char_var = _varget("student")
Retrieves character data from the variable "student"

let int_var = _varget ("num_students[3]”)
Retrieves integer data from the array “num_students” from element 3.

The _variget Function
This function retrieves data from a variable previously defined by vardef. It requires two
parameters.

• The first parameter must be a character string that identifies the desired variable which
must have been previously defined with _vardef.

• The second parameter must be a numeric value. If the variable was defined as an array of
size N, the value must range inclusively from 1 to N. If the variable was not defined as an
array then a value of 1 is valid; however, the _varget function should be used instead in that
case.

_variget Examples
Some examples of _variget usage are as follows:

let char_var = _variget("student", 1)
Retrieves character data from the variable “student” (Since “student” is not an array the
_varget function should be used. It is more efficient since variget is just a wrapper around
_varget.)

let int_var = _variget (“num_students”, 3)
Retrieves integer data from the array “num_students” from element 3. This action will more
often be accomplished by the following statements:

let index = 3
let int_var = _variget(“num_students”, index)

The _varaccum Function
This function does either:

• Combines (add, subtract, multiply, or divide) two arrays element by element
• Combines (add, subtract, multiply, or divide) a constant with all elements of an array

This function requires three parameters.
• The first parameter is always a character string and must contain the name of a non-

character type array previously defined by _vardef. If all elements of the array are to be
affected, then no element qualifier is necessary. Otherwise, a qualifier must directly follow
the array name in the form. This qualifier can be of the form [n] or [n-m], where n and m
are both within the range of 1 to N inclusively.

• The second parameter is either a string representing the operation ("+”, “-”, "*", or "/") to be
performed or a factor that will be multiplied to the third parameter value before being
combined via the desired operator with each value specified by the first parameter.

• The third parameter may be either a character string name with the same characteristics of
the first parameter (including number of elements specified) or it may be a constant numeric
(non-character) type value.

System Reference 287 Reports and Output

_varaccum Examples
Some examples of _varaccum usage are as follows:

Note: In the following examples, assume that Arrl and Arr2 are arrays that have both been
defined by a _vardef and that both have 10 elements. Likewise, Arr3 is an array
defined by _vardef which has 15 elements. All three contain the same type of data.

let int_var = _varaccum(“Arrl”, “+”, "Arr2”)
The above statement accomplishes the following actions:

Arrl[1] = Arr1[1] + Arr2[1]
Arrl[2] = Arr1[2] + Arr2[2]
Arrl[3] = Arr1[3] + Arr2[3]
 .
 .
 .
Arrl[10] = Arrl[10] + Arr2[10]

let int_var = _varaccum(“Arrl”, “*”, "Arr2”)
The above statement accomplishes the following actions:

Arrl[l] = Arrl[l] *Arr2[l]
Arrl[2] = Arrl[2] * Arr2[l]
Arrl[3] = Arrl[3] * Arr2[3]
 .
 .
 .
Arrl[10] = Arrl[10] *Arr2[10]

let int_var = _varaccum(“Arrl”, “/”, "Arr2”)
The above statement accomplishes the following actions:

Arrl[1] = Arrl[l] / Arr2[l]
Arrl[2] = Arrl[2] / Arr2[2]
Arrl[3] = Arrl[3] / Arr2[3]
 .
 .
 .
Arrl[10] = Arrl[10] / Arr2[10]

let int_var = _varaccum(“Arr1”, -1, “Arr2”)
The above statement accomplishes the following actions:

Arrl[l] = (-1 * Arr2[1])
Arrl[2] = (-l * Arr2[2])
Arrl[3] = (-l * Arr2[3])
 .
 .
 .
Arrl[10] = (-1 * Arr2[10])

let int_var = _varaccum(“Arrl[5-7]”, “+”, "Arr3[l0-l2]”)
The above statement accomplishes the following actions:

Arrl[5] = Arr1[5] + Arr[10])
Arrl[6] = Arr1[6] + Arr[11])
Arrl[7] = Arr1[7] + Arr[12])

Reports and Output 288 System Reference

The _variaccum Function
This function is a version of _varaccum suitable for placing into a loop. Its relationship to
_varaccum is similar to the one which _variget has to _varget. In addition to the same three
parameters which _varaccum takes, _variaccum takes a fourth parameter, which is the value
which specifies the element of each of the arrays which you should use.

Note: Because _variaccum only looks at the tag name of the arrays which may be present in
parameters one and three, if these parameters contain an index value such as [n] it will
be ignored

_variaccum Examples
Some examples of _variaccum usage are as follows:

let index = 3
let int_var = _variaccum(“Arr1”, “+”, “Arr2”, index)

The above statements have the following effect:
Arr1[3] = Arr1[3] + Arr2[3]

let index = 5
let int_var = _variaccum(“Arr1”, 1.05, “Arr2”, index)

The above statements have the following effect:
Arr1[5] = +(1.05 * Arr2[5])

Note: These statements make the selected element of Arr1 5% larger than the
corresponding element of Arr2.

The _varpct Function
This function is used to calculate percentages. It requires two parameters, both of which must be
non-character type values. The result of (value1 * 100)/value2 is returned. If value2 is zero, an
extremely large number is returned, in fact: 999999.99. This value is returned if the value of the
first parameter is >1000* value of the second parameter. The reason is that this number will
overflow the format specified for the return value so that the report will have asterisks on it at that
location. This will alert the user that the number in that location is invalid. In the same situation
_varpctold, returns a zero which the user may mistake for a valid result.

_varpct Examples
Some examples of _varpct usage are as follows:

let float_val = _varpct(30, 100)
Returns 30.

_varpct(subtotal, total)
Returns a percentage calculated by multiplying subtotal by 100 and then dividing by total

let float_val = varpct(30, 0)
Returns 999999.99.

The _varpctold Function
This function is used to calculate percentages. It requires two parameters, both of which must be
non-character type values. The result of (value1 * 100)/value2 is returned. If value2 is zero, then
0 is returned. It is only included in case anyone had built ACE reports which depended upon the
previous behavior. It should not be used for new reports.

Note: This function is an older version of the _varpct function.

System Reference 289 Reports and Output

_varpctold Examples
Some examples of _varpctold usage are as follows:

let float_var = _varpct(30, 100)
Returns 30.

_varpct(subtotal, total)
Returns percentage calculated by multiplying subtotal by 100 and then dividing by total.

let float_var = _varpct(30,0)
Returns 0.

CAUTION: This result could be overlooked by the user. The _varpct works better in
this case.

Reports and Output 290 System Reference

Troubleshooting Array Functions
Numerous error messages exist regarding syntax errors in the parameters passed to these
routines, as well as error messages regarding their execution. The routines verify the definition
of the variables by name and ensure that no variable is redefined, and that meaningless data
assignments are not made. All messages are sent to the ACE report's standard out. Their
format is similar to those produced by ACE itself.

Spurious error messages about undefined variables can appear when an actual case of an
undefined variable occurs. This can be triggered by a typographical error in a call to _varget, for
example. Fix the first problem and the others will disappear.

It is recommended that you add debug code on every row section of the report. This may
produce a formatted output of the entire set of input data during debug. As an alternative, the
section might be activated by a parameter passed by the user. In this way, the end-user may be
able to search for data errors that would otherwise be hidden in a summary type of report. For an
example of this type of debugging, see the sample report setwaitrnk at the end of the SQL Array
Functions section.

System Reference 291 Reports and Output

Sample Report
The following is a sample ACE report to illustrate the usage of most of the array functions.

 Revision Information (Automatically maintained by 'make' - DON'T CHANGE)

 $Header$

}
database CARS_DB end

define
 variable tstvar1 integer
 variable tstvar2 integer
 variable i integer
 function _vardef
 function _varstore
 function _varistore
 function _varget
 function _variget
 function _variaccum

 REP_DEFINE
 REP_DEFLOC($Source$)
 REP_DEFREV($Header$)
end

output
 REP_OUTPUT
end

 {Simple select just to illustrate the operation of array functions.}
select
 id
from
 id_rec
where
 id = 1
end

format
 page header
 REP_FORMAT
 REP_HEADER("DEMO of CARS' ACE ARRAYS")

{ Need to define the "array variables" to be used. NOTE! Cannot do this in
 define section because Ace does not know about these variables. }

 call _vardef("tstary[5]", "integer", 0)
 call _vardef("test[5]", "char", " ")

{ In general if the user function does not return a value the call keyword
 MUST be used. If the function does return a value then it
 can be used anywhere that a constant could be used in an expression }

 on every row
 call _varstore("tstary[1]", 2)
 call _varstore("tstary[2]", 4)
 call _varstore("tstary[3]", 6)
 call _varistore("tstary", 4, 8)
 call _varistore("tstary", 5, 10)
 call _varstore("test[1]", "Test of length")

 let tstvar1 = _varget("tstary[1]")
 let tstvar2 = _variget("tstary", 2)

 print "tstvar1 = ", tstvar1 using "###"
 print "tstvar2 = ", tstvar2 using "###"
 {Note usage of temporary variable!}
 print "varget(tstary[1] = ", _varget("tstary[1]")
 print "varget(tstary[2] = ", _varget("tstary[2]")
 print "variget(tstary[3] = ", _variget("tstary", 3)
 print "variget(tstary[4] = ", _variget("tstary", 4)
 print "variget(tstary[5] = ", _variget("tstary", 5)
 print "variget(test[1] = ", _variget("test", 1)
 print "varget(test[1] = ", _varget("test[1]")

 for i = 1 to 5 do
 begin
 call _variaccum("tstary", "+", 1, i)

Reports and Output 292 System Reference

 end

 print
 print "Results after using the _variaccum function:"
 print "tstvar1 = ", tstvar1 using "###"
 print "tstvar2 = ", tstvar2 using "###"
 print "varget(tstary[1] = ", _varget("tstary[1]")
 print "varget(tstary[2] = ", _varget("tstary[2]")
 print "variget(tstary[3] = ", _variget("tstary", 3)
 print "variget(tstary[4] = ", _variget("tstary", 4)
 print "variget(tstary[5] = ", _variget("tstary", 5)
 print "variget(test[1] = ", _variget("test", 1)
 print "varget(test[1] = ", _varget("test[1]")

 on last row
 REP_LAST_REC

 page trailer
 REP_TRAILER

end
{

Sample Output
The following is a sample output of the ACE report shown above.

 --------------- SAMPLE OUTPUT -----------------

Tue Jun 18 1996 CARS College Page 1
20:49 DEMO of CARS' ACE ARRAYS
tstvar1 = 2
tstvar2 = 4
varget(tstary[1] = 2
varget(tstary[2] = 4
variget(tstary[3] = 6
variget(tstary[4] = 8
variget(tstary[5] = 10
variget(test[1] = Test of length
varget(test[1] = Test of length

Results after using the _variaccum function:
tstvar1 = 2
tstvar2 = 4
varget(tstary[1] = 3
varget(tstary[2] = 5
variget(tstary[3] = 7
variget(tstary[4] = 9
variget(tstary[5] = 11
variget(test[1] = Test of length
varget(test[1] = Test of length

}

System Reference 293 Reports and Output

SQL Functions

Introduction
Jenzabar has added four functions that allow you to execute SQL statements within the ACE
report itself. These functions provide the following benefits:

• Reports can have both a report and an update function.
• Reports do not need to produce SQL statements that are then piped to isql under the

control of a C shell script.

 The following are the four functions in this category.

The _exec_sql Function
This function allows you to execute an add or update type of SQL statement within the format
section of the ACE report. It is not useful for executing a select statement.

Example: _exec_sql(“sqlstring”, “sparm”)

The following are the parameters for this function.

sqlstring
A character variable containing the SQL statement to execute.

sparm
Two settings are possible:

• “S” if sqlstring involves the insertion of a serial value which you would like returned.
• “ “ if sqlstring does not involve the insertion of a serial value which you would like

returned.

The _ctrl_trans Function
This function controls transactions.

Example: _ctrl_trans(“parm”)

Note: ACE does not open its cursor using the with hold clause, so you cannot use the
_ctrl_trans function in the on every row section. The entire operation of the ACE report
must be a single transaction. The value of the Informix error code is returned by these
functions, so you can decide during execution whether to commit or rollback the work.

parm
Three values are possible:

• “B” for begin work
• “C” for commit work
• ‘R” for rollback work

Note: The call with a parameter of “B” is not needed since ACE executes this itself
(for the temporary files).

The _ctc_add Function
This function allows you to add ctc_recs directly without having to create an SQL statement in the
ACE code, and then pipe output to isql.

Example: _ctc_add(id, tick, corr, due_date, time, compl_date, resrc, status, cgc, enrstat)

Reports and Output 294 System Reference

The _ctcdetl_add Function
This function allows you to add ctcdetl_recs directly without having to create an SQL statement in
the ACE code, and then pipe the output to isql.

Example: _ctcdetl_add(ctc_no, sp_hndl, statnry, envl, sign_id, hnd_sgn, money1, money2)

Sample Report
The following is a sample ACE report to illustrate the use of the array and SQL functions.

System Reference 295 Reports and Output

{
 setwaitrnk

 This report will be run from cron every night to update the admissions
 waiting list. This waiting list consists of those applicants which are
 on a waiting list for acceptance. Their current enrollment status will be
 WAITLIST (or some suitable macro value). When a student is taken off of the
 waiting list their enrollment status will become something else, for example
 ACCEPTED. This report will use the new features of sacego which allow one
 to update the database to update the ranks of the persons remaining on the
 waiting list so that there will be no gaps in the list. It will do so by
 reading the necessary data for all waiting list members into an array.
 It will then search this array for holes and move other members appropriately
 to fill in the holes.
}
{
 Revision Information (Automatically maintained by 'make' - DON'T CHANGE)

 $Header$

}

{
 If changes are made in this report and the build in debugging lines are
desired then simply change the N to a Y in the define line below.
}
m4_define(`DEBUG', `N')

{ If it is desired to run the program without updating the database so that
test cases may be reused then the N should be changed to Y in the define line]
below}
m4_define(`TEST', `N')

database CARS_DB end

define
 param[1] param_prog char(4)
 param[2] param_sess char(4)
 param[3] param_year smallint
 REP_DEFINE
 REP_DEFLOC($Source: /usr/carsdevi/modules/admit/reports/RCS/setwaitrnk,v $)
 REP_DEFREV($Header: setwaitrnk,v 8.3 97/04/04 13:28:54 rreno Developmental $)
 variable prev_rank integer
 variable cur_rank integer
 variable rank_diff integer
 variable cur_id integer
 variable adm_prog char(4)
 variable i integer
 variable j integer
 variable debug integer
 variable cur_name char(32)
 variable list_count integer
 variable function_ret integer
 variable sql_string char(256) {for sql function arg }
 variable quote char(1)
 variable head_sess char(4)

 function _vardef
 function _varistore
 function _variget
 function _varget
 function _variaccum
 function _ctrl_trans
 function _exec_sql

end

output
 REP_OUTPUT
end

select
 adm_rec.id,
 adm_rec.rank,
 adm_rec.prog,
 id_rec.fullname
from
 adm_rec,
 id_rec
where
 ((id_rec.id = adm_rec.id) and
 (adm_rec.enrstat = "ADM_STAT_WAIT") and
 (adm_rec.prog = $param_prog and

Reports and Output 296 System Reference

 (adm_rec.plan_enr_sess = $param_sess or " " = $param_sess) and
 adm_rec.plan_enr_yr = $param_year))

order by rank
end

format

{***
 This section generates the header for the first page of the report
 and is the normal place to but one-time variable initializations. }

 first page header
 REP_FORMAT
 REP_HEADER("Make Waiting List Current")

 let rep_text = "Updates the Waiting List and Reports on It"
 print REP_JUSTIFY("", rep_text clipped, "")

 if (param_sess = " ") then let head_sess = "ALL "
 else let head_sess = param_sess
 let rep_text = "For program - ", param_prog, " Sess - ", head_sess,
 " and Year - ", param_year using " ####"
 print REP_JUSTIFY("", rep_text clipped, "")

 {initialize variables}
 let list_count = 0
 let quote = '"'

 {create arrays and initialize them}
 call _vardef("id_array[ADM_MAX_WAITLIST]", "integer", 0)
 call _vardef("rank_array[ADM_MAX_WAITLIST]", "integer", 0)
 call _vardef("org_rank_array[ADM_MAX_WAITLIST]", "integer", 0)
 call _vardef("name_array[ADM_MAX_WAITLIST]", "char", " ")
 call _vardef("prog_array[ADM_MAX_WAITLIST]", "char", " ")

 print
 print
 column 3, "cur",
 column 8, "prev",
 column 14, "student",
 column 29, "student",
 column 60, "result"

 print
 column 3, "rank",
 column 8, "rank",
 column 16, "id",
 column 31, "name",
 column 62, "code"

{***}
 page header
 REP_FORMAT
 REP_HEADER("Make Waiting List Current")

 let rep_text = "Updates the Waiting List and Reports on It"
 print REP_JUSTIFY("", rep_text clipped, "")

 if (param_sess = " ") then let head_sess = "ALL "
 else let head_sess = param_sess
 let rep_text = "For program - ", param_prog, " Sess - ", head_sess,
 " and Year - ", param_year using " ####"
 print REP_JUSTIFY("", rep_text clipped, "")

 print
 print
 column 3, "cur",
 column 8, "prev",
 column 15, "student",
 column 30, "student",
 column 60, "result"

 print
 column 3, "rank",
 column 8, "rank",
 column 16, "id",
 column 31, "name",
 column 62, "code"

System Reference 297 Reports and Output

{**}
 on every row

 { In this section we simply gather the data and store it

 in the arrays.}

 let list_count = list_count + 1

 call _varistore("id_array", list_count, id)
 call _varistore("rank_array", list_count, rank)
 call _varistore("org_rank_array", list_count, rank)
 call _varistore("name_array", list_count, fullname)
 call _varistore("prog_array", list_count, prog)

 { For debugging purposes }
m4_keepif(DEBUG, `Y')
 print "index = ", list_count using "###&",
 " id = ", id using "######&",
 " fullname = ", fullname,
 " rank = ", rank using "##&",
 "prog = ", prog
m4_keepend

{***}
 on last row
 { In this case as happens frequently when using the array
 functions, all of the interesting work is done in the
 "on last row" section of the Ace report. The arrays are
 already sorted in rank order, but if there has been activity
 which has taken people off of the list then there will be
 holes in the list. We now scan the list and change the ranks
 to provide a continuous list. When this process is finished
 then we step through the list and update the ranks. As we
 step through the list if we find a hole in it ie. a difference
 greater than 1 then we move down the list increasing each rank
 (that is decreasing the rank value) by one less than this
 difference.

 As an example of this process the following shows the stages
 that would occur for the assumed starting rank_array values.

 begin 2nd step 3rd step 4th step final
 3 1 1 1 1
 4 2 2 2 2
 7 5 3 3 3
 8 6 4 4 4
 10 8 6 5 5
 11 9 7 6 6
 17 15 13 12 7
 18 16 14 13 8

 }

 let prev_rank = _varget("rank_array[1]")

 { If the rank of the first one is not one then need to adjust
 all of them appropriately }
 if (prev_rank != 1)
 then
 begin
 let rank_diff = prev_rank - 1

 for i = 1 to list_count do
 begin
 call _variaccum("rank_array", "-", rank_diff, i)

{ for debugging purposes }
m4_keepif(DEBUG, `Y')
 let debug = _variget("rank_array", i)
 print ">>>> In first pass rank for ", i using "#&", " is ", debug
 using "#&"
m4_keepend

 end
 end

 { At this point the first rank is 1 and we need to check others}
 let prev_rank = 1
 for i = 2 to list_count do
 begin
 let cur_rank = _variget("rank_array", i)
 let rank_diff = cur_rank - prev_rank

Reports and Output 298 System Reference

{ for debugging purposes }
m4_keepif(DEBUG, `Y')

 print ">> For I= ", i using "#&", " cur = ", cur_rank using "#&",

 " prev = ", prev_rank using "#&"," diff = ", rank_diff using "#&"
m4_keepend

 if (rank_diff > 1)
 then
 begin
 for j = i to list_count do
 begin
 call _variaccum("rank_array", "-", rank_diff - 1, j)

{ for debugging purposes }
m4_keepif(DEBUG, `Y')
 let debug = _variget("rank_array", j)
 print ">>>> For J= ", j using "#&", " cur = ", debug using
 "#&"
m4_keepend

 end

 end

 let prev_rank = cur_rank - rank_diff + 1 { prepare for next pass }
 end

 { At this point the data for the new list is complete so
 we now proceed to update the database and print a report
 of our actions }
 for i = 1 to list_count do
 begin
 {First get the data for this student}
 let prev_rank = _variget("org_rank_array", i)
 let cur_rank = _variget("rank_array", i)
 let cur_id = _variget("id_array", i)
 let cur_name = _variget("name_array", i)
 let adm_prog = _variget("prog_array", i)

 { Create the sql string to perform the desired action }
 let sql_string = "update adm_rec set rank = ",
 cur_rank using "##&",
 " where prog = ", quote, adm_prog, quote,
 " and id = ", cur_id using "########&", ";"

{ For debugging purposes }
m4_keepif(DEBUG, `Y')
 print
 print "sql_string = ", sql_string
m4_keepend

m4_keepif(TEST, `N')
 if (cur_rank != prev_rank)
 then
 begin
 let function_ret = _exec_sql(sql_string, "")
 end
m4_keepend

 print
 column 3, cur_rank using "##&",
 column 8, prev_rank using "##&",
 column 13, cur_id using "######&",
 column 22, cur_name,
 column 60, function_ret using "----&"

 end

 {Need to commit the transactions in order to make our changes permanent}
 let function_ret = _ctrl_trans("C")
 print
 print
 print
 need 4 lines
 print "After committing the transactions the result was ", function_ret
 using "----&"
 print
 print "If this result is not zero then there was some problem!"
 print "In addition, the result code for each line should have been zero"

System Reference 299 Reports and Output

 REP_LAST_REC

{**}

 page trailer

 REP_TRAILER

end

Reports and Output 300 System Reference

Troubleshooting Use of SQL Functions

Introduction
Reports using the SQL functions are frequently complex and difficult to debug. Most such reports
should contain debugging sections. For simple reports such as those that add contact records,
such debugging code may only be needed when originally testing the report and later when
making changes in it. In this case, the m4 macro technique illustrated in setwaitrnk shown above
should be used. If the report is going to update important tables where accuracy should be
verified first, then it is good practice to include on the menuopt a question such as “Final Pass
(Y/N)” and pass the answer to the Ace report. If the answer is “N”, the Ace only prints a report of
what it is going to do. If the answer is “Y”, the report may or may not print but will do the
_exec_sql() statement. In this way you may do one or more verification runs before deciding to
do a final pass where the update statements are done.

Security Setup with SQL functions
Prior to releasing the SQL functions, there was no real security concern with menu options that
allowed an end-user to run an Ace report written by that user or someone else. However, now
that the Ace report may cause changes in the database, the same concerns that motivate sites to
block access to isql now also apply to the user Ace capability. The default setup for SQL
functions blocks end-users (menu users) from access to the SQL functions. The RCS type of the
Makefile in the src/common/sacego directory has been changed to “mult” from the old value of
“prog”. Changes have been made in Makefile and a new file has been added to the makelist
named ro_ace_fn.c which together cause two executables to be created by a make translate
command, and both to be installed by one of the install commands. These two executables are
named sacego (which has access to the SQL functions) and rosacego (which does not have
access to the SQL functions. When a user runs an Ace report from a normal menuopt which
executes an installed Ace report through the use of the script runreports, then sacego is used.
However, if one of the two CX supplied menuopts which allow a user Ace to be run is used,
runreports will utilize rosacego.

Note: If the institution personnel have created other methods to allow end-users to run their
own Ace reports then these have to be examined for security implications.

System Reference 301 Reports and Output

Runreport Script: A Report Sorting Enhancement

Introduction
Jenzabar developed the runreport script to enhance the capabilities of the ACE Report Writer.
The script provides the capability of specifying in a single ACE report various sorts on different
field names or field values. The script makes use of variables in WHERE and/or SORT clauses,
which are substituted by your entered values, to produce output sorted in different ways. Without
the enhancement of runreport script, you would have to create multiple versions of the same
report for each desired sorting scenario.

File Locations
All reports should be created in $CARSPATH/<module>/others with the letters 'rpt' as the final
three letters of the uninstalled source file name. The installed version will be located in
OTH_PATH'<module> with the .oth extension.

Note: Unlike the situation of an installed module from a reports directory, one from an others
directory is not compiled.

WHERE and SORT Clauses
The following are variables you use when specifying WHERE and SORT clauses.

SELECTFIELD
The standard variable name to be replaced by a database field name within a where clause.
The # is a single digit to be used if more than one database field name is to be supplied by
an operator through the menu system.

SELECTVALUE#
The standard variable name for a specific value of the field name entered for a field name.
Use SELECTVALUE without a SELECTFIELD variable.

SORTFIELD#
Names for variables within the sort clause follow the standard, SORTFIELD#. As with
SELECTFIELD, you can use more than one SORTFIELD where '#' is a single digit making
each variable unique. You must include the SORTFIELD in the read statement and the
SORTFIELD must be an indexed field within the database. Because ACE has a limit of
eight sort fields, you can use only eight SORTFIELD variables within a sort clause..

Note: When specifying WHERE and SORT clauses, make sure that the values for
SELECTFIELD, SELECTVALUE, and SORTFIELD are included in the report header
so that the user knows the criteria used to produce the output.

Reports and Output 302 System Reference

Example WHERE and SORT Clauses
The following ACE report example incorporates variables within both the WHERE and SORT
clauses. The example, which prints ACT or SAT scores of recruits, uses SORTFIELD in several
areas throughout the report.

database cars end
define
 variable previd type long
 variable prevdate type date
 variable totalengl type integer
 variable totalmath type integer
 variable totalsoc type integer
 variable totalnat type integer
 variable totalcomp type integer
 variable gcount type integer
 variable runningcount type integer
 variable minvar1 type integer
 variable maxvar1 type integer
 variable minvar2 type integer
 variable maxvar2 type integer
 variable text type character length 80
 param[1] inputsess type character length 4 {enter academic session}
 param[2] inputyr type integer {year}
 param[3] status type character length 8 {enrollment status}
 param[4] inputtype type character length 8 {Type of exam}
 variable text type character length 80
 REP_DEFINE
end
output
 REP_OUTPUT
end
read into temp
 id_no
 name
 exam_date
 exam_score1 exam_score2 exam_score3 exam_score4 exam_score5
 SORTFIELD
joining adm_id = id_no
 and id_no = profile_id
 and adm_id = exam_id
where adm_cur_enrstat = status
 and adm_plan_enr_yr = inputyr
 and adm_plan_enr_sess = inputsess
 and SELECTFIELD = "SELECTVALUE"
 and (exam_type =inputtype and exam_score5 > 0)
end
sort by SORTFIELD exam_score5 descending name id_no end
format
page header
 REP_HEADER
 REP_DATE
 REP_TIME
let text = status, " ", inputtype clipped, " SCORES"
print _midstring(text)
let text = "As of ",inputsess clipped,1 space,inputyr using "####"
print _midstring(text)
let text = "Where SELECTFIELD = SELECTVALUE and Sorted by SORTFIELD"
print _midstring(text)
skip 1 line
 print " Recruit Date Engl Math Natl Socl Comp"
 print "---------------------------- -------- ---- ---- ---- ---- ----"
 let totalengl = 0
 let totalmath = 0
 let totalsoc = 0
 let totalnat = 0
 let totalcomp = 0
 let runningcount = 0
before group of SORTFIELD
print SORTFIELD
 on every record
 if(id_no <> previd) or (id_no = previd and exam_date <> prevdate)
 then begin
print name,1 space, exam_date,4 spaces,exam_score1 using "###",
5 spaces, exam_score2 using "###", 6 spaces;
 if (inputtype = "ACT") then
 print exam_score3 using "##",5 space,exam_score4 using "##",4 spaces;
 else print 13 spaces;
print exam_score5 using "####"
let totalengl = totalengl + exam_score1
let totalmath = totalmath + exam_score2
let totalsoc = totalsoc + exam_score4
let totalnat = totalnat + exam_score3

System Reference 303 Reports and Output

let totalcomp = totalcomp + exam_score5
let runningcount = runningcount + 1
let gcount = gcount + 1
let previd = id_no
let prevdate = exam_date
end
on last record
print 44 spaces,"---- ---- ---- ---- ----"
print" Min/Maximum Scores of each ",11 spaces;
if (inputtype = "ACT") then begin
 let minvar1 = min of exam_score1
 let maxvar1 = max of exam_score1
 print 5 spaces, minvar1 using "##","/",maxvar1 using "##",3 spaces;
 let minvar1 = min of exam_score2
 let maxvar1 = max of exam_score2
 print minvar1 using "##","/",maxvar1 using "##",3 spaces;
 let minvar1 = min of exam_score3
 let maxvar1 = max of exam_score3
 print minvar1 using "##","/",maxvar1 using "##",2 spaces;
 let minvar1 = min of exam_score4
 let maxvar1 = max of exam_score4
 print minvar1 using "##","/",maxvar1 using "##",3 spaces;
 let minvar1 = min of exam_score5
 let maxvar1 = max of exam_score5
 print minvar1 using "##","/",maxvar1 using "##"
end
else begin
 let minvar1 = min of exam_score1
 let maxvar1 = max of exam_score1
 print minvar1 using "###","/",maxvar1 using "###",2 spaces;
 let minvar1 = min of exam_score2
 let maxvar1 = max of exam_score2
 print minvar1 using "###","/",maxvar1 using "###",2 spaces;
 print 12 spaces; {skip scores 3 and 4 if not ACT}
 let minvar1 = min of exam_score5
 let maxvar1 = max of exam_score5
 print minvar1 using "####","/",maxvar1 using "####"
end
skip 1 line
print 7 spaces,"TOTAL RECRUITS: ", runningcount using "####"
 skip 5 lines
 REP_SOURCE($Source: /usr/carsdevi/modules/util/documents/ace/RCS/selectsort,v $)
 REP_REVISION($Header: selectsort,v 8.0 95/04/22 10:21:40 root Developmental $)
end

Runreport Script
The runreport script enhances ACE reports’ use of WHERE and SORT clauses. The script does
the following:

• Calls the report source and interprets the values for SELECTFIELD, SELECTVALUE, and
SORTFIELD as entered by the user.

• Substitutes the variables with the user’s entered values (or values within the where clause)
using the m4 macro processor.

• Compiles the report.

Note: The system does not compile the report until the variable names have been
substituted.

Reports and Output 304 System Reference

• Runs the report at the time specified by the user.

Note: Both the editing of the report source and the compiled version will be located in
'/tmp' until the report execution has completed.

The runreport script is located in the following directory path:
$SCPPATH/common/runreports.scp. The following is the runreport script source.

runreports: Script to execute an ACE report (csh)

Parameters:
First are the optional '-' options:
-MSGS = Indicates the next parameter is a filename to be used
with the 'msg' routines for queuing status and error
messages.
-f Formtype

The next parameter is the name of the ACE report.

The next set of parameters (the rest excluding the last) are
passed as arguments for the ACE report. Special parameters for
defining macros can be given as pairs of parameters of the form:
-Dmacro_name macro_value
If any such macro definitions are given, the file will translated
with the specified macro assignments and then executed.

The last parameter is the process to pipe output to (or 'file').
If 'file' is specified as the last parameter, output will
go to a file in the user's home directory. The file is named
with the name of the ACE report followed by '.out'. Also
a message is mailed to the user when the report is finished.

set Exitstat=1

Process -MSGS option

if ("$1" == "-MSGS") then
 set Msgs_file="$2"
 shift
 shift
else
 set Msgs_file=""
endif
if ($#argv < 2) then
 /bin/csh -f SCP_PATH/util/msg_queue.scp \line -s "ACE report could not run" -f
"$Msgs_file" \line -m "$0 Error: Too few parameters: $*"
 exit 1
endif

Get Formtype if specified

if ($1 == "-f") then
 set Formtype="-f $2"
 shift
 shift
else
 set Formtype=""
endif

Get name of report file

set Output=$argv[$#argv]
set Pathname=$1
shift
set Filename=$Pathname:t
set Root=$Filename:r

Prepare list of arguments for translation and execution

set Trans_args=()
set Exec_args=()
while ($#argv > 1)
 if ($1 =~ -D*) then
 set Trans_args=($Trans_args:q "$1=$2")
 shift
 shift
 else
 set Exec_args=($Exec_args:q $1:q)
 shift
 endif
end

System Reference 305 Reports and Output

Translate the file if any macro definitions were specified

if ($#Trans_args > 0) then
 set Exec_file=/tmp/$Root
 if (-e /tmp/$Root) then
 /bin/csh -f SCP_PATH/util/msg_queue.scp \line -s "ACE: Cannot run
'$Root'" -f "$Msgs_file" \line -m "The '$Root' report is already being run.
Try later."
 exit 1
 else
 onintr cleanup
 cp $Pathname /tmp/$Root
 cd /tmp # Work from /tmp
 csh -f MAK_PATH/user/arc/translate $Root $Trans_args >& $Root.out
 set Exitstat=$status
 if ($Exitstat != 0) then
 /bin/csh -f SCP_PATH/util/msg_queue.scp \line -s "ACE: Error in
'$Root'" -f "$Msgs_file" <<EOM >& /dev/null
An error occurred in the translation of
'$Pathname'.
The error message is as follows:
~r $Root.out
EOM
 mv -f /tmp/$Root.err $HOME
 goto cleanup
 else
 rm -f $HOME/$Root.err
 endif
 endif

No runtime translation necessary.

else
 set Exec_file=$Pathname
endif

Execute the report.
Output to a file in the user's home directory

if ("$Output" == "file") then
 set Fileout=$Root.out # Name of ACE output file
 set Pathout=$HOME/$Fileout # Pathname for output file
 UTL_PATH/acego -q $Exec_file $Exec_args:q >& $Pathout
 set Exitstat=$status
 if ($Exitstat != 0) then
 /bin/csh -f SCP_PATH/util/msg_queue .scp\line -s "ACE: Error in '$Root'" -
f "$Msgs_file" <<EOM >& /dev/null
An error occurred in the execution of
'$Pathname'.
The error message is saved in '$Root.err' in your home directory.
EOM
 mv $Pathout $HOME/$Root.err
 else
 /bin/csh -f SCP_PATH/util/msg_queue.scp \line -s "ACE output for
'$Root'" -f "$Msgs_file" <<EOM
The output for your '$Root' ACE report has been saved in the file
'$Fileout' in your home directory. It will be over-written
the next time you run the '$Root' ACE report.
EOM
 rm -f $HOME/$Root.err
 endif

Pipe output to a printer

else
 UTL_PATH/acego -q $Exec_file $Exec_args:q |& $Output $Formtype
 set Exitstat=$status
 if ($Exitstat != 0) then
 /bin/csh -f SCP_PATH/util/msg_queue.scp \line -s "ACE: Error in '$Root'" -
f "$Msgs_file" <<EOM >& /dev/null
An error occurred in the execution of
'$Pathname'.
The error message was sent to '$Output'.
EOM
 endif
endif

Cleanup

cleanup:
set nonomatch
rm -f /tmp/{$Root,$Root.*}
exit $Exitstat

Reports and Output 306 System Reference

Runreport Processing
The edited source and compiled version for execution are stored in '/tmp' only for the duration of
the script's execution. Users should be cautioned not to run a report if the same report is being
run by another user during the current run (i.e., you cannot run two versions of the same report
concurrently). The compiled version of the second run will overwrite the initial compiled version
in '/tmp'.

Script Menu Option File
From the menu processor, you run the runreports script using a menu option. The menu option
file uses the macro, RUN_REPORTS, to pass your values and the installed command file to the
runreports script. Following is an example of the runreports script menu file. Note the lines
where SELECTFIELD, SELECTVALUE, and SORTFIELD are passed to macros and then to the
script.

SD=ACT/SAT Scores
LD=ACT/SAT Scores of Recruits To College
RD=
 ACT/SAT Scores of Recruits To College

DC=DC_PRINT(DC_PATH/selectsort.doc)
PR=RUN_REPORTS
PP=
PA=-f
PP=
PA=FT_STANDARD
PP=
PA=`OTH_PATH'/admit/recrpt.oth
PP=Enter Planned Enrollment Session (e.g., FA, SP)
PA=upshift,default="FA",length 4
PP=Enter Planned Enrollment Year (e.g., 1984, 1985)
PA=include=(1983:2000),default="1985",type integer,length 4
PP=Enter Enrollment Status
PA=upshift,default="APPLIED",length 8
PP=Enter Exam Type (ACT or SAT)
PA=include=(ACT,SAT),upshift,default="ACT",length 4
PP=
PA=PA_DEFINE(SELECTFIELD)
PP=Enter Selection Field (e.g., country, state, city)
PA=dwshift,default="country"
PP=
PA=PA_DEFINE(SELECTVALUE)
PP=Enter Value For selection Field (e.g., USA, OH, Fairfield)
PA=default="USA"
PP=
PA=PA_DEFINE(SORTFIELD)
PP=Enter Sort Field (e.g., state, city)
PA=dwshift
PP=PP_OUTPUT
PA=PA_OUTPUT
SP

System Reference 307 Reports and Output

Using Print Spooler Software

Introduction
CX print spooling software provides output device control and spool queue management. This
allows you to print reports or other jobs without tying up your terminal. In addition, you can
manage jobs and queues with formtypes and owners.

The Spooling Process
The spooling process can be broken down into two phases, including:

• The queuing of the print job
• The printing of the job

CX has three programs involved in the phases of the spooling process:
1. The lpr program, which does the following:

• Queues the print job into a spool queue directory
• Calls the lpd program

2. The lpd program, which does the following when it locates a print job:
• Opens the job file and the output device
• Calls the print filter (lpf)
• After the job is finished printing, lpd removes the job file from the queue

3. The lpf program, which does the following:
• Copies the queued job file to the output devices

Creating a Spool Queue
The task of establishing a printer as a spooled device basically involves two steps. The first is to
create the spool queue using the MKSPOOLER command and the second is to test the
initialization of the printer.

1. Determine the following:
• The tty line (or lp) to be used to connect the printer
• The type of spooler from $CARSPATH/system/etc/prtypes.s.

Note: If you are connecting a network printer at a specific IP address, provide the IP
address to mkspooler instead of the tty device name

 The type entry is copied into $CARSPATH/install/sys/lib/prtab for use by the
spooling software.

2. Use the mkspooler command to create the spool queue. The command specification is as
follows: mkspooler ttyname spoolername [spoolertype]

3. For example, do the following to add a NEC spinwriter on terminal line tty07 as nec2:
• At the shell prompt, enter: su
• Enter the password.
• Enter the following: mkspooler tty07 nec2 nec

4. After the system creates the spooler, you can test the spooler with the lpinit utility.

Note: A simple test is to send the output from the lptest command to the new spooler
(e.g., 'lptest | buslpr').

Reports and Output 308 System Reference

Spooler File Locations
The following lists the directory locations for spooler-related files on CX.

Spooler Files
The following files are located in $CARSPATH/install/utl

• lpr
• lpc
• lpq (linked to lpc)
• lprm

Spooler Daemon and Filter
The following files are located in $CARSPATH/install/sys/util

• lpd (Spooler Daemon)
• lpf (Spooler Filter)

Printer configuration file
The printer configuration file is located in $CARSPATH/install/sys/lib/prtab

Printer options file
The printer options file is located in $CARSPATH/install/sys/lib/proptions

Spool directory for FPS intermediate files
The spool directory for FPS intermediate files is located in $CARSPATH/spool/forms

Spool directory for queue pr
The spool directory for queue pr file is located in $CARSPATH/spool/{printer name}

System Reference 309 Menu System

SECTION 12 – THE MENU SYSTEM

Overview

Introduction
This section describes the menu system of CX. In order for a CX menu user to access the
various screens and reports that are available on CX, each screen and report must have a
corresponding option on the CX menu. Also, if there are particular parameters that the system
requires when calling up a screen or report, the system must prompt the user for the required
information. This section explains how you can create or modify the options that appear on the
CX menu to best suit your institution's needs.

The process of identifying parameters that the system requires in order to display a screen or
report is comprised of several phases. All of these phases must be complete in order for a CX
user to be able to access the screen or report from the CX menu. This section identifies the
phases in the process for placing a screen or report on the CX menu, and guides you through the
necessary procedures.

The Process for Placing a Screen or Report on the Jenzabar CX Menu
The following explains the process involved in placing a screen or report on the CX menu
structure.

1. Decide whether or not a screen or report needs to have a value passed to it, and define
what that value is.

2. Create the screen or report with the specified variables needed to accept the values you
have previously defined.

Note: See the Informix documentation for further information on creating screens or
reports.

3. Create or modify a menu option (menuopt) file.

4. Update the appropriate menu description (menudesc) file to place the new or updated menu
option file on the CX menu structure.

5. Use the CX menu structure to run the screen or report using the updated menu and menu
option you created or modified.

Menu System 310 System Reference

Menu Option (Menuopt) Files

Introduction
A menu option (menuopt) file is a file that defines an option on the CX menu structure. A menu
option file contains valuable information relating to that specific menu option.

Example: Dean’s List Menuopt File
Following is an example menu option (menuopt) file. This example contains all the components
of the menuopt file that are necessary for the Dean’s List window to function properly.

}

screen
{

 DEAN'S LIST

 PP_SESS[PA4]
 PP_ACAD_YR[PA5]
 PP_PROG[PA7]
 PP_STATUS[PA9]
 PP_GPA[PA10]
 PP_FT_HRS[PA11]
}
end

attributes

SD: optional,
 default = "Dean's List";

SP: optional,
 default - "schedtime,,N";

OUTPUT: optional,
 default = "${CARSPRINTER},";

RD1: optional,
 default = "All students with a session gpa greater than or equal to"

RD2: optional,
 default = "the specified gpa value and taking the full time"

RD3: optional,
 default = "hours of credit specified will appear on the list."

RD4: optional,
 default = "";

RD5: optional,
 default = "NOTE: Be sure the student statistics have been"

RD6: optional,
 default = "updated by using the following option,"

RD7: optional,
 default = "'m4_getoptdesc(regist/programs/trns.Cu)'."
PR: optional,
 default = "RUN_REPORTS";

System Reference 311 Menu System

PA1: optional,
 default = "-f";

PA2: optional,
 default = "FT_STANDARD";

PA3: optional,
 default = "ARC_PATH/regist/deanlist";

LU4 = sess_table.txt, optional;

PA4: optional,
 comments = "COMMENT_SESS_TBCODE COMMENT_TBL",
 default = "SESS_DEF",
 length = 4,
 lookup LU4 joining *sess_table.sess,
 upshift;

PA5: optional,
 comments = "COMMENT_CALENDAR COMMENT_TBL",
 default = "ACAD_YR_DEF",
 ACAD_YR_INCL,
 length = 4,
 type integer;

PA6: optional,
 default = "ALL_SITES";

LU7 = prog_table.txt, optional;

PA7: optional,
 comments = "COMMENT_PROG_TBCODE OrCOMMENT_BLANK_ALL. COMMENT_TBL"
 default = "PROG_DEF",
 length = 4,
 lookup LU7 joining *prog_table.prog,
 upshift;

LU8 = subprog_table.txt, optional;

PA8: optional,
 comments ="COMMENT_TSUBPROG_TBCODE COMMENT_BLANK_ALL. COMMENT_TBL",
 default = "SUBPROG_DEF",
 length = 4,
 lookup LU8 joining subprog_table.subprog,
 upshift;

PA9: optional,
 comments ="Enter student academic status, blank for STUAC_STAT_REG. COMMENT_TBL"
 include = (STUAC_STAT_REG, " "),
 length = 1,
 upshift;

PA10: optional,
 comments = "Enter the lowest session GPA value for selection.",
 default = "3.5",
 length = 5,
 type double;

PA11: optional,
 comments = "COMMENT_FULL_TIME",
 default = 12.0,
 length = 5,
 type double;

end

Menu System 312 System Reference

Menu Option Prompt
Text that begins with "PP_" in a menu option file signifies a macro. A macro is a short way of
representing longer strings of text. The make processor expands the macros at a later time so
that end users see the expanded statements in standard English, rather than macros, on the
screen. For more information on macros in CX, see Setting Up Macros in this guide.

Menu Option Attributes
Menu option (menuopt) attributes are abbreviated notations that define parts of the menu option
file. The following lists valid menu option attributes, their descriptions, and examples. Some of
the attributes are optional, and might not be used in each menu option file. The attributes
sections of the menuopts should be in standard format. Standard format dictates that attributes
appear in alphabetical order, one per line with blank lines between the tags, and the optional
attribute should appear on the tag line. Run the stdscr script to automatically standardize the
attribute section of the screen.

Note: The number symbol (#) after an attribute in the following list denotes a number.

ADR
The ADR attribute passes appropriate default values to the CX addressing process. When
you specify the ADR attribute, the Addressing Parameters window appears for the end user.

Example: ADR: optional, default = "N,N,N,0";
(This specifies four parameters, separated by commas, to the ADR screen.)

comments
You must define the comments attribute for any PA# attribute that appears in the menu
option file. You should equate the comments attribute to a COMMENT macro, if possible. If
a table lookup, blank (for all), or wildcard value is valid, then you must specify the
COMMENT_TBL, COMMENT_BLANK_ALL, or COMMENT_WILDCARD macro,
respectively.

Note: The COMMENT_TBL macro should appear in any comment for which the PA#
attribute contains a table lookup or an include attribute.

Example: comments ="COMMENT_ACAD_PROG,

 COMMENT_BLANK_ALL. COMMENT_TBL",

default
You should specify a default value for all appropriate attributes. Equate the default to a
macro whenever possible.

Example: default = "DEF_MAJ",

dwshift
When you specify the dwshift attribute, anything a user types for the field to which this
attribute corresponds appears in lowercase letters.

Example: dwshift;

GET_ORDER (Get Order)
The GET_ORDER attribute specifies the order the cursor is to follow through the fields in the
menu option file. If you do not specify the GET_ORDER attribute, the cursor flows in a
logical order. The GET_ORDER attribute is optional and is seldom used.

Example: GET_ORDER: group=(PA3,PA4,PA5,PA7), autonext;

include

System Reference 313 Menu System

You must specify the include attribute for attributes in which you do not specify a lookup
attribute. Use an include macro whenever possible. Integer ranges are valid values with
include attributes. Table lookup capability is provided for include attributes.

Example: ACAD_YR_INCL,

 include = (1:10000),

 include = (MGRD,FGRD),

LABELS
The LABELS attribute passes appropriate default values to the CX letter and label screen.
The default value of the LABELS attribute contains four values (separated by commas) that
act as defaults for the Labels Parameter window. When you specify the LABELS attribute,
the Labels Parameters window appears for the user.

Example: LABELS: optional; default = "N,lup35x5,R,N".

length
You must specify a length for all PA# attributes. If the top is related to a database column,
the length must equal the column length defined in the schema. You can equate the length
value to a macro for the financial module columns, where the defined length in the schema
is a macro.

Example: length = GL_CNTR_LEN,

 length = 40,

lookup
You should use table lookups when a valid table exists for a particular field. You can force
the value entered to be in the table name with an asterisk (*), though this still allows a blank
value to be entered as input if the required attribute is not present.

Example: lookup LU# joining *major_table.major,

LU# (Look Up)
Use the LU# attribute to specify a table lookup. The LU# attribute defines the table and
column being looked up. The columns are displayed within the standard table lookup
window. Each LU# attribute must have an optional attribute associated with it, as well as an
associated PA# attribute that contains a lookup joining clause.

Example: LU5 = table.lookup_column, optional;

 PA5: optional,

 ...
 lookup LU5 joining *table.column;

optional
You must include the optional attribute in all attributes for the menu option file.

Example: optional,

Note: With both optional and required attributes, the required takes precedence.
Optional indicates if the field must be in the screen definition section.

OUTPUT (Output)
The default value of the OUTPUT attribute contains two values (separated by a comma) that
act as defaults for the Output Parameters window. The first value denotes the default output
mode, which is either "file," "more," or a valid printer. The second value denotes the default
file, which is only valid if the default output mode is "file."

Example: OUTPUT: optional,

 default = "${CARSPRINTER},",

Menu System 314 System Reference

 OUTPUT: optional,

 default - "file,outputfile",

PA# (Parameter attribute(s))
The default for the PA# attribute defines a possible value that is passed to the process being
executed. Comments are displayed on line 24 of the terminal. The arguments are passed
to the process in the order defined by the integer appended to the PA attribute. You should
use macros for defaults, comments and includes whenever feasible. The length, comments
and optional attributes are mandatory for each PA# attribute.

Example: PA7: optional,

 upshift,

 length 4,

 lookup LU7 joining *table.column,

 comments ="COMMENT_TABLE_COLUMN.

 COMMENT_TBL",

 default = "COLUMN_DEF";

PR# (Process Run)
The default value for the PR# attribute defines which process to execute. The default is
typically either an application program or a script. The PR# attribute is mandatory, and you
can define only one PR# attribute for each menuopt.

Example: PR: optional, default = "RUN_PROG_INFORMER";

PW (Password)
A password is required before the menu option screen is presented to the data entry
operator.

Example: PW: optional,

 default = "@REGIST";

RD# (Run Description)
The default values for the RD# attribute define the run description for the menu option. The
default values appear in numerical order, defined by the integer appended to the RD
attribute. The appended integer must be unique within the set of RD attributes. The RD
attributes are optional. This text gets displayed in a window when the Help command is
used in the menuopt.

Example: RD1:, optional,

 default = "This option updates all the student records.";
To reference the text for another menuoption use the m4_getoptdesc function. This allows
the short description to be dynamically updated as it will automatically retrieve the
description from the referenced menuoption. The txt2rd and rd2txt assist in the development
of the RD# tags, and can be run from inside the VI editor. They are described below:

• txt2rd - Transforms a block of text into the format required for a run description
• rd2txt - Transforms a block of RD# tags into a block of text.

required
The required attribute will force the user to enter a value other than a blank value in the field
to which the required attribute corresponds.

Example: required,

SD (Short Description)

System Reference 315 Menu System

The default value for the SD attribute defines the short description for the menu option that
appears on the CX menu. The SD attribute is mandatory, and you can define only one SD
attribute for each menu option. Capitalize the first letter of all significant words in the short
description to adhere to CX standards. The menuopt title will be the same as the short
description. Use the m4_center macro command to center the title, and start it at column 20
to align with the menuopt prompts.

Example: SD: optional,

 default = "Move Graduates to Alumni";

Note: The SD default has a maximum of 26 characters.

SP (Schedule Process)
The default value of the SP attribute contains three values (separated by commas) that are
defaults for the Output Parameters window. The first value denotes the default time, the
second value denotes the default day, and the third value denotes whether or not to run the
process in the background.

Note: You can use the keyword "schedtime" as the first value, if it is defined in the
$CARSPATH/system/etc/menuparam.s directory path. If "schedtime" is not
defined in this file, the default value is "1100P."

Example: SP: optional,

 default = "schedtime,,Y";

 SP: optional,

 default = "7:00P,sunday,Y";

 SP: optional,

 default = "NOW,,N";

type
Use the type attribute only for numerical columns.

Example: type double;

upshift
Specify the upshift attribute to cause anything that a user types for the field to which this
attribute corresponds to appear in uppercase letters.

Example: upshift,

WARN (warning)
The default text for the WARN attribute is displayed in a dialog box prior to the Output
Parameters window appearing. The WARN default cannot exceed 74 characters. You can
use the WARN attribute to notify the user that output requires wide paper by setting the
default to the WARN_WIDE_OUTPUT macro.

Example: WARN: optional,

 default = "Execute the 'Update Stats' option first.";

 WARN: optional,

 default = "WARN_WIDE_OUTPUT";

Menu System 316 System Reference

How to Create a Menuopt File
The following lists the steps to follow for creating a menu option file for a screen or report.

1. Enter cd $CARSPATH/menuopt/module/reports to access the subdirectory containing
ACE report menu option files for a particular module, or enter cd
$CARSPATH/menuopt/module/screens to access the menu option files for the screen
subdirectory for a particular module.

2. Enter make add F=filename to create a skeleton menu option file that will reference ACE
reports

3. Enter vi filename to place the contents of the file you selected on the screen.

4. Modify the menu option (menuopt) file according to your requirements.

5. Press <Esc>, then enter :wq to exit the file.

6. Enter make F=filename to let the make processor expand the macros and translate and
create an object file.

7. Does the filename "filename.opt" exist?
• If yes, the make processor was successful; go to step 8.
• If no, the make processor was not successful. Look at the "filename.err" file to see

what problems make encountered. Resolve the problems and then repeat step 6 until
the make processor is successful.

8. Enter menu -o ./OBJ/filename.opt to execute the menu option in a local test mode.

Note: The screen information should exist in a box that appears near the top of your
terminal. The lay out of the screen determines the exact position in the source
file.

9. Press Ctrl-w for the information from the run description (RD) lines to appear in a box near
the bottom of the screen.

10. Press Finish to execute the menu option.

 If the system asks you where you want the output placed and when you want the report to
be processed, the PR and PA lines in the menu option file are correct. Go to step 12.

 If you receive a message indicating that the CX menu processor is having a problem, most
likely, the PR line or the PA line specifying the location of the installed screen or report is
incorrect, or you have not temporarily installed the screen or report that the PR or PA line is
referencing. Resolve the problem, then go to step 12.

11. Enter make tinstall F=filename to temporarily install the menu option file. Create a menu
description enter to make the option available to data entry people.

12. Do you want to create another menu option file for a screen or report?
• If yes, go to step 1.
• If no, you have completed this procedure.

13. After you have completed testing and the menu option is performing according to the
specifications, check the menu option back into RCS and it will record the changes.

Example: %make cii F=filename L=“<a comment about the change>“

System Reference 317 Menu System

How to Modify a Menuopt File
The following lists the steps to follow for modifying a menu option that contains a screen or
report.

1. Enter cd $CARSPATH/menuopt/module/reports to access the subdirectory containing
ACE report menu option for a particular module, or enter cd
$CARSPATH/menuopt/module/screens to access the menu option files for a screen
subdirectory for a particular module.

2. Enter cp filename newfilename to copy the menu option file to your working directory.

3. Enter vi newfilename to place the contents of the file you selected on the screen.

4. Modify the menu option (menuopt) file according to your requirements.

5. Press <Esc>, then enter :wq to exit the file.

6. Enter make add F=newfilename to add the make header information to the file and put the
file under Revision Control System (RCS) control.

7. Enter make F=newfilename to let the make processor expand the macros and translate
and create an object file.

8. Does the filename "newfilename.opt" exist?
• If yes, the make processor was successful; go to step 9.
• If no, the make processor was not successful. Look at the "filename.err" file to see

what problems make encountered, resolve the problems, then repeat step 7 until the
make processor is successful.

9. Enter menu -o ./OBJ/filename.opt to execute the menu option in a local test mode.

Note: The screen information should exist in a box near the top of your terminal. The
exact position is determined by the layout of the screen in the source file.

10. Press Ctrl-w for the information from the run description (RD) lines to appear in a box at the
bottom of the screen.

11. Press Finish to execute the menu option.

 If the system asks you where you want to place the output and when you want the report to
be processed, the PR and PA lines in the menu option file are correct. Go to step 12.

 If you receive a message indicating that the CX menu processor is having a problem, most
likely, the PR line or the PA line specifying the location of the installed screen or report is
incorrect, or you have not temporarily installed the screen or report that the PR or PA line is
referencing. Resolve the problem, then go to step 12.

12. Enter make tinstall F=filename to prepare the file for inclusion on the CX menu.

13. After you have completed testing and the menu option is performing according to the
specifications, check the menu option back into RCS and the changes will be recorded.

Example: %make cii F=filename L=“<a comment about the change>“

Menu System 318 System Reference

Menu Description (Menudesc) Files

Introduction
A menu description (menudesc) file is a file that defines which options are to appear on the CIS
menus and submenus. A menu description file provides valuable information relating to a
specific menu or submenu.

Example: Jenzabar CX master menudesc file
Following is an example of a menu description (menudesc) file for the Jenzabar CX Master
Menu.

TI=INST_NAME: Master Menu
AO=MNU_AO_TIME
SD=CARS Solution Master Menu
LD=Master Menu For INST_NAME
MNU_SUB(student)
MNU_SUB(fiscal)
MNU_SUB(instdev)
MNU_SUB(system)

Example: Jenzabar CX Master Menu
Following is an example of how the Jenzabar CX Master Menu appears when you use the CX
menu structure. The attributes in the menu description file corresponding to the CX Master Menu
define what options appear on this menu.

System Reference 319 Menu System

Menu Description Attributes
Menu description (menudesc) attributes are abbreviated notations that define parts of the menu
description file. The following lists valid menu description attributes, their descriptions, and
examples. Some of the attributes are optional, and might not be used in each menu description
file.

AC (Access)
Use the AC attribute to specify whether or not a login name or group is permitted to access
this option. This references the keyword in the file $CARSPATH/system/etc/menuac.s
which defines user access.

Example: AC=financial (This means only those in the financial group are allowed to
execute this menu option.)

Example: AC=@300 (This means that your are using the value of line 300 in the
associated list in the file.)

You can also permit access to users in multiple groups.

Example: AC: optional,

 default = “financial carstctrl’ (You can separate the items in the list with a comma
or with whitespace.)

You can exclude particular users from a group by using an exclamation point (!).

Example: AC=common!suzie (This includes everyone in the group “common” except
suzie.)

AO (Auto Logout)
After the specified time, in minutes, the menu will automatically log out.

Example: AO=MNU_AO_TIME_10

LD (Long Description)
Up to 78 character description of what this menu item does.

Example: LD=Maintain course and schedule information

MNU_OPT
Points to the location of a menuopt file relative to $CARSPATH/menuopt.

Example: MNU_OPT(regist/reports/deanlist)

MNU_SUB
Points to the location of a submenu relative to $CARSPATH/menusrc.

Example: MNU_SUB(student/regist/regist)

PW
You must have a password to enter this menu description. (This references the keyword in
the file $CARSPATH/system/etc/menupw.s which defines the password.)

Example: PW=@REGIST

SD (Short Description)
A short description (up to 25 characters) of what this menu item does.

Example: SD=Fiscal Management

TI
The title appearing on the screen when this menu description is selected.

Example: TI=Student Management: Main Menu

Menu System 320 System Reference

How to Create a Menudesc File
The following lists the steps to follow for creating a menu description (menudesc) file that
contains the screen and report menu option files that you created previously.

1. Create a subdirectory into which you will be creating the menu description file.

2. Enter cd menusrc/module/subdirectory to access the subdirectory in which you are
creating the menu description (menudesc) file.

3. Enter makeinit mnu to tell the Revision Control System (RCS) the type of files that are to
reside in this subdirectory.

4. Enter make add to create the skeleton menu description file.

Note: You do not need to specify a filename with this command; the make processor
will automatically create only menu description files in this directory.

5. Enter vi menudesc to add the screen and report information to the skeleton file

6. Enter make tinstall to temporarily install the file.

Note: You do not need to specify a filename with this command; the make processor
will create only menu description files in this directory.

7. Modify the menudesc file in the parent directory and add a MNU_SUB(......) line to pull in the
subdirectory created in the previous step.

8. Did you add a new menu option or did you change the short description (SD) line in your
menu description file?

• If yes, cd to the previous directory and enter make reinstall to install the master menu
description to include your latest changes and options.

• If no, go to step 9.

9. Enter menu at the prompt to use the CX menu structure.

10. Select the appropriate menu options to locate the menu options you added in the menu
structure.

11. Are your menu options on the CX menu structure?
• If yes, you added the menu option and menu description files correctly.
• If no, or an error message appears, check the information in the MNU_SUB or

MNU_OPT attributes to ensure the locations are correct.

System Reference 321 Menu System

Menu Parameter (Menuparam) File

Introduction
You can modify the menu processor operation by updating the menu parameter file
(‘$CARSPATH/system/etc/menuparam.s’) which is installed in $SYSPATH/etc/menuparam. You
modify the variables in this file to affect the way the menu system interacts with users.

Example
The following is an example of the menu parameter (menuparam) file.

 interval 15

 background 5

 scheduled 9

 byeok

 schedtime 1100P

 nodocprint

 notimedisplay

Menu Parameter Options
You set the menu parameter file options to control menu system interaction. The following lists
the options, their descriptions.

interval
Controls the number of seconds between screen time updating and checking. You can
enter a value between 10 and 300.

background
Specifies the maximum number of background jobs. You can enter a value between 1 and
9.

scheduled
Specifies the maximum number of scheduled tasks. You can enter a value between 0 and
9.

Note: The maximum values in Background and Scheduled apply to each user,
individually, system wide.

byeok
Specifies whether the system will Bye out with background jobs running. The default is
nobye which you specify by leaving the line blank.

schedtime
Specifies when to run the process. You can enter a time (using A or P to denote a.m. or
p.m.; or military time) or NOW to run the process immediately. The default is 1100P which
you specify by leaving the line blank.

nodocprint
Specifies whether to allow printing of documentation using the D option. The default is
docprint which you specify by leaving the line blank.

notimedisplay

Menu System 322 System Reference

Specifies whether to display the time on the top line of the menu. The default is timedisplay
which you specify by leaving the line blank.

System Reference 323 Menu System

News and Mail Menu Features

Introduction
The CX system’s upper case options include the Mail and News options. The Mail option
accesses the default UNIX mail program, mailx. When new mail exists for a user, a highlighted
message, “You have new mail” appears on the menu. You can, if desired, change the mail
program that the option accesses.

Similarly, the News option is designed to access a News program. You can set up this option to
provide news information (e.g., system maintenance schedules) to menu users.

Different Mail Program
To set up the Mail menu option to access a different mail program (e.g., elm or pine), you create
a script in the $CARSPATH/modules/util/commands directory called mail. You should design the
mail script to execute your institution’s desired mail program. You then install the script in
$CARSPATH/install/util. Do the following:

1. Add the mail file in $CARSPATH/modules/util/commands:
% make add F=mail

2. Write a script that executes the desired mail program.

3. Test install the script.
% make tinstall F=mail

4. After testing the script and its installation, check in and install the script.
% make ci F=mail
% make install F=mail

News Program
To set up the News option to access a news program (e.g., the UNIX news utility), you create a
script in the $CARSPATH/modules/util/commands called news. You should design the news
script to execute the news program. You then install the script in $CARSPATH/install/util. Do the
following:

1. Add the news file in $CARSPATH/modules/util/commands:
% make add F=news

2. Write a script that executes the news program.

3. Test install the script.
% make tinstall F=news

4. After testing the script and its installation, check in and install the script.
% make ci F=news
% make install F=news

The news program must be executable; otherwise, the menu displays a message indicating that
news is not available at this time.

Note: An alternative to this menu feature is to provide news information in users’ login
processes. In this scenario, news information automatically appears whenever the
user logs in. This also does not require the user to select a menu option in order to
view the news.

Menu System 324 System Reference

Nomenu Feature: Controlling Menu Access

Introduction
The system administrator can control the access of menu users through use of the nomenu
feature. Using this feature, you have the ability to stop menu access of all or specific databases.
When a user logs in, the CX checks for the existence of nomenu_$CARSDB, which applies to a
specific database, then nomenu, which applies to all databases. If either file exists, the menu
immediately logs the user out.

Nomenu Files
The nomenu and nomenu_$CARSDB files are text files into which you can type a message to be
displayed to the users when they access the menu. You are not required to enter text because
the menu also displays a message, “No menu access permitted at this time” when it finds either
of the files.

• You use the nomenu file when you want to restrict menu access of all databases.
• You use the nomenu_$CARSDB file when you want to restrict menu access to a specific

database. The file is based on the value of the $CARSDB variable, not the $CARSV or
$CARSPATH variables.

You place either file in the $CARSPATH/events directory.

Menu Process
The CX uses the nomenu feature in the following way.

1. When a user logs in, the menu first looks for the nomenu_$CARSDB file in
$CARSPATH/events. (The $CARSDB variable specifies the database currently accessed
by the user.)

2. If the menu does not find the database-specific file, the menu looks for the nomenu file in the
$CARSPATH/events directory.

3. If the menu locates either file, the menu does the following:
• Displays “No menu access permitted at this time.”
• Displays the contents of the nomenu file.
• Logs the user out.

System Reference 325 Standards

SECTION 13 - CX SYSTEM STANDARDS

Overview

Introduction
Jenzabar has developed standards and conventions to assist developers and clients in keeping
the components of Jenzabar CX uniform and standard. This section provides you with standards
for the following components of the system:

• Data dictionary
• Data structure
• Program name abbreviations
• Schemas
• User interface for:
• Menu source
• Menu options
• Program screens
• PERFORM screens
• Comment macros
• PERFORM screens
• Entry Library screens
• ACE reports
• Menu options
• Programming style
• Software maintenance
• Program documentation

Use of the Standards
While the original intent of the system standards was to assist Jenzabar developers in
programming functions, client institutions can make use of the standards when performing local
modifications to their systems.

Standards 326 System Reference

CX Data Dictionary Standards

Introduction
The database dictionary is the core of control for the database. The system uses the INFORMIX
Database Management System (DBMS) to add additional capability by tracking more information
relating to data elements and relations. The purpose of the data dictionary is to:

• Define schema files and fieldnames.
• Define schema field characteristics.
• Control representation of data.
• Indicate programs, reports, screens using file, field, index.

Definition
The general definition of a data dictionary is that it is a catalog of all data types to provide their
names and structures, and information about data usage. Advanced data dictionaries have a
directory function that enables them to represent and report on the cross-references between
components of data and business models. A data dictionary provides for:

• Agreement on data element definitions
• A common source of data for programs, jobs, modules, files, fields trusted by all users
• Enforcement of data standards
• The avoidance redundancy of data across the system
• The detection of currently existing data redundancies
• Better control of changes in data
• Assistance in communication about data
• Assistance to security and control
• Assistance to end users

CX-Specific Definition
The CX data dictionary is a means of cataloguing the data elements in the database for
programmers, account managers, and Jenzabar coordinators. The data dictionary provides for:

• Enforcement of data standards
• Enforcement of schema standards
• Enforcement of permissions
• Assistance in training clients

In particular, the data dictionary is used to:
• Coordinate definitions of fields and files
• Reduce redundancy of data between files
• Reduce redundancy of data within files
• Control data abbreviations
• Control security of fields
• Control security of files
• Control use of data field, file
• Control field, file modifications, additions, deletions
• Enforce use of schema abbreviations during make process.

INFORMIX Data Files
The data dictionary defines elements of INFORMIX data files.

Field Names
The data dictionary defines the following for field names in the Database Field record
(dbfield_rec):

• Schema file name

System Reference 327 Standards

• Database file name
• Field name
• Type (char, int, etc)
• Length (if type character)
• Text descriptions (3 lines of 40 char)
• Status (Current, Renamed, Deleted, Future)
• Status Date
• Type of index (blank, Primary, Duplicates, No Duplicates)
• Special field permissions
• ACE using field index
• PERFORM using composite fields
• Application software searching on index
• Includes of data values -currently in dbfield_text lines
• Key search words
• How data created (operator entered, schema makes)
• How is data updated (operator update, schema makes)
• How is data deleted (operator update, schema makes)
• When can data be deleted

INFORMIX File Names
The data dictionary defines the following for files in the Database File record (dbfile_rec):

• Schema file name
• Database file name
• Track Code (C,A,S,D,F)
• Name of primary index
• Text descriptions (2 lines)
• Permissions
• Application software use of file
• Key search words

Relationships Between Files
The data dictionary defines the following for file relationships in the Database Relationships
record (dbrel_rec):

• Name of the two database fields
• Type of relationship between the first field to the second field (Join or Master)

Composite Fields
The data dictionary defines the following for composite fields in the Database Composite
record (dbcomp_rec):

• Name of composite field
• Names of up to 8 database fields comprising the composite field

ACE Reports
The data dictionary defines the following for ACE reports:

• Listing of files (alpha) with definition lines
• Fields (alpha) by file (alpha) by track code
• Fields (alpha)
• Files by application program
• Indexes (alpha) with application program
• Indexes (alpha) with ACE report
• Indexes (alpha) with PERFORM screen

Standards 328 System Reference

PERFORM Data Entry Screens
The data dictionary defines the following for PERFORM screens:

• Query on each field in each INFORMIX file
• Update selected fields (those modified through DBSTATUS)

Application Software
The data dictionary defines the following for application software:

• Key word search processor, with output printed or on the screen
• Test against schema abbreviations

 Dictionary Data Schemas
The data sources for the data dictionary are specified in schema files located in
$CARSPATH/schema. The schemas are:

• dbfield (dbfield_rec) for database elements
• dbfile (dbfile_rec) for database files
• dbrel (dbrel_rec) for database relationships
• dbcomp (dbcomp_rec) for database composites

 To set up the data dictionary schemas, use the make processor to:
• Create data for dbfield_rec and dbfile_rec (builds)
• Update data for dbfield_rec and dbfile_rec (rebuilds and renames)

Schema Definitions
The schema files define the elements of the data dictionary

Database Files (dbfile)
The schema specifies the following:

• Link to UNIX file name
• Data file name
• Composite keys
• Programs using file
• Fieldnames
• Permissions

Database Fields (dbfield)
The schema specifies the following:

• INFORMIX file name
• UNIX file name
• Fieldname
• Field type
• Field length
• Three lines of text describing fieldname
• Status of fieldname (current, deleted, renamed)
• Index type (Primary, duplicates, no duplicates, blank)

Database Relationships (dbrel)
The schema specifies the following:

• Primary field name
• Secondary field name
• Type of relationship of the first field name to the second field - Join or Master

Database Composite (dbcomp)
The schema specifies the following:

• Composite field name

System Reference 329 Standards

• Names of all database elements comprising the composite field

Entering Data
• Currently, PERFORM data entry screen
• Eventually schema make processor

Retrieving Data
• PERFORM data entry screen
• ACE reports
• Eventually Key Word Search Processor

Standards 330 System Reference

Data Structure Standards

Introduction
Utilizing standard formats for data structure and contents can provide consistency which will
result in more efficient access and update to data. Standards for data encompass issues from
table contents to name field consistency. In addition, you should adopt conventions and
standards in the area of data security & integrity as well as data dictionary information.

Data Tables
The following are the standards for data tables.

1. All table code values will be in upper case letters

2. All code values will have a corresponding text field to describe the code.

3. Codes will follow industry standards where applicable. For example, US State codes will
conform to the US Postal Service abbreviations and country codes will follow the
internationally accepted values.

4. Most of the data for tables based on industry or CX standards will be provided with the
system installation.

5. You can add codes from a client's previous system that do not meet the standards. You can
add them as an additional field in the schema for cross reference.

6. Tables will not contain blank records unless a blank value is an acceptable value in the table
• It is more acceptable to have "dummy" records than blank values. For example, state

code of '--' for foreign countries, or an assessment code of 'NONE' to be used with crs
and sec recs tuit_code where there is a lookup to the assessment table.

• If a blank code exists in the table, there must be a description for it (e.g., Major Table ' '
is 'Undeclared').

Data Records
The following are the standards for data records.

1. Data records will use codes from tables whenever possible rather than free-format comment
fields.

2. All logical fields will be upper case (e.g., Y for yes, N for no).

3. Predefined values will be treated like codes.
• They will be upper case values.
• Used mostly as status and type codes where the values are limited.

Comments
The following are the standards for comments.

1. Free format entry

2. Used to provide specific data about the record

3. Used as a notation, reference

Names
The following are the standards for names.

1. All names will be of the format 'Last, First Middle,Suffix'. The name must be in this format to
use the ACE functions; _first_name(), _last_name(), and _full_name().

System Reference 331 Standards

2. Whenever possible, a record should only contain an id_no that joins with the id_no of the
id_rec for displaying of the name. Use of name in multiple records takes away from the
concept of a true "relational" database.

Social Security Numbers
1. Will be in the format: 123-12-1234

2. PERFORM screens will use a picture clause of "###-##-####" and a default of " - - "

Phone Numbers
1. Will be in the format: 111-222-3333 unless from a foreign country .

2. Only use picture clause in PERFORM screens where foreign phone numbers will not be
entered.

Data Integrity/Security
The following are the standards for data integrity.

1. Converted data will be verified to conform with CX data standards

2. Converted data verification of accuracy is the responsibility of the client.

3. Data will be backed up on a daily basis

4. Data integrity is the responsibility of the client

5. Data security is the responsibility of the client

Data Dictionary Files
The following are the standards for data dictionary files.

1. Whenever schema files are created or fields are added, the file will be entered into the
dbfile_rec and each of the data elements will be entered into the dbfield_rec.

2. Whenever a schema field is renamed in the database, the status for the field and the status
date for the field will be updated in the dbfield_rec.

3. Whenever a schema field is deleted from the database, the status and the status date for the
field will be updated in the dbele_rec. Do not delete the field name from dbele_rec.

4. Fields and files that are unique to a client will be entered and maintained by the client in the
dbcfield_rec and dbcfile_rec.

5. There are additional files, that are also associated with the data dictionary, but they are
currently not being maintained.

6. Eventually, the schema make process will update each of these files.

Standard Data Abbreviations
The following are the standard date abbreviations.

Standards 332 System Reference

Abbreviation In Place Of
AACRAO American Association of College Registration and Admissions Officers
AC accounting voucher
ACT American College Testing Program
AD add/drop slip
ADC Aid to Dependent Children (finaid)
AFDC Aid to Families with Dependent Children (finaid)
AX american express
CA cash
CBF campus based funds
CC credit card
CEEB College Entrance Examination Board (now College Board)
CK check
CR cash receipt document
CSS College Scholarship Service
CT cash transfer voucher
CWSP College Work Study Program
F/A Financial Aid
G/L General Ledger
GSL Guaranteed Student Loan
HHS Health and Human Services Department
IRS Internal Revenue Service
JC job costing voucher
MC master charge
MO money order
NACUBO National Assoc. of College and Univ Business Officers
NASFAA Nat. Assoc of Student Financial Aid Administrators
ND endowment voucher
NDSL National Defense/Direct Student Loan
NP notes payable voucher
NR notes receivable voucher
NSL Nursing Student Loan
PC purchasing voucher
PR payroll voucher
PS personnel voucher
RG registration form
SAR Student Aid Report (Pell Grant Program)
S/A student accounts
SB student billing voucher
SEOG Supplemental Educational Opportunity Grant
SSI Supplemental Security Income
VA Veteran's Administration
VS visa

System Reference 333 Standards

Program Name Abbreviations

Introduction
Because some environments limit you to a 14 character filename, Jenzabar established program
name abbreviations for the naming of menuopt files.

The following are guidelines to follow when creating program abbreviations:
• Use the standard abbreviations whenever possible on the earliest syllable possible
• If you need to remove more words, start removing vowels

Files In BINPATH
The following are program abbreviations for files in BINPATH.

Standards 334 System Reference

acquery acqu
admentry adme
admstats adms
adr adr
audctc audc
audent aude
bgtalloc bgta
bgtbasis bgtb
bgtinstall bgti
bgvoucher bgv
billing bill
cgrep cgrp
ckabort ckab
ckpost ckps
ckrecon ckre
ckslct cksl
csentry cse
csstp csst
daaudit daau
dacvtmemo dacv
daentry dae
ddtp ddtp
degaud dgau
delentry dele
dirdep dird
docvoid docv
employ emp
employ2 emp2
f1099bld 99bd
f1099form 99fm
f1099tape 99ta
f1099tp 99tp
faaudit faau
faentry fae
faneed86 fa86
faneed87 fa87
filepost fpst
finance fin
fixpost fixp
forward fwd
giftpst gftp
giftrcpt gftr
glaudit glau
glbalfwd glbf
glclsg glcl
grading grdg
grdrpt grdr
grvoid grvd
idaudit idau
interest int
lead lead
pay pay
phbill phbl
phchg phch
phld_rolm phld
praudit prau

System Reference 335 Standards

prckadj prck
prdinit prdi
prodentry prde
progaudit pgau
prstart prst
purch purc
purchaudit puau
purchinv puin
rcventry rcve
readvt rdvt
regaudit rgau
regist reg
reglist regl
regnoshow regn
reqentry reqe
saaudit saau
sabalfwd sabf
sae sae
sortpage srtp
stmt stmt
stuentry stue
subbstat sbst
tickler tick
timeent tent
tprog tprg
trans trns
trnsadd trna
trnsent trne
vchrecover vchr
voucher vch
w2build w2bd
w2form w2fm
w2tape w2ta
w2tp w2tp

Files In UTLPATH
The following are program abbreviations for files in UTLPATH.

Standards 336 System Reference

acego aceg
aceprep acep
addlogin adlg
aim aim * ansitar ansi
arappend arap
auditmail audm
bcheck bchk * border bord * brand brnd
buildinstr bldi
carslock crsl
catb catb
chbyte chby
checkindex chki
chggrp chgp
chgmod chmd
chgown chow
cinstall cins
cleanlock clnl
coladd cola * connect.sav conn
copyw cpw * correct corr
cpcmp cpcm
cpdir cpdr
cpio cpio * cptypes cpty * crashrecovery adme
curdate curd
cut cut
cutsheet cuts
dbbuild dbbd
dbreport dbrp
dbstatus dbst
delay dly * enter1 e1
enter2 e2
fastup fup
fixlen fixl
formbuild frmb
fps fps
ftx ftx
fullpage flpg
grepwhatis grwh
hn hn * homeinit hmin
horizon hrzn
informer inf
labels lbls
latitude lat * listlock lstl
lpff lpff * lpr lpr * lps lps
lpt lpt * makeall mkal
makedef mkdf
makeinit mkin
menu menu
menucsh mnuc
menukill mnuk
movew mvw
newlogin nwlg * noshell nosh * paste past
pdefs pdfs
perform perf
pmsort psrt
postmrg pstm * print prt
printmenu prtm

System Reference 337 Standards

remove rm
removew rmw * reordpm repm
repgen rpgn * rlpr rlpr
runat rnat
runcpp rncp
scrbuild scrb
setdb stdb
setmod stmd
setown stow
setuid stui
sigchange sigc
skip skip * slave slv * slv.wyse75 slvw
snapconfig sncn
snapsys snsy
splitpage sppg
splits spts
splittee spte
sush sush
symlock syml
symunlock symu
timecmp tmcm
tstlock tstl
tx tx
ulistlock ulst
vt vt
wpvi wpvi

Standards 338 System Reference

Schema Standards

Introduction
Standards for schemas provide for consistency in the naming of fields and files which makes the
data more available to the end-user. The standards for schemas include file and field naming
conventions, file locations, the contents of the schema file, etc.

Naming of Files and Fields
Jenzabar suggests that the INFORMIX relation name and the UNIX filename match whenever
possible. The schema UNIX filenames should be a maximum of 10 characters and those files
which contain schemas for "tables" should begin with 't'.

All schema field names must follow the abbreviations within this document.

Note: We are aware that this is not currently the case; however, any new additions to the
database will adhere to these standards.

A suitable prefix will be assigned for each relation and will be pre-appended to all field names
within that relation. Prefixes for "tables" will begin with 't'. Underscores will be used to separate
the prefix from the rest of the field name. Portions may also be separated with underscores for
readability (e.g., tmajor_text, ctc_no).

Location
Note the following file locations:

• The UNIX schema file will be located in the following path:
$CARSPATH/schema/<track>/{schemafile}

• The UNIX data file will be located in the following path:
$CARSPATH/data/<track>/{datafile.dat,datafile.idx}

In the schema file, the location will be identified relative to the schema file (e.g., location
"../../data/student/tsess").

Note: The UNIX data file name will be the same as the UNIX schema file name.

Table or Record
A "table" is defined as a data file whose elements are rarely changed, containing a code (multi-
character uppercase field) by which the records are accessed and a text field (typically 24 or
more characters) to describe the code.

A "record" is defined as data file whose elements are constantly updated. It may also include
code values from tables.

Testing for Correct Naming Conventions
The appropriate Track Coordinator will review all schema files before they are built within their
track.

The Schema File
The display below is a copy of the skeleton of the schema. Following the display is a description
of each section in the schema file, including a description of the elements that make up that
section.

System Reference 339 Standards

[DATABASE database-name]

 TABLE table-name
 DESC "description string"
 LOCATION "dbspace name"
 LOCKMODE { ROW | PAGE }
 PREFIX "prefix used for makedef"
 ROWLIMITS { <integer> | ?? } : { <integer> | ?? }
 STATUS "status"
 TEXT "text description string"
 TRACK "Track code"

 COLUMN column-name [TYPE] <column-type>
 [DEFAULT <default-value>] [NOT NULL]
 [<constraint-def> CONSTRAINT constraint-name]
 COMMENTS "comment string"
 DESC "description string"
 HEADING "heading string"
 TEXT "text string"

 ...<More column definitions, if any>

 CONSTRAINTS
 <constraint-def> CONSTRAINT constraint-name

 ...<More constraint definitions, if any>

 INDEX
 [UNIQUE] index-name ON (column-name [DESC] [,
 column-name [DESC] [...]])

 ...<More index definitions, if any>

 GRANT
 <access-type> TO (user-name [, user-name [...]])

 ...<More access definitions, if any>

 TRIGGER
 [AUDIT ([<audit-column-list>]) [IN "<audit-server-name>"]
 [CAPTURE FOR (<action-type-list>)]
 [FOR CHANGE OF (<trigger-column-list>)]
 GRANT SELECT TO (<user-list>)]
 [ON INSERT {BEFORE|FOR EACH ROW|AFTER} <triggered-action>]
 [ON UPDATE {BEFORE|FOR EACH ROW|AFTER} <triggered-action>]
 [ON DELETE {BEFORE|FOR EACH ROW|AFTER} <triggered-action>]

Header Section
This section contains the standard schema header managed by RCS, including both header and
log information.

Database Section
The first line in a schema file, after revision information, defines the database where the schema
will be used. The entry of the database name must be preceded by the key word database (e.g.,
database jenza).

Table Section
In the TABLE section, you specify the INFORMIX database table that the schema defines. For
example, st_table (State table) is specified in the tst schema file. Even though the INFORMIX
software is not case sensitive, you should specify the table name in all lower-case letters to
ensure that the system works correctly.

1. The text description of the file name. This entry is limited to a maximum of 24 characters and
should be a user-friendly English text version of the file name (eg. 'Profile Information' might
be the English version text for the file name 'profile_rec').

2. The location of the file. The pathname to the file is to be entered in quotes (e.g.,
"../../data/common/profile").

3. The LOCKMODE attribute, which specifies the mode that the engine will use to lock a record

Standards 340 System Reference

in the table.

Note: Generally, you should use ROW level locking for a table. However, in cases
where a table is rarely modified, but many rows are changed at a time, you can
use PAGE level locking as a way to control the number of locks used in the
engine during the changes to the data in the table.

4. The PREFIX attribute, which specifies the table prefix used by the MAKEDEF utility to create
the structures used by C code.

5. The ROWLIMITS attribute, which specifies the initial size of the table, and the expected
growth of the table. DBMAKE expects two integer values separated by a colon (:), or ?? to
indicate using the default value for that integer. ROWLIMITS ??:?? indicates the default
value for both initial size and expected growth.

6. As rows are added to a table, the database allocates disk space to the table in units called
extents. Each extent is a block of physically contiguous pages in the dbspace. There are
two types of extents: initial and next. The database allocates initial extent when the table is
first created in the database. The database allocates a next extent whenever the current
space for the table has been used up. The integers that you specify are used for calculating
the size of extents in the database.

• The first integer indicates the initial number of rows that will be in the table when it is
created and loaded. This number provides dbmake with the information to create a
sufficiently large initial extent (when the table is created) to hold this number of rows in
a single extent. This can reduce the possibility of the table using several extents just
for the initial loading.

• The second integer indicates the maximum number of rows expected to be in the
table. You can use this number to indicate the speed of growth for the table. For
example, the State table (st_table) does not increase in size, so you can use the
default value. The General Ledger Transaction record (gltr_rec) in the financial area
will continue to increase in size, so you should indicate a large number for this second
integer.

7. The default size of an extent is eight (8) pages, which translates to 16 KB on most platforms.
Since the database engine does not automatically know table sizes, table space cannot be
preallocated. Therefore, the database adds extents only as they are needed. The
ROWLIMITS attribute provides a way to indicate the initial size of a table and to indicate the
expected rate of growth of a table. Because the engine does have a limit for the number of
extents a table may have, the ROWLIMITS attribute provides a way to automatically reduce
the number of extents needed for the table.

Note: If you use a dbspace that does not have enough contiguous space for an
extent of the specified size, the database engine allocates the largest available
contiguous block for the extent. Thus, the engine can create extents that are
smaller than your specified number in the schema. The dbmake utility attempts
to use your specified initial number of rows (the first number in the rowlimits
attribute value), or the actual number of rows in the table, whichever is larger,
to calculate the size of the initial extent for the revised table when:

− You are rebuilding a table because you changed a field size or type
− You are rebuilding a table because you added or deleted a field
− You invoked the dbmake -R option

8. This feature provides a method for reducing the number of extents in use by the table for
already existing rows, as long as a large enough contiguous space is available. It also
maximizes the amount of contiguous space used for the table, which is more efficient for the
applications accessing that table.

9. The status of the file. If the status is "Active", this line is optional. If the status is "Inactive",
entry of this line is required. Valid statuses include the following:

System Reference 341 Standards

• Active File is in use
• Inactive File exists but is not being used

10. The text description of the file. This entry may include either one or two lines, each with a
maximum of 60 characters. Or, the entry may be one line of 120 characters. However, if a
120 character line is used, the system will divide it into two lines, dividing at the white space
closest to 60 maximum characters. The description should contain user-friendly English that
describes the purpose of the file (eg. 'Contains personal information for individuals in the Id
records' might be the description of the profile_rec file).

11. The track that uses this file. A track as used in the system is a major administrative area
within the campus structure. Type track names out in full with the initial letter capitalized, and
enter them in quotes (eg., "Common"). Valid track names include the following:

• A(dmissions)
• C(ommon)
• D(evelopment)
• F(inancial)
• M(anagement)
• S(tudent)

Column Section
In the COLUMN section, you define each field in the schema, including the following basic
information about each field:

• The field name
• The type of field. Valid types include the following:
• character (contains letters, numbers and symbols)
• long (contains integers)
• integer (contains whole numbers)
• logical (single character column, expected to have a value of Y/N)
• date (format mm/dd/yy)
• serial (fields are assigned sequential serial numbers)
• double (contains signed floating point numbers)
• money (formatted as $000.00)
• float (contains single precision floating point numbers)
• The length of the field, specified in a parameter, for example: addr1(24)
• The description, heading, and text entries for the column, which are stored in the Database

Field record (dbfield_rec)

Text and Description
 Follow the following standards for Text and Description:

IQ displays the text descriptions of all the fields of a selected view alphabetically. When deciding
upon the text of a field, keep in mind what the user is going to see (an alphabetically arranged list
of fields) and what word the user will most likely look for first to find this field. That word should
be the first word of the field text.

With field headings, keep this important question in mind, “What heading would I typically like to
see over this field?”. Keep in mind the amount of space required for displaying the field. It is
understood that different heading may be desired for the same field in different reports based on
how that field is being used.

• The heading should typically be one word.
• The heading should be abbreviated, if an excessive amount of space will be wasted due to

a heading that is longer than the field being displayed.
• Do not use abbreviations in headings if the spaces necessary for the data allow the use of

the unabbreviated form of the word.

Standards 342 System Reference

• Eliminate words in the text of the headings wherever possible rather than use
abbreviations. Remember that the title of the report in many cases will make the repetition
of the text field in the header wordy.

Example: text: Count of Prospects Moved

 heading: Cnt Prsp Moved changed to Prospects Moved

Note: The heading entry is not utilized currently.

 The description entry consists of two 60 character lines giving a total of 120 characters
maximum to describe the field. The description should be in user-friendly English and
should define how the field is used. For example, the description of the stuac_cl field
might read 'Identifies the academic classification during this session for this student'.
The description entry may be used as a prompt when this field is accessed by some
CX programs.

Common Types of Fields
Many examples of fields exist that appear in numerous files: Session Code, Year, Program, Last
Update Date, Contact, Fund, Account, etc. Whenever a field is encountered that appears in
other files as well, the field text should include an indication of which file that this field is from.

• Program - Admission
• Program - Exam
• Session - Admission
• Session - Exam

Note: Use of past tense with ed is up to track.

The following are standards for fields.

Keys
The heading and the text should be:

• Primary Composite Key
• Primary Key
• Composite Key
• Composite Key 1
• Composite Key 2
• Composite Key 3

Numbers
In text do not use numbers unless necessary. In Headings use numbers and eliminate
spacing between text and number.

Example: text: Major - First

Example: Major - Second

Example: heading: Major1

Example: Major2

Example: text: Enroll Status - Second

Example: heading: Enr Status2

ID Numbers
The abbreviation should be uppercase ID and Number (eg ID Number).

Text
Enter the ID number in text with the ID Number first. ID numbers should always indicate
type, i.e. Spell out number in the text.

• ID Number

System Reference 343 Standards

• ID - Counselor
• ID - Previous
• ID - Secondary
• ID - Employment Business
• ID - Match Gift Business

Heading
Enter ID Number in headings with the ID number last.

• ID
• Counselor ID
• Previous ID
• Secondary ID
• Employment Business ID
• Match Gift Business ID

Dashes
Use (-) if there is room. Abbreviate or dash for clarity.

Example: Contact Status - Lead Ctc (too long >24 char limit)

 Contact Status- Lead Ctc (next choice)

 Contact Status-Lead Ctc (next choice)

Dates
Do not use ed for dates.

Text
The text should not be as short as Add Date or Date because this is not clear enough.
Date should follow the modifier. The location of the file reference is a track decision.Use
begin instead of beg.

Example: Position Begin Date or Begin Date - Position

 ID Update Date or Update Date - ID

Headings
Generally headings should not include the word date. It is self-evident that the field is a
date.

Example: text: Host Last Contact Date

 heading: Last Contact or

 Last Ctc - Host or

 Last Ctc

Code & Description
• In text use the word code
• In text use the word description rather than text
• In headings do not use the word code
• In headings do not use the word description

Example: taid_tbcode

 text Aid Code

 heading Aid

 taid_text

 text Aid Description

 heading Aid

Standards 344 System Reference

Note: Probably both will not appear in the same report. If they do, the field lengths
will delineate.

Flag(s)
Can we easily show that it is a logical field in the text? Use uppercase Y/N with dash rules
applied.

• Transfer - Y/N
• Transfer - Y/N
• Transfer -Y/N

Miscellaneous Abbreviations
GL for General Ledger
Journal for Voucher
Record Number for serial (other than id_no)
Number should be abbreviated as No in headings.

Constraint Section
In the CONSTRAINT section, you specify constraints, which are rules that must be satisfied
whenever a program attempts to insert, update, or delete data in a table.

Index Section
The INDEX section specifies those indexes required for:

• A specific application program
• An ACE report defining the primary index
• A composite join(s) in a PERFORM screen
• Creating data integrity (indexes without duplicates)

Note: The system assumes that Indexes are ascending unless you declare the DESC
(descending) attribute.

Grant Section
The GRANT section specifies access permissions for users and groups. Access types include:

• alter
• control
• delete
• index
• insert
• read
• select

You specify triggers and audit trails within this section.

Note: To help make merging easier, you should keep access-types in alphabetical order.

Keys
The following are the standards for keys.

Primary Key:
• If composite key is a primary key, the suffix will be '_prim'.
• If serial, the suffix should be '_no' (it may be necessary to use a suffix of '_serial' on some

files because of conflicts with another field needing a suffix of '_no'.
• Each file will have the primary key explicitly defined within the schema. A primary key will

be allocated in the file even if not specified, so it is better to make that key accessible.

Composite Key

System Reference 345 Standards

Other than composite primary keys, the suffix will be '_keyx' where 'x' is 1, 2, 3, etc. The first
composite will have the suffix '_key1' followed by '_key2',etc.

Indexes
Indexes will not be created unless required for a specific application program, ACE report,
defining the primary index, composite joins in PERFORM screens, or to create data integrity
(indexes without duplicates) The Track Coordinators must approve any additional indexes
before they are created. Unnecessary indexes are a CPU & disk resource drain, therefore
keep them to the bare minimum.

Note: If duplicate records are permissible for the key, use 'allow dups' rather than just 'dups'
for security reasons and consistency.

Use of Indexes:
The use of indexes should be commented by program, ACE report, and PERFORM screen.

Naming of Suffixes
1. _code implies that there is a table from where the valid data values are specified

2. _tbcode implies that the code field is part of a table

3. _id implies that the field joins with id_no

4. _date implies type date

5. _time implies type integer for a date

6. Numeric numbering only if field used as part of an array. Use one underscore separating
numeral from the rest.

7. (Problem: W2, 941, W4, 1040, etc. with payroll, taxes)

8. No numerics at beginning of field name

9. All field names will consist of lower case letters and underscores

10. _amt implies type money, but use it only when you need to clarify the meaning of the field
name

11. 1_no where _no appears at the tail end of the field name implies type serial, link with type
serial, or an identification value (e.g., ss_no for Social Security Number)

12. 1id_no for Id Number

13. 1_no_ as an accumulator where _no_ is preceded by the schema abbreviation and followed
by the abbreviation of what is being counted.

Standard Types and Lengths
1. Codes : length 2,4,8 {values will be uppercase}

2. Text descriptions for codes: length 24

3. Some exceptions where longer fields are needed - either 32 or 40

4. Logical fields: length 1

5. Hours: type double

6. Dates: type date

7. Time: type long

Note: Use type int for type integer

 Use type char for type character

Standards 346 System Reference

Standard Schema Abbreviations
The following lists the standard schema abbreviations.

System Reference 347 Standards

In Place Of Field Text Heading

abbreviation abbr Abbreviation Abbrev
academic acad Academic Acad
academic advisor adv Academic Advisor Acad Adv
academic year ay Year - Academic Year
accept acc Accept Accept
accessment access Access Access
accomplishment accomp Accomplishment Accomp
account, accounting acct Account, Accounting Acct
accounts payable ap Accounts Payable Acct Pay
accounts receivable ar Accounts Receivable Acct Rec
accumulate accum Accumulate Accum
achievement achieve Achievement Achiev
acknowledgement ack Acknowledgement Acknowledge
acquire acq Acquire Acquire
actual act Actual Actual
add/drop adrp Add/Drop Add/Drop
address addr Address Addr
adjusted, adjustment adj Adjusted, Adjustment Adj
admissions office adm Admissions Office Adm
advance adv Advance Advance
advisor (NOT USED) Advisor Adv
agency agc Agency Agency
agreement agree Agreement Agree
agriculture agri Agriculture Ag
alimony alim Alimony Alim
allocate alloc Allocate Alloc
allow, allowable, allow Allow, allowable, Allow
 allowance allowance
alternate alt Alternate Alt
alternate address aa Alternate Address Alt Adr
alumni, alumnae, alumnus alum Alumni Alum
American College act ACT ACT
 Testing - ACT
amount amt Amount Amt
annual an Annual Annual
anonymous anon Anonymous Anon
appeal appl Appeal Appeal
applicant app Applicant Applic
application app Application Applic
apply app Apply Apply
approval appr Approval Approv
asset asset Asset Asset
assignment assgn Assignment Assgn
assistant asst Assistant Asst
associated student body asb Associated Student Body ASB
association assoc Association Assoc
attempt att Attempt Att
attend att Attend Att
audit au Audit Au
authorize auth Authorize Auth
automatic auto Automatic Auto
available avail Available Avail
avenue ave Avenue Ave
average avg Average Avg
award awd Award Award, Awd
axis axis Axis Axis

balance bal Balance Bal
basis basis Basis Basis
begin, beginning, start beg Begin, Beginning Beg
benefit ben Benefit Ben
bi-monthly bmo Bi-Monthly Bi-Mon
bi-weekly bwk Bi-Weekly Bi-Wk
block blk Block Blk
bookeeping bkpg Bookeeping Bkpg
break brk Break Brk
budget bgt Budget Bgt
budget amount bgtamt Budget Amount Bgt Amt
budget calendar bgtcal Budget Calendar Bgt Cal
budget summarization bgtsum Budget Summarization Bgt Sum
build bld Build Build
building bldg Building Bldg
business bus Business Bus

calculate, calculation (Not Used) Calculate, Calculation Calc
calendar cal Calendar Cal
campaign camp Campaign Camp
campus (Not Used) Campus Campus
campus based funds cbf Campus Based Funds Campus Funds
 (financial aid)
cancel cancel Cancel Cancel
career career Career Career
career position crpos Career Position Career Pos

Standards 348 System Reference

career skill crskl Career Skill Career Skl
carry forward cfwd Carry Forward Carry Fwd

catalog cat Catalog Cat
category ctg Category Ctgy
center cntr Center Cntr
chapter chap Chapter Chap
charge chg Charge Chg
check ck Check Ck
church church Church Church
circumstance circ Circumstance Circumstance
classification cl Class Class
classroom clrm Classroom Room
client clnt Client Client
close cls Close Close
college col College Coll
combination combo Combination Combin
comment comment Comment Comment
communication comm Communication Comm
comparison (NOT USED) Comparison Cmpr
compensation comp Compensation Comp
complete cmpl Complete Cmpl
comply, compliance cmply Comply, Compliance Comply
compute cmpt Compute Compute
computer cmptr Computer Computer
concentration conc Concentration Conc
condition cond Condition Cond
conference conf Conference Conf
confirm conf Confirm Confirm
constituent, constituency cons Constituent, Constituency Const
constituent status consstat Constituent Status Const Stat
constraints constr Constraints Constraints
contact ctc Contact Contact
continue, continuing contin Continue, Continuing Cont
contract ctrc Contract Contract
contract-to-date ctd Contract-to-date Contract-to-date
contribution cont Contribution Contrib
control ctrl Control Control
core guideline core Core Guideline Core
corporation corp Corporation Corp
correspondence corresp Correspondence Corresp
correspondent sender Correspondent Correspdt
counselor cnslr Counselor Counselor
count cnt Count Count
country ctry Country Country
county cty County County
course crs Course Course
course work cw Course Work Crs Wk
credit cr Credit Credit
credit hours hrs Credit Hours Credit Hrs
criteria, criterion (Not Used) Criteria, Criterion Crit
cross reference crref Cross Reference Cross Ref
cumulative cum Cumulative Cum
currency crncy Currency Currency
current cur Current Current
current year cy Year - Current Year
customer cust Customer Customer

daily dy Daily Daily
date added add_date Added Date Added
dean of students dean Dean of Students Dean/Students
debit dr Debit Debit
deceased decsd Deceased Deceased
decision dec Decision Decision
declare decl Declare Declare
decrement decr Decrement Decrement
deduction ded Deduction Deduct
default def Default Default
defer dfr Defer Defer
deferred gift pldg Deferred Gift Defer Gift
degree deg Degree Degree
delivery deliv Delivery Delivery
denomination denom Denomination Denom
department dept Department Dept
dependent, dependency dep Dependent, Dependency Depend
deposit dep Deposit Deposit
description desc Description Desc
designation desg Designation Desig
desire des Desire Desire
detail dtl Detail Dtl
development dev Development Dev
directed study ds Directed Study Dir Stdy
director, directory dir Directory Dir
disbursement, disburse disb Disbursement, Disburse Disb
discount disc Discount Disc
discretionary (Not Used) Discretionary Disc

System Reference 349 Standards

display dsply Display Disp
dispose disp Dispose Disp

distribution dist Distribution, Distrib Dist

dividend div Dividend Div
division div Division Div
divorced {do not use} div Divorced Div
document doc Document Doc
donor donor Donor Don
donor accounting da DA DA
double time dt Double Time, Dbl Time DT

each each Each Ea
earn earn Earn Earn
earned income credit eic Earn Income Cred EIC
education ed Education Educ
electricity, electronics elec Electricity, Electronics Elec
emergency emer Emergency Emer
employ emp Employ Emp
employee empl Employee Empl
employer empr Employer Empr
encumberance enc Encumberance Enc
ending end End, Ending End
engineer engr Engineer Engr
english eng English Eng
enroll, enrollment enr Enroll Enroll
entry ent Entry Ent
equivalent eqv Equivalent, Equiv Equiv
error err Error Err
estimate est Estimate Est
ethnic ethnic Ethnic Ethnic
event evnt Event Evnt
examination exam Exam Exam
example ex Example Ex
exceptional financial need (finaid) efn Except Fin Need EFN
exclusive excl Exclusive Excl
exemption exempt Exempt Exempt
expect exp Expect Exp
expected family contribution(finaid) efc Exp Family Cont EFC
expense exp Expense Exp
experience exper Experience, Exper Exper
extension, extend, extent ext Extension Ext

facility facil Facility Facil
factor fctr Factor Fctr
faculty fac Faculty Fac
family fam Family Fam
family financial statement (finaid) ffs Family Financial Stmt FFS
federal fed Federal Fed
federal income tax (FIT) fit Fed Income Tax FIT
federal insurance compliance act(FICA) fica FICA FICA
file name file File File
financial fin Financial Fin
financial aid fa Financial Aid Finaid
financial aid form faf Fin Aid Form FAF
financial aid transcript fat Fin Aid Transcript FAT
financial statement fs Financial Stmt Fin Stmt
finish end Finish End
fiscal fscl Fiscal Fscl
fiscal year fy Fiscal Yr. FY
fiscal year-to-date ftd Fiscal Yr to Date FTD
fix fix Fix Fix
forecast fcst Forecast Fcst
foreign fgn Foreign Fgn
form frm Form Frm
form of payment pay_form Form of Payment Paymt Form
foundation fnd Foundation Found
frequency freq Frequency, Freq Freq
freshman fr Freshman FR
from fr From Fr
full-time ft Full-Time FT
full-time equivalent fte Full-Time Equiv FTE
function func Function Func
fund balance fb Fund Balance, Fund Bal Fund Bal
funding (Not Used) Funding Fndg

general ledger gl General Ledger, GL GL
general ledger acct gla GL Account GL Acct
general ledger define gld GL Define GLD
general ledger entry gle GL Entry GL Ent
general ledger transaction gltr GL Transaction, GL Trans GL Trans
general ledger unit code (NOT USED) GL Unit Code GL Unit
giving gvg Giving Gvg
grade grd Grade Grd
grade point average gpa GPA GPA
graduate, graduation grad Graduate, Graduation Grad

Standards 350 System Reference

gross pay gp Gross Pay Gross
group grp Group Group
group id gid Group ID Group ID

groups grps Groups Grps

health hlth Health Hlth
high high High High
high school hs High School HS
history hist History Hist
holiday hol Holiday Hol
hours hrs Hours, Hrs Hrs
housing hsg Housing Hsg

id number id ID Number ID
income inc Income Inc
incorporated inc Incorporated Incorp
increment incr Increment Incr
independent indep Independent Ind, Indep
independent study is Independent Study Ind Stdy
index idx Index Idx
indicator, indication ind Indicatory, Indication Ind, Indic
information info Information, Info Info
initial, initiate init Initial, Initiate Init
inquiry inq Inquiry Inq
install install Install Install
institution inst Institution, Instit. Inst
instruction instr Instruction, Instruct Instr
insurance ins Insurance Ins
intend plan Intend Plan
interest int Interest Int
internship intern Intern Intern
interrupt intr Interrupt Inter
interview intvw Interview Intrvw
inventory inven Inventory Inv
investment invest Investment, Investmt Invest
invoice inv Invoice Invoice
involvement involve Involve Invl
item item Item Item

journal (NOT USED) Journal Jrnl
junior jr Junior, Jr. Jr

lab lab Lab Lab
label lbl Label Lbl
large lg Large Lg
last last Last Last
lead lead Lead Lead
lender lnd Lender Lnd
letter let Letter Let
level lev Level Lev
liability liab Liability Liab
library, librarian lib Library, Librarian Libr, Lib
lifetime-to-date ltd Lifetime to Date LTD
line 1 (e.g. addr_line1) line1 Line 1 Line1
load load Load Load
local income tax lit Local Inc Tax LIT
location loc Location Loc

mail room mail Mail Room, Mail Rm Mail
maintenance maint Maintenance Maint
management mgmt Managment, Managemt Mgmt
manual man Manual Man
marital mrtl Marital Mrtl
market mkt Market Mkt
marketing mktg Marketing Mktg
match matching mtch Match, Matching Mtch
matriculate, matriculation matric Matriculate, Matric Matric
maximum max Maximum Max
maximum lifetime (Not Used) Maximum Lifetime Max Life
mechanic mech Mechanic Mech
meeting mtg Meeting Mtg
membership mem Membership Memb
memorial mmrl Memorial Mem
method meth Method Meth
minimum min Minimum Min
minute min Minute Min
month, monthly mo Month, Monthly Mth
month-to-date mtd Month to Date MTD

nature nat Nature Nat
net pay nt Net Pay Net
newspaper news Newspaper News
next next Next Next
non-catalog course work ncat Non-Catalog Course Wrk N-Cat CW
non-taxable income nontax Non-Taxable Income N-Tax Inc

System Reference 351 Standards

notes payable np Notes Pay Notes Pay
notes receivable nr Notes Recv Notes Recv
notify, notification notif Notification, Notif. Notif
number no Number No

nurse, nursing nurs Nurse, Nursing Nurse, Nurs

object obj Object Obj
occupancy occ Occupancy Occ
occupant occ Occupant Occ
occupation occ Occupation Occ
office ofc Office Ofc
official ofcl Official Ofcl
old o(-)o Old Old
organization org Organization, Organ. Org
original orig Original Orig
other oth Other Other, Oth
output o(.)out Output Out
overtime ot Overtime OT

package pkg Package Pkg
paid pd Paid Pd
parameter (NOT USED) Parameter Parm
parent par Parent Par
parental contribution pc Parental Contribution Par Contr
 (finaid)
park prk Park Prk
parking prkg Parking Prkg
parttime pt Parttime PT
payment pay Payment Pmt
payroll pr Payroll Payroll
pension pens Pension Pens
percent, percentage pct Percent, Percentage Pct
perennial peren Perennial Peren
period prd Period Prd
period-to-date ptd Period-to-Date PTD
permanent perm Permanent Perm
permit prmt Permit Prmt
personal prs Personal Prs, Pers
personnel pers Personnel Pers
perspective persp Perspective Persp
physical plant plant Phys Plant, Plant Plant
plan plan Plan Plan
points pts Points Pts
policy pol Policy Pol
position pos Position Pos
post, posting pst Post, Posting Pst
preference, preferred pref Preference Pref
prenotification prenotif Prenotification Prenotif
preparation prep Preparation Prep
prepare prep Prepare Prep
preparer prep Preparer Prep
prerequisite prereq Prerequisite Prereq
present present Present Pres
president pres President Pres
previous prev Previous Prev
primary prim Primary Prim
print, printing prnt Print Prnt
priority prior Priority Prior
probation prb Probation Prb
process, procedure proc Process, Procedure Proc
program prog Program Prog
programmer pgmr Programmer Pgmr
project proj Project Proj
prospect, prospective prsp Prospect, Prospective Prsp
publicity pub Publicity Pub
purchase order po Purch Order PO
purchasing, purchased purch Purchasing Purch
purge purge Purge Purge
purpose purp Purpose Purp

quality qual Quality Qual
quantity qty Quantity Qty
quarter-to-date qtd Qtr-to-Date QTD
quarterly qt Quarterly Qtrly

race ethnic Ethnic Ethnic
real estate re Real Estate RE
reapply reapp Reapply Reapp
receipt rcpt Receipt Rcpt
receiver recv Receiver Recv
recipient, correspondee recip Recipient Recip
recommendation recom Recommendation Recommend
reconcile, reconciliation recon Reconcile Recon
record rec Record Rec
recruit rcrt Recruit Rcrt

Standards 352 System Reference

reference ref Reference Ref
refund rfnd Refund Rfnd
registered, registration reg Registration Regist
rejected rej Rejected Rej
relationship rel Relationship Rel

remainder rmdr Remainder Rmdr

remark rem Remark Rem
reminder rem Reminder Rem
repeat rep Repeat Rep
report rpt Report Rpt
representative rep Representative Rep
request, requisition req Request Req
require req Require Req
reserve, reservation rsv Reserve Rsv
residence, resident res Residence, Resident Res
resource resrc Resource Resrc
response rsp Response Rsp
responsible, responsibility resp Responsible Resp
restrict rstr Restrict Rstr
resume resm Resume Res
return ret Return Ret
revenue rev Revenue Rev
review rvw Review Revw
revision rev Revision Rev

sabbatical sabb Sabbatical Sabb
salary sal Salary Sal
salutation salut Salutation Salut
salvage slvg Salvage Slvg
savings sav Savings Svgs
schedule schd Schedule Schd
Scholastic Achievement sat SAT SAT
 Test (SAT)
school sch School Sch
score score Score Score
screen scr Screen Scr
secondary sec Secondary Sec
section sec Section Sec
semester sess Semester Sess
semi-monthly sm Semi-Monthly SM
senior sr Senior, Sr Sr
separate sep Separate Sep
service serv Service Serv
session sess Session Sess
shorthand shand Shorthand Shand
skill skl Skill Skill
social security (NOT USED) Social Security Soc Sec
social security number ss_no Social Security Number Soc Sec No
solicit, solicitation sol Solicitation Sol
sophomore so Soph, Sophomore So
source src Source Src
span span Span Span
special spec Special Spec
sponsor spon Sponsor Spon
spouse sp Spouse Sp
square feet, square footage sqft Square Ft Sq Ft
staff staff Staff Staff
standard (NOT USED) Standard Std
state st State St
state income tax (SIT) sit State Inc Tax St Inc Tax
statement stmt Statement Stmt
station stnt Station Stn
status stat Status Stat
statutory sty Statutory Sty
step step Step Step
straight strt Straight Strt
street str Street St
string strg String Strg
student stu Student Stu
subprogram, sub-program subprog Subprogram Subprog
subsession, sub-session, subsess Subsession Subsess
 module, block
subsidiary sub Subsidiary Sub
subsidiary subs Subsidiary Subs
subsidiary account sa Subsidiary Account Subs Acct
subsidiary account suba Subsidiary Account Subs Acct
subsidiary balance subb Subsidiary Balance Subs Bal
subsidiary entry sube Subsidiary Entry Subs Ent
subsidiary total subt Subsidiary Total Subs Tot
subsidiary transaction subtr Subsidiary Transaction Subs Trans
suite suite Suite Suite
summarize sum Summarize Sum
summer su Summer Summ
supplemental suppl Supplemental Supl
supplier splr Supplier Splr

System Reference 353 Standards

support supp Support Supp

table tb Table Tbl
taken taken Taken Taken
taxable tax Tax Tax
taxable income taxinc Taxable Income Tax Inc

teachers insurance annuity tiaa TIAA TIAA

 association
telephone phone Phone Phone, Ph
temporary temp Temporary Temp
term sess Session Sess
terminate term Terminate, Termination Term
terms of payment pay_terms Terms of Payment Pmt Trms
textbook text Text Text
tickler tick Tickler Tick
total tot Total Tot
total family income tfc Total Family Income Tot Fam Inc
 (fina id)
track trk Track Trk
transaction tr Transaction Trans
transcript trans Transcript Trans
transcript comment tc Transcript Comment Trans Comm
transfer trf Transfer Trans
transfer work tw Transfer Work Trans Wk
tuition tuit Tuition Tuit
typing typg Typing Typing

uncollected uncol Uncollected Uncol
unemployed unempl Unemployed Unemp
unit unit Unit Unit
update upd Update Upd
user id uid ID - User ID

vacation vac Vacation Vac
value val Value Val
vehicle veh Vehicle Veh
vendor vnd Vendor Vnd
veteran vet Veteran Vet
volunteer vol Volunteer Vol
voucher vch Journal Jrnl

waived wvd Waived Wvd
waiver wvr Waiver Wvr
week, weekly wk Week, Weekly Wk
weight wt Weight Wt
with w With W
withdraw wd Withdraw WD
words per minute wpm Words Per Minute, WPM WPM
work (NOT USED) Work Work, Wrk

year yr Year - Academic Year
year yr Year - Award Year
year yr Year - Calendar Year
year yr Year - Fiscal Year
year-to-date ytd Year-To-Date YTD

zip code, postal code zip Zip Code Zip

Standards 354 System Reference

User Interface Standards: Menu Source

Introduction
These use interface standards are for menu source (menusrc) files. Use these standards when
creating or modifying this type of file.

General Conventions
The following are general conventions for menu source (menusrc) files.

1. The term "master" will only be used in the "CX Master Menu".

2. Use the terminology "main" menu in the title line (TI) of the primary menusrc and all
secondary menusrcs when they are menus.

Example: TI=Alumni/Development: Main Menu [primary menusrc]

 TI=Alumni Association: Main Menu [secondary menusrc]

 TI=Development: Main Menu [secondary menusrc]

 TI=Donor Accounting: Main Menu [secondary menusrc]

3. The term "office" will not be used in the title (TI), short (SD) or long description (LD) lines.

4. Long descriptions (LD) will end with the word Menu or Menus as appropriate.

Example: LD=Registrar Menu

5. The short descriptions of the parent menu will be used for the long description of the active
menu if it is a collection of sub menus.

Example: LD=Registrar, Student Services, Financial Aid, Placement Menus

6. The preferred order for listing the reports sub-menu is alphabetical. You may group them
logically if that is more appropriate.

7. Group tables alphabetically within function.

Example: Registrar: Table Maintenance Menu

 [a] Registrar (A-L) [d] Common (D-F)

 [b] Registrar (M-Z) [e] Common (G-O)

 [c] Common (A-C) [f] Common (P-Z)

8. List menuopt files in the order of the processed steps. If a process contains five steps, the
menuopts should appear on the menu in the order of occurrence.

9. Likewise, a menu screen containing sub-menus should also appear in the order and/or
frequency of occurrence. For example, a menu option containing "Session Processing"
functions should appear after the daily processing functions.

10. If a menu requires a sub-menu for "Table Maintenance", it should appear as the last menu
option.

Example: Student Management: Registrar Main Menu

 [a] Course/Class Schedules [h] Transcripts

 [b] Data Entry [I] Program/Degree Audit

 [c] Registration [j] Forms

 [d] Block Registration [k] Letters

System Reference 355 Standards

 [e] Class Lists [l] Reports

 [f] Grading [m] Session Processing

 [g] Anonymous Grading [n] Table Maintenance

11. 1The left portion of the title (TI) of sub-menus will retain the name of the module associated
with the sub-menu functions.

Example: TI=Alumni/Development: Main Menu [primary menusrc]

 TI=Alumni Association: Main Menu [secondary menusrc]

 TI=Alumni Association: Forms Menu [tertiary menusrc]

 TI=Alumni Association: Query by Form [tertiary menusrc]

 TI=Alumni Association: Reports Menu [tertiary menusrc]

Punctuation
The following are general conventions for menu source (menusrc) punctuation.

1. Menu options which are menus will have an "*" to the left of the option to denote that it is a
menu.

Example: * (a) Recruiting/Admissions

2. This feature will be controlled through the menu processor and may be enabled or disabled.
This capability will be provided in a future SMO.

3. Prepositions which are used in short (SD), long (LD) or run (RD) description titles will be in
lowercase.

Example: by, for, in, of, to, with.

4. Articles which are used in short (SD), long (LD) or run (RD) description titles will be in lower
case.

Example: a, an, the.

5. The word "and" will always be spelled out. The "&" sign will not be used.

6. The slash "/" will be used as the standard separator where space limitations occur in the
short description (SD).

Example: SD=Majors/Minors/Concentration

7. Abbreviations should not be used on the menu as a general rule. The (SD), (LD), (RD), and
the Title (TI) should not use abbreviations if at all possible.

8. The term "Reports" will be used throughout the system. If necessary, an abbreviation of a
word is allowed, but it must be a truncation of the word and be followed by a ".".

Example: SD=Program/Program Regist.

9. This example indicates that the menuopt will call the "Program and Program Registration
Tables. The acceptable abbreviated version of our example contains the COMPLETE
spelling (including vowels) of the word followed by the ".". An abbreviation "Rgst", or any
version of this kind is NOT ACCEPTABLE.

10. Colons ":" will not be used in long descriptions (LD) or short descriptions (SD).

Macros
The following are general conventions for menu source (menusrc) macros.

1. The m4_keepif/m4_keepend macros will be used in menusrc to handle optional menu

Standards 356 System Reference

options (eg: block registration), depending upon whether the client has purchased or will be
using particular modules or options. The macros will start with ENABLE as a standard
convention. In the file $CARSPATH/macros/custom/student, the following macro would be
defined:

Example: {*** Defines whether block registration is enabled ***}
`m4_define(`ENABLE_FEAT_BLK_REG',`Y')'

2. In the file $CARSPATH/menusrc/student/regist/menudesc the corresponding lines will
appear:

Example: MNU_OPT(regist/programs/stue)

 MNU_SUB(student/regist/regist)

 `m4_keepif(ENABLE_FEAT_BLK_REG,`Y')'

 MNU_SUB(student/regist/blockreg)

 `m4_keepend'

 MNU_SUB(student/regist/classlist)

3. In this example, if the ENABLE_FEAT_BLK_REG macro is set to Y in the
$CARSPATH/macro/custom/student file, then the "MNU_SUB(student/regist/blockreg)"
option will be displayed on the menu.

4. The ENABLE type macros are used within the `"m4_keepif and m4_keepend"' structure
within a menudesc file.

Example: `m4_keepif(ENABLE_MOD_REGIST, `Y')'

 `MNU_SUB(student/regist)'

 `m4_keepend'

 `m4_keepif(ENABLE_MOD_FINAID, `Y')'

 `MNU_SUB(student/finaid)'

 `m4_keepend'

 `m4_keepif(ENABLE_MOD_STUSERV, `Y')'

 `MNU_SUB(student/stuserv)'

 `m4_keepend'

 `m4_keepif(ENABLE_MOD_PLACEMENT, `Y')'

 `MNU_SUB(student/placement)'

 `m4_keepend'

System Reference 357 Standards

User Interface Standards: Menu Options

Introduction
Interface standards are for menu option (menuopt) files. Use these standards when creating or
modifying this type of file.

General Conventions
The following are general conventions for menu option (menuopt) files.

1. Database names of files and records (eg: stu_acad_rec) will not appear in SD's, LD's, RD's
or run description text. Instead, the complete file name will be used.

Example: student academic record

2. The letter production system (LPS) and the forms production system (FPS) will only be
referred to in the LD and RD lines.

Example: Prints Admissions Letters Using the Letter Production System (LPS)

3. The long (LD) and run (RD) description titles should be the same.

4. All runtime (RD) description lines (header) will be one line and will be underlined on the
following line with dashes. The underline will be the same length as the header line.

5. Normal upper/lower case convention will be used in the runtime (RD) description text. If
information is to be emphasized, a "NOTE: " will be used.

Example: RD=

 `m4_center(`Print Student Data Sheets', 80)'

 `m4_center(`----------------------------------', 80)'

 `m4_center(`This is the final step in generating student ', 80)'

 `m4_center(`data sheets (SDS). ', 80)'

 `m4_center(`The steps for selecting students and for creating', 80)'

 `m4_center(`the student data sheets must be completed prior ', 80)'

 `m4_center(`to running this option. ', 80)'

 `m4_center(`NOTE: Use form type "sds" for SDS without billing ', 80)'

 `m4_center(`information. ', 80)'

 `m4_center(`Use form type "sdsbill" for SDS with billing ', 80)'

 `m4_center(`information. ', 80)'

Note: Included in the note should be information relating to steps that must be
ompleted prior to the current one.

6. The menuw.s file in $CARSPATH/system/etc will be used for password protection in menusrc
and enuopts.

Example: To enable the password in a menusrc or menuopt file:

 PW=@REGIST

Standards 358 System Reference

 The corresponding entry in the $CARSPATH/system/etc/menupw.s file
would be:

 REGIST:<password>:

7. A six character alpha descriptor (eg: REGIST) will be used with the "@" to denote the unique
item in the menupw.s file. This will replace the numbers used previously.

8. All "PP=" lines will begin with "Enter" unless the prompt is a question.

Punctuation
The following are punctuation standards for menu option (menuopt) files.

1. Abbreviations "eg:", "ex:", "ie:", or "etc." will not be used in the short (SD), long (LD), or run
(RD) description titles. Examples will be included in the text area of the run description (RD).

2. To denote "for example", "eg:" will be used as the standard. These should ONLY be used
with parameter prompt lines (PP). The example will appear at the end of the sentence.

Example: Enter the subsidiary balance code, eg: FA90.

3. In all runtime (RD) description lines (header), the first letter of each word will be capitalized
(excluding conjunctions and articles).

4. No special capitalization will be used in the runtime (RD) description (text). Record and file
names will not be capitalized.

5. All "PP=" lines will use normal upper/lower case convention.

6. All "PP=" lines will end in either a "." or a "?".

Macros
 The following are macro standards for menu option (menuopt) files.

1. The `QUERY_MAINT' macro is used with the (LD) and (RD) to indicate maintenance of
tables/records. This macro will be associated with all menuopts which call PERFORM
screens that create/update tables and/or records.

2. This macro is defined in ($CARSPATH/macros/user/common) and an example of its
definition is as follows:

Example: {*** General Heading for Table/File Manipulation ***}

 `m4_define(`QUERY_MAINT', `Query/Maintain')'

3. The `QUERY_MAINT_LINE' macro is used with the `QUERY_MAINT' macro. This macro
represents the header line within the (RD) taken by the `QUERY_MAINT' macro, and is the
same length as the `QUERY_MAINT' macro. It too is defined in
($CARSPATH/macros/user/common):

Example: `m4_define(`QUERY_MAINT_LINE', `--------------')'

4. Example of `QUERY_MAINT' and `QUERY_MAINT_LINE' used together:

Example: RD= `m4_center(QUERY_MAINT Session Table, 80)'

 `m4_center(QUERY_MAINT_LINE`'--------------, 80)'

5. These lines will expand to:

Example: Query/Maintain Session Table

6. The `RD_WIDE_OUTPUT' macro will used as part of the runtime (RD) description in all
menuopts where wide paper is required to print the report.

System Reference 359 Standards

Example: RD= `m4_center(`Print Course Catalog', 80)'

 `m4_center(`--------------------', 80)'

 `RD_WIDE_OUTPUT'

7. This will expand to:

Example: Print Course Catalog

Note: This report prints on WIDE paper. You must load the appropriate paper and
change the formtype for the printer.

8. The `m4_center' macro will be used in all runtime (RD) description lines, including underlines
and text, to center information.

9. If another menu option is to be referenced in the body of RD text, the `m4_getoptdesc' macro
will be used to bring in the short description (SD) for that option.

Example: RD=

 `m4_center(`Create Class Lists for All Courses for One Catalog', 80)'

 `m4_center(`--', 80)'

 `m4_center(`This is the second step in generating class lists.', 80)'

 `m4_center(`Use "m4_getoptdesc(utilities/programs/fps.reglst)"', 80)'

 `m4_center(`option to print the list. ', 80)'

10. The `m4_getoptdesc' macro above will expand to:

Example: "Print Classlists/Waitlists".

11. If a macro is to be used within a `m4_center' macro, it must be expanded before it is passed
to the `m4_center' macro. If the parameter does not contain commas, it does not need to be
quoted.

Example: (Parameter does NOT contain commas)

 `m4_center(QUERY_MAINT Session Table, 80)'

 `m4_center(QUERY_MAINT_LINE`'--------------, 80)'

 (Parameter does contain commas)

 `m4_center(QUERY_MAINT `Majors, Minors and Concentrations', 80)

Standards 360 System Reference

User Interface Standards: Program Screens

Introduction
These use interface standards are for program screen (progscr) files. Use these standards when
creating or modifying this type of file.

General Conventions
The following are general conventions for program screen (progscr) files.

1. The words FORM and SCREEN will not appear on entry menus or screens.

2. The word ENTRY will be used for screen headings.

Example: ID ENTRY

3. Every screen will have a title that is capitalized and centered. Titles will not be underlined.

System Reference 361 Standards

ID ENTRY

ID No..... [id] SS No..[ssno] Add Date... [adddate
]
Title..... [titl^titl_text] Last Upd... [upddate]
Name.... [iname] Telephone.. [phone]
Address. [addr1]
 [addr2]
City...... [icity]
State/Zip [st][zip] Country..[ctr]

attributes

id = id_no, optional;

ssno = ss_no, optional,
comments = "COMMENT_SS_NO";

titl_text = title_text, optional;

titl = title, optional,
comments = "COMMENT_TITLE_TBCODE COMMENT_TBL",
default = "TITLE_DEF",
lookup titl_text joining *title_table.title_tbcode,
upshift;

iname = name, optional,
comments = "COMMENT_NAME",
required;

addr1 = addr_line1, optional,
comments = "COMMENT_ADDR1";

addr2 = addr_line2, optional,
comments = "COMMENT_ADDR2";

icity = city, optional,
comments = "COMMENT_CITY",
required;

st_text = st_text, optional;

st = state, optional,
comments = "COMMENT_STATE COMMENT_TBL",
default = "ST_DEF",
lookup st_text joining *st_table.st_tbcode,
upshift;

zip = zip, optional,
comments = "COMMENT_ZIP",
upshift;

country_text = ctry_text, optional;

ctr = country, optional,
comments = "COMMENT_COUNTRY COMMENT_TBL",
default = "CTRY_DEF",
lookup country_text joining *ctry_table.ctry_tbcode,
upshift;

rct = res_ctry, optional,
comments = "COMMENT_RES_CTRY COMMENT_TBL",
default = "CTRY_DEF",
lookup country_text joining *ctry_table.ctry_tbcode,
upshift;

cty_text = cty_text, optional;

cty = res_cty, optional,
comments = "COMMENT_RES_CTY COMMENT_TBL",
default = "CTY_DEF",
lookup cty_text joining *cty_table.cty_tbcode,
upshift;

ts = res_st, optional,
comments = "COMMENT_RES_ST COMMENT_TBL",
default = "ST_DEF",
lookup st_text joining *st_table.st_tbcode,
upshift;

phone = phone, optional,

Standards 362 System Reference

comments = "COMMENT_PHONE";

adddate = add_date, optional,
default = today,
noupdate;

upddate = last_upd_date, optional,
default = today,
noupdate;

prof_last_upd_date = prof_last_upd_date, optional,
default = today,
noupdate;

end

4. Every field will contain a comment.

5. Comments will begin with "Enter" unless the comment is a question.

6. There will be NO HARDCODING of values in progscrs with the possible exceptions of (Y) or
(N). Macros will be used extensively for defaults, includes, comments, formats and
examples.

7. The phrase "Valid values are:" will not be used in comments. Instead the values will be
displayed in the comment.

Example: comments ="Enter joint code. (I)nformal, (F)ormal, (J)oint, (N)one."

8. If there are more valid values than can be displayed on one line, then an example macro
(_EG) will be used.

Example: comments ="Enter the type of accomplishment, ACCOMP_TYPE_EG".

9. This will expand to:

Example: comments ="Enter the type of accomplishment, eg:
ACADEMIC,ATHLETIC."

10. A template is used for creating screens containing ID information. This template should also
be used with PERFORM screens where possible.

11. 1The attributes section of progrscr files will maintain the following structure:
• Each editing clause, with the exception of the optional clause, will be listed one per line

in alphabetical order and indented 5 spaces (the first letter of the edit clause is printed
on the fifth position from left)

• The optional clause will immediately follow the database field name (on same line)
• The lookup and joining clauses will be listed together on one line

12. 1The menu progscr file will only contain ONE space in the selection field. This allows you to
load the screen simply by typing the number. The <RETURN> is not required to call the
screen.

REGISTRAR DATA ENTRY MENU

1. Students [scr1]
2. Program Enrollment [scr2]
3. Faculty [scr3]
4. Parents [scr4]
5. Schools [scr5]
6. Churchs [scr6]

Enter Selection: [a]

Note: The "Enter Selection:" field "[a]" contains only one space. This structure will access
any of the data screens by entering a number.

System Reference 363 Standards

Punctuation
The following are punctuation standards for program screen files.

1. Comments will use normal upper/lower case convention.

2. Comments will end with either a "." or a "?".

3. The "()" will be used to indicate the valid values to be entered.

Example: Enter addree style. (I)nformal, (F)ormal, (M)aiden, (N)ickname.

4. The first character of each screen descriptor will be capitalized.

Example: Alternate Address Code..[a1]

5. The colon will not be used in comments. The only exceptions will be after the word "format"
and with the use of "eg".

Example: Format: mm/dd/yy.

 Enter calendar year, eg: 1990.

Macros
The following are macros standards for program screens.

1. Within the area of "COMMENT" macros, several are used exclusively by the progscr files.

2. The "COMMENT_QUERY" macro is used to indicate how to activate the name search sub-
routine.

3. This macro is defined in the file ($CARSPATH/macros/custom/comment):

Example: `m4_define(`COMMENT_QUERY', `Enter (0) for name query.')'

4. An example of how the attribute section of the progscr file will use this macro is shown below:

Example: adv_id = adv_id, optional,

 comments = "COMMENT_ID advisor. COMMENT_QUERY",

 lookup adv_id_name joining id_rec.id_no;

5. This comment will expand to:

Example: "Enter ID# of advisor. Enter (0) for name query."

Note: "COMMENT_QUERY" and "COMMENT_TBL" will always be used in
conjunction with other "Comment" macros or general comment text.

6. The "COMMENT_TBL" macro is used to indicate how to activate the "Table Lookup" feature
within progscr files. It is defined in ($CARSPATH/macros/custom/comment).

Example: `m4_define(`COMMENT_TBL', ` Use CTRL T for table lookup.')'

Note: This macro is used with other "COMMENT" macros or general comment text
within the attribute section of a progscr file, as shown below:

Example: stuac_prog = stuac_prog,

 comments = "COMMENT_PROG COMMENT_TBL",

 lookup text1 joining prog_table.prog_tbcode,

 noupdate,

 scroll = (c0, c1, c2, c3),

 upshift;

Standards 364 System Reference

7. This will expand to:

Example: "Enter program code. Use CTRL T for table lookup."

Note: "COMMENT_TBL" (in its `m4_define' clause) begins with a space as its first
character. Therefore, only ONE space is required to separate this macro with
other macros or general comment text in order to achieve double spacing
between comments.

8. View only screens (noentry, noupdate) will use the "COMMENT_VIEW_ONLY" macro
advising that the screen is view only. It is defined in
($CARSPATH/macros/custom/comment):

Example: `m4_define(`COMMENT_VIEW_ONLY', `This is a view only screen. No
data entry is permitted.')'

9. The following progscr displays how the macro is used within the attributes section of the file:

screen
{
================ GPA/HOURS (STUDENT ACADEMIC) RECORD ===== Record[z0]of[z1] = Sess Year Prog
Sub Class Stat Clear Updated Grd Add Rank Size Reg-Hrs-Audit
2nd Line - Hours: INTEND WAIT ATT EARN PASS QUAL AUDIT QUAL PTS GPA
[a0 ^b0 ^c0 ^d0] [e0] [a] [m] [f0] [g] [g0^h0
^i0] [j0] [k0]
 [l0 ^m0 ^n0 ^o0 ^p0 ^q0 ^r0 ^s0 ^t0]

[a1 ^b1 ^c1 ^d1] [e1] [b] [n] [f1] [h] [g1^h1
^I1] [j1] [k1]
[l1 ^m1 ^n1 ^o1 ^p1 ^q1 ^r1 ^s1 ^t1]
}
end

attributes
z0:,
noupdate;
z1:,
noupdate;
stuac_sess = stuac_sess,
comments = "COMMENT_VIEW_ONLY",
include = (PREV),
noupdate,
scroll = (a0, a1),
upshift;
stuac_yr = stuac_yr,
comments = "Year.",
noupdate,
scroll = (b0, b1);
text1 = prog_text, optional;
stuac_prog = stuac_prog,
comments = "COMMENT_PROG COMMENT_TBL",
lookup text1 joining prog_table.prog_tbcode,
noupdate,
scroll = (c0, c1),
upshift;

Note: This macro is required ONLY for the first comment clause in order to be
enabled. This will expand to...

System Reference 365 Standards

F1 execute. CTRL C abort. CTRL F screen forward. CTRL B screen back.
CTRL O 'add' line. CTRL E erase line. CTRL U detail windows. TAB 'insert' mode.
STUDENT DATA ENTRY
ID No..... 13594 SS No.. 374-82-4073 Add Date... 09/01/89
Title..... MS Ms. Last Upd... 00/00/00
Name...... Jackson, Sheri Telephone.. 5026515297

=============== GPA/HOURS (STUDENT ACADEMIC) RECORD ===== Record 1 of 1 = Sess Year Prog Sub
Class Stat Clear Updated Grd Add Rank Size Reg-Hrs-Audit
2nd Line - Hours: INTEND WAIT ATT EARN PASS QUAL AUDIT QUAL PTS GPA
FA 1989 UNDG FR C 01/13/89 F 0 0 0
18.0 0.0
 0.0 0.0 18.0 18.0 0.0 18.0
0.0 54.0 3.0

This is a view only screen. No data entry is permitted.

10. The "COMMENT" macros will generally be defined according to the database field name.
The field name will always be capitalized and will be preceded by "COMMENT_".

11. In the attributes section the following screen item appears:

Example: d = deceased, optional,

 comments = "COMMENT_DECEASED"

 default = "N",

 noupdate;

12. The comment in the "comment" macro file will be defined as:

Example: `m4_define(`COMMENT_DECEASED', `Is the individual deceased?')'

13. When the "COMMENT" macros are used for screen items that are dependent on table values
(lookups are used for validation), the comment macro will be defined according to the
database field from which the lookup is being done.

Example: text2 = ofc_text, optional,

 noupdate,

 scroll = (g0, g1, g2);

 hold_ofc_add_by = hold_ofc_add_by,

 comments = "COMMENT_OFC_TBCODE COMMENT_TBL",

 lookup text2 joining *ofc_table.ofc_tbcode,

 scroll = (f0, f1, f2),

 upshift;

14. There will be limited instances when the "COMMENT" macros will not be defined according
to the field name or the lookup field name. These macros are more generic in nature.

Example: `m4_define(`COMMENT_BLANK_ALL', `, blank for all')'

Standards 366 System Reference

User Interface Standards: PERFORM Screens

Introduction
These use interface standards are for PERFORM screen files. Use these standards when
creating or modifying this type of file.

General Conventions
The following are general conventions for PERFORM screen files.

1. PERFORM screens which are used solely for "query by form" purposes will have
"noentry,noupdate" assigned to each attribute to disable any function other than query.

2. Every PERFORM screen will have a capitalized title which is centered.

Example: `m4_center(`DEPARTMENT TABLE', 80)'

3. The title will not be underlined.

4. The naming convention for "tables" will always have the word table last.

Example: CLASSIFICATION TABLE

5. Simple table PERFORM screens will display the code and description in vertical fashion and
centered on the screen.

INTEREST TABLE

 Code......... [I1]
 Description.. [I2]

6. A minimum of two periods ".." will separate the screen descriptor and field name.

7. Wherever feasible, fields will be displayed in vertical fashion to facilitate ease of entry and
flow of cursor movement.

8. When screens consist of multiple tables, the appropriate name will precede the code for
clarity.

SESSION TABLE

 Session Code. [f1]
 Description. [f2]
 Calendar Year Order. . [f4]
 Academic Year Order. . [f5]
 Course Tuition. [f]

 ===================================== SUBSESSION TABLE =====================================

 Subsession Code. [b1]
 Description. [b4]

9. If more than one record is represented on the screen, a "==" line will separate the records
where possible. The only exception is where one record is completely part of another record.

10. This example indicates how multiple records will be separated by "==" lines. The course
record (crs_rec), meeting record (mtg_rec), section record (sec_rec), and facility table
(facil_table) are represented by this screen.

11. Notice that the facility table outline below does not have "==" line separating it from the
meeting record since the entire facility table is contained within the meeting record.

System Reference 367 Standards

 ** 4: facil_table file**

 COURSE SCHEDULE
Number.... ------------ Title ------------ Ind Study Allowed..
Catalog... Dir Study Allowed..
Program... Fac Consent Req....
Dept...... Repeatable.........
Division.. Min Hrs... 0.00 Tuit Code.. Times Repeatable.. 0
CIP....... Max Hrs... 0.00 Fee Code... Repeat Hours... 0 0.00
Guideline. Grading...... Bill Code.. Days to Complete. 0
Level. Size. 0 Counting..... Days to Drop..... 0
=== COURSE SECTION =======================================
Section..... Restriction.. Title....
Session... Requirement.. Faculty.. 0
Year...... 0 Tuition Code. Grading.. Max Reg... 0 Reg... 0
Subsess..... Fee Code..... Method... Max Wait.. 0 Wait.. 0
 Bill Code.... Begin.... 00/00/00
Hours.... 0.00 Exam Period.. End...... 00/00/00 Days to Complete. 0
====================================== COURSE MEETING TIME =====================================
Campus.....[] Period Code.. Type.. Faculty... 0
Building......[] Begin Time.... 0 S M T W T F S
Room.........[] End Time....... 0 Days...

12. When screens consist of multiple tables and/or records, the title of each section will be
centered and capitalized and placed one line below the "==" line. The record information
(field names) should begin two lines below the section title so that there is one blank line
between the section title and the record information. See "SESSION TABLE" example.

13. An exception to this structure is when there is not adequate space available on the screen to
accommodate the entire desired information. If this is the case, the section titles should be
centered and placed within the "==" lines. The titles will be preceded and followed by blank
spaces. See "COURSE SCHEDULE" example.

14. 1The attribute section of PERFORM screens will maintain the following structure: Each
editing clause will be listed one per line in alphabetical order and indented 5 spaces (the first
letter of the edit clause is printed on the 5 position from left).

15. The "lookup" and "joining" clauses will be listed together on one line.

attributes
c1 = *crs_no = sec_crs_no = mtg_crs_no,
autonext,
comments = "COMMENT_CRS``''CRS_EG",
required,
upshift;
c2 = crs_cat = sec_cat = mtg_cat,
autonext,
comments = "COMMENT_CAT``''CAT_EG",
default = CAT_DEF,
lookup from *cat_tbcode,
required,
upshift;
c3 = crs_prog,
autonext,
comments = "COMMENT_PROG",
default = PROG_DEF,
lookup from *prog_tbcode,
required,
upshift;
c4 = crs_dept,
autonext,
comments = "COMMENT_DEPT",
lookup c5=dept_div from *dept_tbcode,
upshift;

Standards 368 System Reference

User Interface Standards: Comment Macros

Introduction
These use interface standards are for comment macros. Use these standards when creating or
modifying this type of file.

General Conventions
The following are general conventions for comment macros.

1. COMMENT macros will be used in program screens and PERFORM screens, and will be
referenced in parameter prompts (PP=) in menuopts. There are two types of comment
macros, complete and partial. A complete macro is self-contained. It may contain more than
one macro.

Example: `m4_define(`COMMENT_ZIP', `Enter permanent address zip code.')'
`m4_define(`COMMENT_INT', `Enter interest code. COMMENT_TBL')'

2. You must always use a partial comment macro with another macro or you must always add
additional words to it to make the comment complete.

Example: `m4_define(`COMMENT_ID', `Enter ID# of')'

 `m4_define(`COMMENT_DATE', `Format: mm/dd/yy.')'

3. When using more than one macro in a sentence, they must either be separated by a space
or by alt quotes "``''" to allow the macros to expand properly.

Example: comments="COMMENT_ID counselor. COMMENT_QUERY"
`m4_define(`PP_FS_YR', `COMMENT_FS_YR`'COMMENT_FS_YR_EG')'

4. When defining an example macro (eg: MARITAL_EX), "EX" will be used as a standard to
denote "example".

5. Examples will be displayed at the end of a sentence.

Example: PP=Enter the subsidiary balance code, eg: FA90.

6. The following defines the quoting of `m4_center's first parameter. If the parameter does not
contain commas, it need not be quoted at all.

Example: `m4_center(Line containing macro MACRO_NAME, 80)'

7. In this case, MACRO_NAME is expanded before being passed to `m4_center'.

Note: The expansion of MACRO_NAME cannot contain commas.

8. If a comma must be used, it must be quoted:

Example: `m4_center(`Line 2, containing macro 'MACRO_NAME, 80)'

9. As long as the macro name is not included within the quotes, the line will be centered
properly. If the macro MACRO_NAME itself contains commas, then the `"m4_defn"'
command must be used.

Example: `m4_define(`MACRO_NAME', `m1,m2,m3')' `m4_center(`Line 2, containing
macro 'm4_defn(`MACRO_NAME'), 80)'

10. The command `m4_defn' causes M4 to print the definition of the named macro. This usage
keeps the commas within MACRO_NAME from interfering with the `m4_center' macro.

System Reference 369 Standards

PERFORM Screen Standards

Introduction
Standards for PERFORM screens provide consistency for the user and the modifier of the screen
source. By establishing standards for PERFORM screens, both Jenzabar and the user
institutions can take advantage of the readability and functionality consistencies. Utilization of
standard macros and definitions provides the user of the PERFORM source with a head start in
modification and enhancement.

Access
General screens used by different tracks will be located in
$CARSPATH/modules/common/screens

Screens specific to a module will be located in $CARSPATH/modules/{module}/screens

Source Code: Documentation Header
The Documentation Header is the definition of what data the screen provides and how you are to
use the screen. Use the standard header; once it has been put in the screen, make will maintain
the log messages.

The following is an example of the documentation header.

Standard header before 'database Jenza':
 {
 Definition of screen- files used, when used, etc
 Revision Information (maintained by 'make' DON'T CHANGE)
 --
 $Header: perform,v 8.0 95/04/22 10:23:07 root Developmental $
 $Log: perform,v $
 Revision 8.0 95/04/22 10:23:07 root
 Release I of CX System
 Revision 7.300 92/05/15 12:30:40 patricia
 SMO#:11301:
 standards
 Revision 7.3 92/04/10 13:46:15 patricia
 SMO#:11301:
 standards
 Revision 7.3 92/02/07 19:31:16 carter
 SMO#:11301:
 standards
 Revision 7.3 91/10/30 14:24:33 jack
 SMO#:11301:
 standards
 Revision 7.2 91/10/25 11:25:18 jack
 SMO#:11301:
 standards
 Revision 7.1 91/10/07 14:35:36 fisher
 SMO#:11301:
 standards
 Revision 7.0 90/07/13 16:40:57 root
 Release G of CX System
 Revision 6.0 88/11/22 09:24:48 anthony
 SMO#:10877G:
 move standards documents into the product
 Revision 6.0 88/11/01 11:30:01 11:30:01 dale (Dale Anglin)
 SMO#:10877G:
 move standards documents into the product
 }
At the end of the 'instructions' section:
 FRM_DEFLOC($$)
 FRM_DEFREV($$)
 FRM_DISPLAYREV
 end

Source Code: Format of screen
The following are standards for the format of PERFORM screens.

Standards 370 System Reference

• Have a header at the top of the screen whenever possible to define the screen to the user
• Have clearly defined labels for each data field displayed on screen
• Separate files on the screen with a line of "=======" between the files
• Avoid cramming all data fields into 20 lines just to keep the file to one screen while

minimizing the number of screens
• Use only the fields needed from the file - if fields are not needed, do not display them. The

use of the screen and the end users are key when designing the screen.
• Develop screen for application purpose, not just to display the data file
• Use Of ID Rec As Part Of Screen: If the operator is to be allowed to enter ID records from

the screen, all fields from the ID record must be included

Note: If the user is only to have query capabilities on the ID record, the 5 or 2 line standard
screen should be used with each field containing the NOUPDATE,NOENTRY
attributes.

 Make no lines longer than 80 characters within the source file - this includes the
attribute definitions.

Source Code: Attributes
The following are standards for attributes of PERFORM screens.

• Shifting: Use upshift for all codes and logical fields
• Comments: Have a comment for each field, describing the field, mention if required, list

include values, mention if from table
• Table Lookup: Test entry with table lookup only when necessary. Lookup text for codes,

names for id numbers.
• Include: If values are not in a table
• Default: Use standard macro name. Use 'today' for add_date, effective_date, etc. Use

defaults whenever possible (saves entry time/keystrokes). Defaults can sometimes be
used with NOUPDATE, NOENTRY to save even more keystrokes.

• Required: For fields used in reporting statistics (e.g., Enrollment reports)
• Format: For all type double fields and some money fields
• Picture: For social security. If the client is not using foreign phone numbers, the picture

clause can be used with the phone field.
• Autonext: On every field
• Noupdate/Noentry: If fields are not protected by the schema and are only to be used for

query and display reasons
• Verify: Requires operator to enter value twice. May be used with Social Security numbers

and other critical data fields.
• Right: If value to be entered should be right-justified (e.g., Section numbers). Make sure

that if the data for the field is to be entered right-justified, that all other data in that field in
the database has also been entered the same way.

• Zerofill: To fill with '000' instead of blanks (e.g., phone numbers)
• Reverse: If field is to be displayed in reverse video

Source Code: Instructions (joins)
The following are standards for joins in PERFORM screens.

• Use composite joins when possible
• If id_rec used, have it listed first in the joins

Compilation
Use make processor to compile PERFORM screens. Note the following:

• Executing make with a filename of ALL will formbuild all screens where the screen source
has a more recent date than the .frm file

System Reference 371 Standards

• Executing make with a specific filename will formbuild only the specified screen source

Note: See Using the Make Processor in CX Implementation and Maintenance Technical
Manual for more information.

Menu Definition
The Individual who creates the PERFORM screen will create the menu definition file.

Note: Location of menu option file will be
$CARSPATH/menuopt/<module>/screens/screenname

 Make sure that the menuopt file is then called by a menusrc file - edit the appropriate
menudesc file and 'make install' the menu master.

The following is an example of a menu option.

SD=
LD=
DC=DC_PRINT DC_PATH/{module{/{sub directory}/docname.doc
PR=RUN_SCREENS
PP=
PA=FRM_PATH/module/screenname

Testing
The following are the testing standards for PERFORM screens.

Jenzabar (In-house)
1. The individual who creates the screen will be the first to test it in-house - then someone

who is familiar with the concept will test it again in-house.
2. Test first from the UNIX shell, then from the menu.
3. Test for aesthetics.
4. Additional individuals will test the screen before it is released for testing at the beta site. A

testing report will be completed for the Database Coordinator.
5. Test the following commands on each field; Query, Add, & Update. Compare results with

schema permissions and with noupdate/noentry attributes in screen file.
6. Test Master/Detail.
7. Data entry screen should match source document to be used with data entry.
8. Test by using standard CX logins for the typical end user.

Beta site
1. The Account Manager and Coordinator will test the screen at the beta site.
2. Test from the menu.
3. Test using typical end user logins.

Client sites
1. Check off when it is running at the client site - the responsibility of the project manager.
2. If necessary, customize for client to match their source document(s).

Support
The following are the support standards for PERFORM screens.

• Jenzabar will provide all screens with each release/revision
• The Project Manager and Coordinator will be the jointly responsible for all screens
• Jenzabar will compile all screens through 'make' to utilize RCS to check for differences

between CX screens and client-modified screens
• Jenzabar will provide menuopt files for each screen and the initial menusrc files
• The client may modify menusrc files any time after the initial installation, reorganizing where

the screen(s) is(are) to appear on menus
• Menuopt files should not need modification

Standards 372 System Reference

• If the client creates a new screen, the client will be responsible for the corresponding
menuopt file

System Reference 373 Standards

Entry Library Screen Standards

Introduction
This section establishes standards for the creation and maintenance of Entry Library (libentry)
program screens.

Introduction of Entry Library Features
Entry program features include:

• Simultaneous access of multiple files
• Screens may be designed into a similar format as the input form
• Ability to scroll multi-record files
• Can handle composite key lookups
• Has on-screen table lookup capabilities
• Generates file views at load time (program will recognize new fields upon reloading the

program without the need of re-compiling the source code)
• Uses database file permissions to determine if user has read or read-only permissions to

the file
• A form or menu of forms may be specified as a parameter to limit (or expand) a users

access to entry forms

Differences Between Libentry Screens and PERFORM screens
Screen files consist of the following two sections: screen and attributes. The only difference in
the screen definition sections between libentry and PERFORM screen files is that entry screens
have only one screen definition per screen form file. Multiple screen forms are achieved through
the screen naming convention discussed in the standards section.

Need for autonext attribute
Entry screens do NOT need the autonext attribute. All fields default to autonext.

Field entry order
A major difference is the order in which you enter fields. In PERFORM, the order that the
fields appear in the attribute section is the way the cursor moves in add, update or query
mode. In the Entry screens, the group order clause defined at the end of the attribute
section determines the cursor movement. Fields are entered in the order in which they
appear in the grouporder clause. For example:

grouporder: group = (field1, field2, field3, field4);

Different Lookup Syntax
The lookup feature has a little different syntax. The lookup text name is ALWAYS present
and defined BEFORE the field with the lookup attribute.

LIBENTRY lookup syntax is:

textscrname = text_name[,optional];
fieldscrname = field_name,
 lookup textscrname joining [*]tablename.tablecode;

In PERFORM, the syntax is:

fieldscrname = field_name,
 lookup textscrname = text_name from [*]tablecode;

Note: The optional word 'optional' in the libentry example signifies that the textscrname is
NOT required to be displayed on the form. In this case the text_name is only
displayed in the table lookup feature.

Standards 374 System Reference

 The optional '*' is used the same in both examples. If used, it requires that the value
entered is also in the table in order to be valid. An implementation difference is that
entry library accepts blanks or zero as a valid value without checking for existence in
the table. The 'required' attribute is used on the field if blank or zero is not a valid
value.

Multi-field lookup
The following is an example of a multi-field lookup:

LIBENTRY multi-field lookup syntax:
textscrname1 = text_name1[,optional];
textscrname2 = text_name2[,optional];
fieldscrname = field_name,
 lookup textscrname1 textscrname2 joining [*]tablename.tablecode;

PERFORM multi-field lookup syntax:

fieldscrname = field_name,
 lookup textscrname1 = text_name1 from [*]tablecode,
 lookup textscrname2 = text_name2 from [*]tablecode;

Composite field lookups
Perform cannot do composite field lookups. An example of a composite field lookup in an
entry library program is given below. When a composite field lookup is defined, the
composite field MUST be used in the grouporder clause. The fields (in this example 'camp',
'bldg', and 'room') should NOT appear in the grouporder clause.

 screen
 {
 .
 .
 .
 [camp^bldg^room][room_desc] [room_ph]
 }
 end

 attributes
 .
 .
 .
 room_desc = tfacil_text, optional;
 room_ph = tfacil_phone, optional;
 camp = fac_camp,
 default = "MAIN", upshift,
 comments = "Campus office is located on";
 bldg = fac_bldg,
 default = "ADMN", upshift,
 comments = "Building office is located in";
 room = fac_room,
 comments = "Room number of office";
 office_key: group = (camp, bldg, room),
 lookup room_desc, room_ph joining *facil_table.tfacil_prim;

 grouporder: group = (..., office_key, ...);
 end

Optional attribute
Values may be defaulted into new record fields without the fields being displayed in the
screen. This is accomplished using the 'optional' attribute. In screens where the ID record
can be added, but the field for deceased does not need to be displayed, the following line
could be used:

Example: deceased = deceased, upshift, default="N", optional;

Locations for Forms and Detail Windows
The libentry form screens and specialized detail windows are in the modules area under progscr.
For example:

System Reference 375 Standards

ADMENTRY
$CARSPATH/modules/admit/progscr/admentry

CSENTRY
$CARSPATH/modules/develop/progscr/csentry

CTCENTRY
$CARSPATH/modules/finaid/progscr/ctcentry

IDENTRY
$CARSPATH/modules/common/progscr/identry

STUENTRY
$CARSPATH/modules/regist/progscr/stuentry

LIBRARY
$CARSPATH/modules/Lib/progscr/libentry

These locations are where customized forms and detail windows for the related program should
reside. If the program cannot locate the desired form in its corresponding progscr directory then
the LIBRARY's directory will be searched. The LIBRARY's directory holds all form and detail
window definitions that could be used by any of the entry programs. Some files in this directory
are church_1, sch_1, accomp, ctc, and dontot.

File Naming Conventions
Forms should have an underscore number appended to the base name. For example, if the
base name is 'longapp' the file names should be longapp_1, longapp_2, longapp_3, etc.. If only
one screen is needed for the form the '_1' should still be appended.

Detail windows (scroll screens) always consist of one and only one screen. The detail window
form name should NOT be appended with the '_1' convention.

Screen Field Naming Conventions:
Don't use a series of numbers for screen field names. The group order clause is easier to
change when more descriptive screen names are used.

Exception to above, detail window field names may be a series since the grouporder clause does
not use these field names directly.

Screen File: The Attribute Section:
The following conventions should be used in the attribute section:

Note: These standards can apply to PERFORM screens.

Typical attributes that are used are:
• scroll
• noentry (do not use except for "match" fields)
• noupdate
• blank
• reverse (use sparingly, someday defaulted fields)
• optional (will be highlighted with reverse attribute)
• required
• default start on a new line indent 4 spaces
• include
• upshift
• lookup/joining start on a new line indent 4 spaces
• comments start on a new line indent 4 spaces

Standards 376 System Reference

They should be used in this order. If the scroll attribute is being used and specifying many scroll
fields such that there would not be enough space on that line to also specify 'noentry', 'optional',
or 'required' as needed; then the scroll attribute should be placed on the next line indented 4
spaces.

Note: A comment line should be included on all fields, with the exception of fields that are the
result of a lookup. Lookup display fields do not need a 'comments' line. If a
'comments' line will not fit on one line then the format should be:

Example: comments=

 "Enter the Individuals Name with the following format 'Last, First M., Suffix'"

Tips for Creating Entry Screens
Note the following tips:

• A screen field name should not begin with end. When the field is defined in the attributes
section, it causes a premature end to the attributes section.

• Lookup fields should appear in the attribute section before they are used in a lookup clause.
There is a good probability that lookup fields may not be displayed on the screen; so lookup
fields should have the optional attribute specified and the attribute line defining the
occurrence of this optional field needs to occur before the lookup clause references this
field.

• When lookups are being done on a form, it does not matter whether table lookup fields are
listed in the group order clause. However in detail windows the scroll group clause must
contain all fields (including table lookup fields) that are being scrolled.

System Reference 377 Standards

ACE Report Standards

Introduction
Standards for ACE reports allow consistent reading, output, & execution ACE report files. By
establishing standards for ACE reports, both Jenzabar and the client can take advantage of the
readability and functionality consistencies. Utilization of standard macros, definitions, and
sections provide the user of the ACE source a head start in modification and enhancement.

Definitions
Note the following definitions:

• Report: A selection of data, usually from multiple files, in an organized format designed for
management data needs (e.g., Balance Sheet in the fiscal area).

• Roster: A selection of data records in a specified sorted order. There will usually be one or
two lines per record (e.g., Personnel Directory).

• Form: A standard output with very little variation between printed output copies where there
will be one data record per form. i.e. Registration form.

Access
ACE Reports are located under the 'reports' function directories under each module (eg
$CARSPATH/modules/admit/reports).

General reports used by different tracks will be located in $CARSPATH/common/reports.

Source Code: Documentation Header
The Documentation Header is the definition of what data is provided by the report and how the
report is to be used. Use the standard header; once it has been put in the report, make will
maintain the log messages.

The following is an example of the documentation header.
 {
 Revision Information (Automatically maintained by 'make' - DON'T CHANGE)
 --
 $Header$
 $$
 }

Note: If the report has changed names or source location, make sure that the previous
name/location is either mentioned in the log message or a comment entered to that
effect.

Source Code: Defined Variables, Parameters, and Functions
The Define macro includes all CX ACE functions - It must be included in each ACE report define
statement. The following functions are expanded in the REP_DEFINE macro.

REP_DEFINE
_getcars - to call environmental variables
_midstring - center a piece of text
_first_name - extract first name from id_rec name field
_full_name - extract name (First M Last) from id_rec name field
_last_name - extract last name from id_rec name field
_dashdays - use with array of days of the week
_justify - justifies 3 parts of line (left,center,right)
_formatrcs - formats RCS header, source lines
_toupper - changes lower case to upper
variable text type char length xxx
 where 'xxx' is the width of the page

Note: Other macros exist for ACE reports used with LPS and WP

Standards 378 System Reference

Source Code: Output definition
Output definition does not direct the output of the source; the script calling the report performs
this function. Use a macro for output definition.

Note: A macro exists for standard reports and for "side-ways" (110) reports. Use the
REP_FORMAT(132) for wide reports. Other macros exist for LPS and WP

The following are other macros for LPS and WP.

REP_OUTPUT
top margin 3
bottom margin 3
right margin 80
left margin 0
page length 66

REP_OUTPUT_SIDEWAYS
top margin 3
bottom margin 3
right margin 110
left margin 0
page length 51

Source Code: Read Statements (Including JOIN, WHERE clauses)
The following are standards for read statements.

• Use multiple read statements if reading fields from several files.
• Avoid sequential reads - Caused by using unindexed fields in the where clause, "<>"

conditions in the where clause, or use of "or" in the where clause.
• Avoid reading the total record - only read the fields needed in sorting and formatting.
• The individual creating the report must have a thorough understanding of the data

structures involved in the report (joins with files, etc).
• List each data element read on a separate line - this will aid in the 'make' processor

comparing source files.
• List each where clause section on a separate line.
• List each join clause section on a separate line.
• If an assign statement is used, make SURE each relation (temporary file) created has a

primary (or unique) set of tuples in it (probably include primary key in fields read).

Source Code: Sort Clauses
If sorting first by name, sort next by id_no. This sort those records with the same name.

Source Code: Report Format
The following are standards for report format. The following is an example report format.

- this includes the CARSUNIT, CARSNAME, CARSADDR
 on three lines
REP_DATE - Date, page number
REP_TIME - time
REP_HEADER_NEW(title)
- CARSUNIT
- Date, CARSNAME, Page
- Time, CARSADDR, Report Name
- Title

Header Macro: REP_HEADER
• Begin header with REP_FORMAT_WIDE if the report is 132 columns instead of 80
• The report macros can be locally customized if desired.

System Reference 379 Standards

• The main title line will be in all upper case letters. If it is not passed to the header
macro, use the midstring function to center it on the page.

• All subtitles will have the first letter of each word in upper case, the rest in lower case.
Make sure that the REP_JUSTIFY macro or the midstring function is used to center
the subtitles.

• All values passed as parameters will be printed in the header section of the report as
subtitles.

• Do not clip values in the header unless they are part of a character variable that will be
centered.

• Try to stay away from first page headers - use the generic "page header" as much as
possible.

Body
• If printing an individual's name, print the id number in the first column and sort by name

then id_no
• If numbering the individuals on the page in the left column, print the id_no in the

columns directly after the name.
• There will be macros available to condense conditions frequently used, i.e. printing

name and address, testing for second line of the address.
• Present a logical flow of clauses, for example:

before group of
on every record
after group of
on last record

• Test for (and avoid) division by 0 if there are such calculations involved.
• Print out error conditions when it is known that they exist. With "if, then" tests, use

"else" to determine what will be done if the condition is not met.
• When using multiple before and after group of clauses, list the before group of clauses

in the order in which the fields are sorted and the after group of clauses in reverse sort
order.

• Use "skip x lines" instead of multiple "print" statements for blank lines within the report.
• There is a "need" statement that can be used for line counts to insure that page breaks

occur at logical places.
• Rosters will be columnar formats.
• Summary reports will be in matrix formats.
• Numeric fields will have defined lengths, formats with "using" statements. This is

particularly the case with years and id_no. For example:

a. Id number : 'using "######"'
b. Year: 'using "####"'
c. Voucher number: "######"
d. Voucher entry number: "####"
e. Money: "--------&.&&"
f. Double: Same as money
g. GL Accounts : ff-cccc-aaaa-pppp-uuuu

• Structure of the body for indentation will follow similar standards as for C program
code. For example:

Standards 380 System Reference

col 1: format
Ctrl T: clause header (before group of, etc)
Tab: lines under clause header
Tab, Ctrl T: continuation of Tab lines
ex:
format
 before group of
 let x=0
 if () then
 begin
 end
 else if () then
 begin
 end
 let
 on every record
 if () then
 begin
 end
 else
end

Footer
• Page breaks (line counts) should occur at the end of a record, not in the middle.
• Have page totals in accounting reports

Last Page
• Include REP macros for printing location. REP_LAST_REC should appear in the on

last record clause and the REP_TRAILER macro should appear in the page trailer
clause.

• Include grand counts and column totals
• Use "------" for group totals
• Use "======" for grand totals
• Don't use subtotals if count = 1

Compilation (Translation)
Use make processor to compile ACE reports. See Using the Make Processor in CX
Implementation and Maintenance Technical Manual for more information. Test the report using
the acego filename to ensure that the report is not reading data sequentially. The menu calls a
script that will call the report and run the report using acego -q.

Note: Most commonly used script will be "runreports". This requires the formtype, filename,
parameters, and the output device or file

 ACE reports for LPS or Labels will be executed through either runletters or runlabels
that will call all the necessary processes and direct the output to the correct location.

 Those ACE reports that are compiled at execution time because they require user
input of the selection or sort criteria will be executed using "runsort". The source for
these reports will be kept in $CARSPATH/modules/<module>/commands/ as
filename.ace

Executing ACE Reports
When executing, an ACE report should not read data sequentially if indexed fields can be used.
Remember the following about the report’s output:t

• A report does not just consist of data from the files, in printed format (except when printing
tables).

• Only at the client's request and expense are "dump" reports to be written
• Use one ACE report if both a summarized output and detailed output are desired where

both reports require output meeting the same criteria

System Reference 381 Standards

Menu Definition
The individual who writes the ACE report is responsible for creating the menu option file.

Note: The menuopt file will be located in
$CARSPATH/menuopt/<module>/reports/reportname

The following is an example of an menu option.

SD=
LD=
DC=DC_PRINT DC_PATH/<module>/<subdir>/file.doc
PR=RUN_REPORTS (or RUN_SORTS, etc)
PP=
PA=-f
PP=
PA=FT_STANDARD
PP=
PA=ARC_PATH/<module>/filename
PP= {for all parameters required} Be sure to use macros in
PA= {for all parameters required} user/mnu
PP=PP_OUTPUT
PA=PA_OUTPUT
PW= (if restricting use of the report)
SP (if it is to be a scheduled process)

Testing
The following are the testing standards for ACE reports.

Jenzabar (In-house)
1. Use Quality Control Verification forms in testing; give the completed form to the Database

Coordinator when testing has been completed.
2. The individual who writes the report will be the first to test it in-house, followed by another

person who knows something about the subject matter.
3. Test first from the shell. Save output.
4. Test next from the shell using the appropriate script. Save output.
5. Test then from the menu as self. Save output.
6. Test from menu as end user. Save output.
7. Check output for aesthetics.

Beta Site Testing
1. The Account Manager and Jenzabar Coordinator will test the report at the beta site.
2. Run the 'make' processor on the report - create the local version and make using client

defined macros.
3. Verify counts and totals with INFORMER queries.
4. Test from the menu as an end user.

Client sites
Check off when the report has had the local version created and tested at the client site.
This is the joint responsibility of the Jenzabar Coordinator and the Account Manager.

Support
The following are the support standards for ACE reports.

• All standard menuopt files for reports will be provided with each release/revision of the
system and will initially be the responsibility of Jenzabar

• Anything located in the menuopt directories with the same name as a CX menuopt file may
be overwritten in the next release

• All menudesc files for reports will be the responsibility of the client

Standards 382 System Reference

Menu Option Standards

Introduction
This section describes the standards for menu option files for CX. The standards are to be used
when creating or modifying any menuopt file.

Menu Option Tags
The following describes all the valid tags which can be used within a menuopt. Some of the tags
are optional and will not be found in each menuopt. When the symbol "#" follows a tag in this
document, it denotes an integer value. All tags are upper case and the menu program expects
the tags to be used as described in this document. All tags are position independent, though this
document describes their use in a logical order.

SD
Short Description. The default value defines the short description for the menuopt which
appears on the menu. The SD tag is mandatory and only one may be defined per menuopt.
All significant words should have the first letter of the word capitalized to adhere to Jenzabar
standards.

Example: SD: optional,

 default = "Move Graduates to Alumni";

SP
Schedule Process. The default value of the SP tag contains three comma-separated values
which act as defaults for the schedule process window. The first value denotes the default
time, the second denotes the default day, and the third value of "Y" or "N" denotes the
default background process prompt. As illustrated in the following examples, the keyword
"schedtime" can be used and menu will use the value of "schedtime" as defined in
$CARSPATH/system/etc/menuparam.s. If "schedtime" is not defined in this file, MENU will
default to "1100P".

Example: SP: optional,

 default = "schedtime,,Y";

 SP: optional,

 default = "7:00P,sunday,Y";

 SP: optional,

 default = "NOW,,N";

OUTPUT
Output. The default value of the OUTPUT tag contains two comma-separated values which
act as defaults for the schedule process window. The first value denotes the default output
mode which is either "file", "more", or a valid printer. The second denotes the default file
which is only valid if the mode is "file".

Example: OUTPUT: optional,

 default = "${CARSPRINTER},",

 OUTPUT: optional,

 default = "file,outputfile",

WARN
Warning. The WARN default text will be displayed in a dialog box prior to the schedule
process window. The WARN default cannot exceed 74 characters. As illustrated in one

System Reference 383 Standards

example, WARN can be used to notify the user that the process output requires wide paper
by setting the default to the WARN_WIDE_OUTPUT macro.

Example: WARN: optional,

 default = "Execute the 'Update Stats' option first.";

 WARN: optional,

 default = "WARN_WIDE_OUTPUT";

RD#
Run Description. The default values define the run description for the menuopt. The default
values will appear in numerical order, defined by the appended integer. The appended
integer must be unique within the set of RD tags. The RD tags are optional. Within menu,
the help command (Cntrl-W) will display the run description in a box.

Example: RD1:, optional,

 default = "This option updates all the student records.";

PR
Process Run. The default defines which process to execute. It is typically either an
application program or a script. The PR tag is mandatory and only one may be defined per
menuopt.

Example: PR: optional,

 default = "RUN_PROG_INFORMER";

LU#
Look Up. The LU tag is used for table lookup. It defines the table and column which is
being looked up. The columns are displayed within the standard table lookup box. All LU#
tags must have an "optional" attribute associated with it and an associated PA# tag that
contains a lookup joining clause.

Example: LU5 = table.lookup_column, optional;

 PA5 : optional,

 ...

 lookup LU5 joining *table.column;

PA#
Prompt Answer. The default defines a possible value to pass to the process being
executed. Comments are displayed on line 24 of the terminal. The arguments are passed
to the process in the order defined by the integer appended to the PA tag. Macros should
be used for defaults, comments, and includes whenever feasible. The length, comments,
and optional attributes are mandatory for each PA tag. All the valid attributes for the PA tag
are described in the following section.

Example: PA7: optional,

 upshift,

 length 4,

 lookup LU7 joining *table.column,

 comments="COMMENT_TABLE_COLUMN. COMMENT_TBL",

 default="COLUMN_DEF";

GET_ORDER

Standards 384 System Reference

Get Order. The GET_ORDER group specifies the order the cursor will follow through the
fields on the menuopt screen. By not specifying GET_ORDER, the cursor flow will flow in a
logical order. This tag is optional and is used very seldom.

Example: GET_ORDER: group=(PA3,PA4,PA5,PA7), autonext;

Menu Option Attributes
The following reviews all the available attributes used to described the characteristics of a tag
with the menuopt screen.

optional
The optional attribute MUST be included in all tags for the menuopt screen.

length
A length MUST be specified on all PA# tags. If the tap is related to a database column, the
length must equal the column length defined in the schema. The length value can be
equated to a macro for the financial module columns where the defined length in the
schema is a macro.

Example: length GL_CNTR_LEN,

 length 40,

upshift
The upshift attribute forces all input to upper case.

dwshift
The dwshift attribute forces all input to lower case.

type
The type attribute should only be used for numerical columns (i.e., integer, double).

comments
The comments attribute MUST be defined for any PA# tag appearing on the menuopt
screen. It should be equated to a COMMENT macro if possible. If a table lookup, blank for
all, or use of wildcards are valid, then the macros COMMENT_TBL,
COMMENT_BLANK_ALL, COMMENT_WILDCARD MUST be specified respectively.

Note: The COMMENT_TBL macro should appear in any comment which the PA# tag
contains a table lookup or an include attribute.

Example: comments="COMMENT_ACAD_PROG, COMMENT_BLANK_ALL.
COMMENT_TBL",

lookup
Table lookups should be used when a valid table exists. Lookups can be forced by
preceding the table name with an asterisk, though this will still allow a blank value if not used
in conjunction with the "required" attribute.

Example: lookup LU# joining *major_table.major,

default
A default should be specified for all appropriate tags. The default should be equated to a
default macro whenever possible.

Example: default="DEF_MAJ",

include
The include attribute must be specified for tags where a lookup attribute is not specified. An
include macro should be used whenever possible. Integer ranges are valid as seen in the
following examples.

Example: ACAD_YR_INCL,

System Reference 385 Standards

 include=(1:10000),

 include=(MGRD,FGRD),

required
The required attribute forces the user to enter a non-blank value.

Example: required,

Menu Option Standards
The following describes the basic menuopt standards Jenzabar used when developing a
menuopt. The following standards were used as a guideline.

1. Database names of files and records (e.g., stu_acad_rec) will not appear in SD's, RD's
window. Instead, the complete file name will be used.

Example: student academic record

2. The letter production system (LPS) and the forms production system (FPS) will only be
referred to in the run description.

3. Normal upper/lower case conventions will be used in the runtime (RD) description text. If
information is to be emphasized, a "NOTE: " will be used. Included in the note should be
information relating to steps that must be completed prior to the current one.

Example: RD1:, optional,

 default = "This is the final step in generating student ";

 RD2:, optional,

 default = "data sheets (SDS). ";

 RD3:, optional,

 default = " ";

 RD4:, optional,

 default = "NOTE: Use formtype "sds" for SDS without billing ";

 RD5:, optional,

 default = " information. ";

4. The menupw.s file in $CARSPATH/system/etc will be used for password protection in
menusrc and menuopts. For example, to enable the password in a menuopt file:

Example: PW: optional, default="@REGIST";

5. The corresponding entry in the $CARSPATH/system/etc/menupw.s file would be:

Example: REGIST:<password>:

6. A six character alpha descriptor (e.g., REGIST) will be used with the "@" to denote the
unique item in the menupw.s file. This will replace the numbers used previously.

7. Comment lines or run descriptions will not contain the uses of "eg:", "ex:", "ie:" or "etc."
except in special cases. An example of a special case would be when illustrating how to
enter and use wildcards.

8. The COMMENT_TBL macro will be used within every comment line where space allows and
either a table lookup is performed or an include statement is indicated. Leave 1 space
between the ending of the comment and the COMMENT_TBL macro since the macro begins
with a blank space.

Example: PA4: optional,

Standards 386 System Reference

 ...

 comments="COMMENT_CLASS_YR COMMENT_TBL";

9. All prompts and prompt macros MUST be presented in column format starting in column 20
when space will allow. All prompt macros MUST be 31 characters in length, padded with
trailing periods with a minimum of 2 periods following text.

10. The Runtime (RD) description window will not contain a header or title, the text will be in
paragraph form. The run description is specified in the screen by using "RD#" (where the #
represents an integer) attributes in numerical order.

11. No special capitalization will be used in the runtime (RD) description window. Record and file
names will not be capitalized.

Example: RD1:, optional,

 default = "This is the final step in generating student ";

 RD2:, optional,

 default = "data sheets (SDS). ";

12. If another menu option is to be referenced in the body of RD text, the `m4_getoptdesc'
macro will be used to bring in the short description (SD) for that option.

Example: RD1:, optional,

 default = "This is the second step in generating class lists. ";

 RD2:, optional,

 default = "Use `m4_getoptdesc(utilities/programs/fps.reglst) '";

 RD3:, optional,

 default = "option to print the list. ";

 The `m4_getoptdesc' macro above will expand to "Print Classlists/Waitlists".

Note: Since the text returned by m4_getoptdesc is of variable length, this may cause
alignment problems within the run description since all lines within the box are
centered.

13. All menuopts screens will contain a title, which will be the same text as the short description.
The menuopt screen title MUST be capitalized. The `m4_center' macro command should be
used and it should start at column 20 to align with the menuopt prompts.

Example: screen

 {

 `m4_center(`MOVE GRADUATES TO ALUMNI',40)'

 }

14. All menuopts screen prompts should start in column 15. Whenever possible a macro should
be used for the prompt.

Example: screen

 {

 `m4_center(DETAIL,40)'

 PP_OUTPUT[PA5]

 PP_SORT_FIELD[PA7]

 PP_PERSON[PA9]

System Reference 387 Standards

 PP_FS_RAN[PA11]-[PA13]

 PP_FS_YR[PA16]

 }

15. The attributes section of the menuopt should be in standard format. All attributes should
appear in alphabetical order, one per line with blank lines between tags, and the optional
attribute should appear on the tag line. Use the "stdscr" script to automatically standardize
the attribute section of the screen.

16. The attributes LD (long description) and DC (documents) are not valid in the screen
menuopts.

Related Scripts and Menu Option Testing
This describes two scripts which aid in the development of the menuopt run descriptions. The
two scripts are "txt2rd" and "rd2txt" and they can be called from within the VI editor to assist with
developing the RD# tags. This section also explains how to test the menuopt to make sure it is
functioning properly before installing it and affecting end users.

txt2rd script
The txt2rd script will transform a block of text into the format required for a run description.
For example, within the VI editor if the following paragraph was entered:

This option will move create pledge reminders for all alumni with outstanding
pledges within the class year range specified.

By simply marking the first line as "a" and the last line as "b" by using the VI mark (m)
command, then executing the VI command ":'a,'b ! txt2rd", the above paragraph will be
substituted with the following:

RD1:, optional,
 default = "This option will move create pledge reminders ";

RD2:, optional,
 default = "for all alumni with outstanding pledges within ";

RD3:, optional,
 default = "the class year range specified. ";

rd2txt script
The rd2txt script will transform a block of RD# tags into a block of text. For example, within
the VI editor if the following RD# lines existed in a menuopt:

RD1:, optional,
 default = "This option will move create pledge reminders ";

RD2:, optional,
 default = "for all alumni with outstanding pledges within ";

RD3:, optional,
 default = "the class year range specified. ";

By simply marking the first line as "a" and the last line as "b" by using the VI mark (m)
command, then executing the VI command ":'a,'b ! rd2txt", the above section will be
substituted with the following:

Note: This option will move create pledge reminders for all alumni with outstanding
pledges within the class year range specified.

Standards 388 System Reference

Testing a Menuopt
To test a menuopt prior to installing it, use the "-o" option to MENU. All menuopts are now
program screens which are translated into a binary file. After translating a menuopt file with the
"make F=file" command, you can test the menuopt by passing the full path of the menuopt binary
file to the "-o" option of MENU. For example:

% cd $CARSPATH/menuopt/regist/others
% make F=clone
% menu -o ./clone.opt

Note: The ".opt" is required because the ".opt" denotes the translated binary file for the
menuopt. The "./" precedes the filename because a full path is required. The installed
version of a menuopt could be tested as follows:

% menu -o $OPTPATH/regist/others/clone.opt

Menu Option Examples
The following are three menuopt examples. These examples illustrate how to properly use the
menuopt tags previously described and the associated tag attributes. The first example is a
financial report, the second example is a menuopt calling the application program TRANS, and
the third example is a typical perform screen menuopt.

Menu Example 1

System Reference 389 Standards

{
Revision Information (Automatically maintained by 'make' - DON'T CHANGE)

$Header: menuopts,v 8.0 95/04/22 10:23:51 root Developmental $

}

screen
{

`m4_center(DETAIL,40)'

PP_OUTPUT[PA5]
PP_SORT_FIELD[PA7]
PP_PERSON[PA9]
PP_FS_RAN[PA11]-[PA13]
PP_FS_YR[PA16]
PP_FUND_RAN[PA17]-[PA18]
PP_FUNC_RAN[PA19]-[PA20]
PP_OBJ_RAN[PA21]-[PA22]
`m4_keepif(GL_SUBFUND_ENABLE,`Y')'
PP_SUBFUND_RAN[PA23]-[PA24]
`m4_keepend'
PP_NONDSPL_OBJ[PA25]
PP_SUBTOTAL[PA26]
}
end

attributes

SD: optional,
 default = "Detail";

SP: optional,
 default = "schedtime,,N";

OUTPUT: optional,
 default = "${CARSPRINTER},";

WARN: optional,
 default = "WARN_WIDE_OUTPUT";

RD1:, optional,
 default = "Page breaks on Object with a detail line for each Program.";

RD2:, optional,
 default = "Report can be sorted by responsible person. ";

PR: optional,
 default = "RUN_REPORTS";

PA1: optional,
 default = "-f";

PA2: optional,
 default = "FT_WIDE";

PA3: optional,
 default = "OTH_PATH/accounting/acctdtl.oth";

PA4: optional,
 default = "-DREP_OBJ_TYPE";

PA5 : optional,
 upshift,
 length 10,
 OBJ_TYPE_INCL(OBJ),
 default = "OBJ_TYPE_DEF(OBJ)",
 comments="COMMENT_OUTPUT_COL. COMMENT_TBL";

PA6: optional,
 default = "-DSORTFIELD";

PA7 : optional,
 dwshift,
 length 4,
 include=(prim,sec," "),
 comments="COMMENT_SORT_FLD";

PA8: optional,
 default = "-DREP_WANT_NORESP";

Standards 390 System Reference

PA9: optional,

 comments = "COMMENT_RESP_PER",
 default = "Y",
 LOGICAL_INCL,
 length = 1,
 upshift;

PA10: optional,
 default = "-DREP_FISCAL_PRDBEG";

PA11: optional,
 comments = "COMMENT_FS_CODE_BEG. COMMENT_TBL",
 default = "FS_CODE_DEF",
 FS_CODE_INCL,
 length = 4,
 required,
 upshift;

PA12: optional,
 default = "-DREP_FISCAL_PRD";

PA13: optional,
 comments = "COMMENT_FS_CODE_END. COMMENT_TBL",
 default = "FS_CODE_DEF",
 FS_CODE_INCL,
 length = 4,
 required,
 upshift;

PA14: optional,
 default = "-DREP_ATYPE";

PA15: optional,
 default = "BGT";

PA16: optional,
 comments = "COMMENT_FS_YR. COMMENT_TBL",
 default = "FS_YR_CUR",
 include = (FS_YR_VALID),
 length = 4,
 type integer;

LU17 = fund_table.txt, optional;

PA17: optional,
 comments = "COMMENT_FUND_BEG. COMMENT_TBL",
 default = "BEG_FUND",
 length = GL_FUND_LEN,
 lookup LU17 joining *fund_table.fund;

LU18 = fund_table.txt, optional;

PA18: optional,
 comments = "COMMENT_FUND_END. COMMENT_TBL",
 default = "END_FUND",
 length = GL_FUND_LEN,
 lookup LU18 joining *fund_table.fund;

LU19 = func_table.txt, optional;

PA19: optional,
 upshift,
 comments="COMMENT_CNTR_BEG. COMMENT_TBL",
 default = "BEG_FUNC",
 lookup LU19 joining *func_table.func,
 length GL_FUNC_LEN;

LU20 = func_table.txt, optional;

PA20: optional,
 upshift,
 comments="COMMENT_CNTR_END. COMMENT_TBL",
 default = "END_FUNC",
 lookup LU20 joining *func_table.func,
 length GL_FUNC_LEN;

LU21 = obj_table.txt, optional;

PA21: optional,
 upshift,
 comments="COMMENT_ACCT_BEG. COMMENT_TBL",
 default = "BEG_OBJ",
 lookup LU21 joining *obj_table.obj,
 length GL_OBJ_LEN;

System Reference 391 Standards

LU22 = obj_table.txt, optional;

PA22: optional,
 upshift,
 comments="COMMENT_ACCT_END. COMMENT_TBL",
 default = "END_OBJ",
 lookup LU22 joining *obj_table.obj,
 length GL_OBJ_LEN;

LU23 = subfund_table.txt, optional;

PA23: optional,
 upshift,
 comments="COMMENT_PROJ_BEG. COMMENT_TBL",
 default = "BEG_SUBFUND",
 lookup LU23 joining *subfund_table.subfund,
 length GL_SUBFUND_LEN;

LU24 = subfund_table.txt, optional;

PA24: optional,
 upshift,
 comments="COMMENT_PROJ_END_BLANK",
 default = "END_SUBFUND",
 lookup LU24 joining *subfund_table.subfund,
 length GL_SUBFUND_LEN;

PA25: optional,
 default = "Y",
 include = (Y,N,O),
 comments="COMMENT_NONDSPL_OBJ",
 length = 1,
 upshift;

PA26: optional,
 comments = "COMMENT_SUBT_SCHGRP",
 default = "N",
 include = (S,G,N),
 length = 1,
 upshift;

end

Menu Example 2

Standards 392 System Reference

{

 Revision Information (Automatically maintained by 'make' - DON'T CHANGE)

$Header: menuopts,v 8.0 95/04/22 10:23:51 root Developmental $

}
screen
{

 `m4_center_clipped(CREATE/EDIT TRANSCRIPTS,40)'

 `m4_center_clipped(PP_NO_PARMS, 40)'

}
end

attributes

SD: optional,
 default = "Create/Edit Transcripts";

RD1: optional,
 default = " Functions: ";

RD2: optional,
 default = "";

RD3: optional,
 default = " Print Unofficial Transcript";

RD4: optional,
 default = " Create a Transcript ";

RD5: optional,
 default = " Edit a Transcript ";

RD6: optional,
 default = " Update Student Statistics ";

PR: optional,
 default = "BIN_PATH/trans";

PA1: optional,
 default = "-f";

PA2: optional,
 default = "MORE";

PA3: optional,
 default = "-L";

PA4: optional,
 default = "${CARSSITE}";

PA5: optional,
 default = "-e";

end

Menu Example 3

System Reference 393 Standards

{

Revision Information (Automatically maintained by 'make' - DON'T CHANGE)

$Header: menuopts,v 8.0 95/04/22 10:23:51 root Developmental $
 --

}

screen
{

 `m4_center_clipped(CAMPAIGN/APPEAL/DESG,40)'

 `m4_center_clipped(PP_NO_PARMS, 40)'

}
end

attributes

SD: optional,
 default = "Campaign/Appeal/Desg";

RD1: optional,
 default = "All campaign records, any appeals associated with the campaign,";

RD2: optional,
 default = "and all designation records are available through this screen. ";

PR: optional,
 default = "RUN_SCREENS";

PA1: optional,
 default = "FRM_PATH/develop/campaign";

end

Standards 394 System Reference

Programming Style, Standards, and Conventions

Introduction
The purpose of the Programming Style, Standards, and Conventions is to set several standards
and conventions for use when developing software to improve subsequent maintenance and
enhancements. This set of standards should be appropriate for any project using C.

Note: While these standards are not all inclusive, when unusual situations arise, you should
consult experienced C programmers or code written by them which follows these rules.

 This section was initially created for internal Jenzabar use and assumes that the
reader has some knowledge of programming and the C language.

Design Guidelines
The optimal approach to software design and development at Jenzabar requires that the
developer work with resources from product services to define the requirements and
specifications for the development project. Whenever possible, the project requirements are
provided by an individual (usually the product manager) who has in-depth understanding of the
client environment in the product area undergoing modification.

The programmer/analyst or project leader will then work from the requirements to produce
program specifications. The project leader and product manager should work closely together
throughout the project to ensure that requirements are met and to resolve together any
unforeseen problems and issues.

The most important aspect of program design is to get ongoing feedback from knowledgeable
persons throughout the process.

Program Design
An essential part of design for most larger projects is the creation or modification of the entity-
relationship diagram (ERD). These will be maintained on the PC network under the users/dev
directory. In this directory, there are subdirectories for each module area. The ERD's should be
stored under the appropriate area.

• A design directory should be created under the program-specific source directory on the
UNIX system. For example, design notes and specifications for the "grading" program
should be stored under $CARSPATH/src/regist/grading/DESIGN. This design directory
contains program and function specifications deemed to be necessary and helpful by the
project leader/analyst.

• A testing directory should be created under the program specific source directory on the
UNIX system as well. This directory will contain program-specific testing scenarios. Whole
modules testing (setup scripts and scenarios) will be stored and maintained under RCS in a
<modulename>/TESTING subdirectory.

Each program testing directory will contain, at a minimum a testing scenario describing:
• Where the program is located on the menu
• How to load the program
• How to exit the program

The testing directory should contain instructions or scripts to initialize the program environment
so a new user will have permissions to execute the tests described in the test scenarios.

Use of Standard CX Functions
Many of the functions that are normally common across applications are already defined in a
standard CX library. If you need a particular function but can't find it in the standard libraries, ask
others if such a function already exists. Should you find yourself in a position of having to code a

System Reference 395 Standards

function you feel might be widely useful, talk to someone in the systems/utilities group about the
feasibility of having this new function added to an existing library.

Also, don't underestimate the usefulness of reviewing existing code for use of standard functions,
such as: param_parse, esql_server, esql_init, prog_init, scr_init, etc. Most application programs
are uniform in their inclusion of certain standard functions.

In addition to using functions already defined in $CARSPATH/Cislib or $CARSPATH/Lib, do use
application libraries wherever feasible for functions that may be needed across programs but
within modules areas.

Use of Transaction Processing
Any program that updates several records that are interdependent must use transaction
processing to ensure data integrity. For example, if a process must create a master and detailed
set of records that describe a transaction, the program must be designed so that these records
either all get successfully written, or none are written.

A transaction should be as small as possible while still maintaining the integrity of the related
records. A transaction should never include any user input or request for user input within it; this
ensures that the length of the transaction will be determined only by machine time to execute the
transaction.

Audit on Summary Fields
Any module that contains summary fields in the database should have an audit program that
validates the values stored in those summary fields. The audit program should review the detail
records that support the summary fields, identify any discrepancies, and optionally correct in the
database any incorrect summary values.

ESQL Guidelines
Any file that uses ESQL must have a ".ec" extension. Such files are preprocessed before going
to the C compiler. Some things to keep in mind when using ESQL are:

• Any program that uses ESQL statements must call esql_init in its initialization sequence;
this ensures, that money types will be properly handled.

• Any program that uses libscr should call esql_server function on all files to initialize the
dbview structures needed by the screen package.

• Always use sqldec.m4 macros for specific field name lists; don't do a select * from table.

Program Arguments
Program arguments are passed using a dash followed by a letter, followed optionally by a value.
If no value is given, the option acts as a turn on/off feature in the program. The library function,
param_parse should always be used to parse program arguments and to store the argument
values in specified variables. If param_parse should fail, param_usage should always be called
to provide a usage message to standard output.

Note: Jenzabar recommends that, whenever possible, the use of parameters should be
independent of one another. Try to avoid a situation where if one parameter (that is
optional) is specified, another parameter (also optional) must be specified. The usage
message is normally of no help for the user here, and such usage can be frustrating
and confusing.

General Guidelines for Program Arguments
There are several program arguments whose letter identifier is standard across applications. The
argument are as follows:

• -d display only (logical)

Standards 396 System Reference

• -d [date]
• -i [ID or ID string]
• -L [site]
• -p program
• -s [session]
• -T [tick code]
• -u [update
• -y [year]

Program Arguments for Entry Programs
Entry programs use the same basic set of program arguments. This set of arguments can be
found in the def.c of any entry program. They include:

• -o [office added by]
• -m [default menu screen]
• -f [name of desired form to invoke, instead of menu]
• -t [today's date, or effective date]
• -P [path for screens]
• -a auto mode (logical)
• -F force query (logical)
• -M [menu title]
• -q allows additional query restrictions (logical)
• -D [debug level]
• -S [pause level]

Naming Conventions
It is important to be consistent in naming programs, files, functions, and variables to increase
understand-ability and ease of maintenance.

Program Names
Program names should be 10 characters or less in length. Data entry type programs that do
NOT use libentry should end in "ent" (such as crsent, regent, etc). Data entry programs that
do use libentry should end in "entry" (such as stuentry, csentry, identry, etc). The name you
give a program will be around a long time, so select something that is intuitive and simple.

File Name Length and Suffixes
The source files in the system, in general, will be 10 characters before any "dot" extension
(or suffix) is added. This is to allow our code to exist on systems that have a 14 character
filename limitation. Also, some UNIX programs require certain suffix conventions for names
of files to be processed. The following list includes the most common file suffixes:

• Include header file names end in .h
• ESQL source file names must end in .ec
• C source file names that contain no ESQL code must end in .c
• Relocatable object file names end in .o

Header Files
Header files are files that are included in other files before compilation by the C
preprocessor. Some are defined at the system level such as stdio.h which must be included
by any program using the standard I/O library. Header files are also used to contain data
declarations and defines that are needed by more than one program. Do not use absolute
pathnames for header files. Use the <name> construction for getting them from a standard
place, or define them relative to the current directory with "name" (this is seldom done). The
contents of header files should be functionally organized, i.e., declarations for separate
subsystems should be in separate header files. Also, if a set of declarations is likely to

System Reference 397 Standards

change when code is ported from one machine to another, those declarations should be in a
separate header file or conditionally compiled in/out with "#if*" & "#endif" statements.

C Source Files
Suffixes of .c are required for C source files that have no ESQL statements. This is
expected by the C compiler, cc. It is expected that any filename that contains this suffix can
be compiled. Any file that includes ESQL statements must have a .ec extension. Any file
with this extension will be processed by the ESQL preprocessor which results in creation of
a .c file, which will be processed by the C compiler.

Note: Application programs will probably be made up of more than one source file.
When combining functions into source files, group them according to similar
purpose. For example, one might include initialization routines into the file
named init.c, the mainline program in the main.c file, etc.

Object Files
Filenames containing .o are the object output from the C compiler. These files are linked
together with the loader, ld, to form executable programs.

Variable Naming Conventions
Individual projects may have their own naming conventions. There are, however, some general
rules to be followed.

• Initial and trailing underscores should not be used for any user-created names. UNIX uses
leading underscores for names that the user should not have to know (like the standard I/O
library). This convention is reserved for system purposes. Also note that the major CX
library routines use a 3 character library name as their prefix (eg scr, dmm, ptp, etc).

• Macro names and define names should be in all capital letters
• typedef names should begin with capitals and continue with lower case letters
• Variable names, structure tag names, and function names should all be in lower case
• Variable names should be meaningful and readable. Avoid single character variable names

with the possible exception of generally assumed loop indexes (eg, i, j, k). Use embedded
underscores to delineate "words" in the name.

Function Names
Within an application, functions should be named in a consistent manner so that functions of
similar purpose are similarly named (for example, all sort functions to end in "cmp", all get
functions to begin with "get").

Functions defined in application libraries should follow this naming standard: if the function is to
be available for use outside the library, prepend the function name with a 3 character library
identifier and an underscore (for example, a function available to the registration applications
from Libreg would begin with "reg_"; if the function is only to be used within the library, it should
begin with an underscore.

Common CX Files for Program Development
Several files are included in virtually all application programs. These include the macro file,
definition file, declaration file, make files, include files, and source files.

Macro file (mac.h)
The mac.h file contains preprocessor include and define statements, typedef statements,
and structure template definition (not allocation) statements. Any macro substitution defines
should be put here. These include numeric and character constant substitution (e.g., return
error codes, statuses, etc.) as well as functional type macros (e.g., combining frequently
used patterns into single macros). In addition to preprocessor statements, declarations of
structures can be placed in this file. These declarations do not allocate the structures with
names, they just define what the structure looks like. You may include various database

Standards 398 System Reference

record "mac" files here as well as others. Use C comments to describe and delineate these
various items in mac.h. This file is included in all source files during compilation via the
dec.h file (see below).

Definition File (def.c)
The def.c file contains the declaration of (external) variables (including structures) that are to
be available to all source files in the program. These variables can be initialized in this file
as well. As with other C source, good use of comments and white space is encouraged to
improve readability. The def.c file also includes mac.h and other appropriate database
record "def" files. This file is utilized by the "makedec" command to create the dec.h file
(see below).

Declaration File (dec.h)
The "makedec" command creates the dec.h file from the def.c file. The execution of this
command is usually done within the make procedures in the source directory. Initializations
are stripped and extern class is prepended to all variables. Inclusion of "def" files is modified
to be an inclusion of appropriate "dec" files. This file should be included by the preprocessor
in all C program source files.

Make Files
The UNIX Make processor is a program that utilizes dependencies specified in a "Makefile"
and file modification times to perform actions such as compiling, loading, and installing
programs. The use of makefiles for programs has provided an effective means of ensuring
that the proper compilations are performed subsequent to changes that affect programs.

Include Files
Include files can be used to centralize information that multiple files will use. This aids in
keeping that information up to date.

These files may also include compiler directives. It is recommended that compiler options
that enable/disable program functionality not be used if at all possible. Such options make
testing of various options more difficult and time consuming, since re-compilation is
necessary to enable the options. Program arguments or table values should be used
instead of compiler options wherever possible. If compile options are used, they should be
driven by m4 macro definitions given in ENABLE type of macros.

Also, it is recommended that ccp macro values that are available for change by the user in
include files be given by m4 macro values. The goal is to allow the user to make their
desired modifications to these values by modifying an m4 macro file (under
$CARSPATH/macros) rather than an include file (under $CARSPATH/include). Therefore a
define in an include file might look like:

Example: #define REG_TICK "REG_TICK_CODE"

 where REG_TICK_CODE is a macro defined in the macros directory.

System Reference 399 Standards

Application include files are located in include/applic subdirectory. The include/util directory
contains system and proprietary library includes. The include/custom directory is being
phased out, to be replaced by the include/applic directory.

Any library include files must include ANSI function declarations. All include files designed
to be installed in $INCPATH and included by other libraries and applications will have an
ANSI function declaration section that will declare ANSI prototypes for any function to be
used by other programs or libraries. The ANSI section will be separated from the rest of the
library with an __STDC__ ifdef, as in the following example:

#ifdef __STDC__
int msg_add(int, char *);
int msg_clear(int);
int msg_dmmerr(struct dmm *);
int msg_errhandle(int, int, ...);
int msg_fprint(int, FILE *);
int msg_get(int, char *);
int msg_mqueue(int);
int msg_namgrp(int, char *);
int msg_number(int);
int msg_nextgrp(void);
int msg_print(int, char *);
int msg_progname(char *);
int msg_sendmail(char *, char *, char *);
int msg_debug(char *, char *, ...);
#else /* pre-ansi function declarations */
void msg_progname();
endif /* __STDC__ */

Building a Make File
A Makefile is a text file containing targets, dependencies, and actions. In general, the action is
performed when a dependency of the target has a newer modified time than the target.
Makefiles are created for all CX programs (using 'Makefile' not 'makefile' for the name of the
control file). This allows a programmer to make changes to a several source files and not have to
worry about keeping track of those changes for compilation. When a file is changed, its modified
time is updated. This implies that the source would then be newer than the object file. Make will
cause the action to generate an object from the source, typically, a call to compile the source.
Once the object is updated, it is newer than the executable program, therefore the action for
creating an executable program will be done. This usually takes the form of linking all the objects
into the program. Make is not limited to program compilation. Other targets and actions can be
specified which will print source files, run the lint command, archive source into RCS format, and
much more.

When new sources or directories are created and a makefile is desired, the "makeinit" command
will create the makefile. This command will default to creating a makefile for a program, but can
be given an argument to specify some other type of makefile.

Source File Organization
A file consists of various sections that should be separated by one or more blank lines. Although
there is no maximum length requirement for source files, files with more than 800 to 1000 lines
are cumbersome to deal with. Compilations will go slower, edit time and search time is slower,
etc. Also, lines longer than 80 columns do not print normally on 8.5 inch paper and should be
avoided. Excessively long lines which result from deep indentation are often a symptom of
poorly-organized code.

Standards 400 System Reference

The suggested order of sections for a file is as follows:
• The standard CX header should be the first thing in the file. A description of the purpose of

the routine(s) in the file (whether they be functions, external data declarations or definitions,
or something else) is more useful than just a list of the object names.

• Any header file includes, such as dec.h , should follow the header
• Any additional defines and typedefs that apply to the file as a whole are next (most of these

should probably be in the mac.h file)
• Any additional variable definitions/declarations (most of these will be in the mac.h file)
• The function(s) come last. They should be in some sort of meaningful order. Top-down is

generally better than bottom-up, and a breadth-first approach (functions on a similar level of
abstraction together) is preferred over depth-first (functions defined as soon as possible
after their calls).

General Coding Structure Rules
The following provides general guidelines on comments, arrangement of code, dealing with
constants and expressions, and other issues related to coding appearance and structure.

Indentation
CX relies on vi as the primary editor for source and text files. This editing environment allows the
use of the TAB and control-T sequence for indenting text lines. The standard tab stops are
module 8 (9, 17, 25, etc). The control-T sequence allows indentations to be module 4. In the
following discussion, indentation columns will be based on every four, combinations of control-T
and/or TAB (this can be modified in vi) using 'set sw=??'

Braces
As a general rule, opening braces will be alone on the following line indented 4 after the first
character of the compound statement, structure definition, control structure, etc. The closing
brace will be in the same column as the opening brace, and typically, be alone on a single line as
well. Statements on intervening lines will be lined up between the braces.

White Space
Good use of white space (blank lines, tabs, etc) results in code which is more readable and
easier to understand. The structure of the code can also be "diagrammed" by proper indentation
and white space. Jenzabar recommends that you use these improvements in all source code
you write.

Comments
There are three types of comments that should be utilized - block comments, comments within
code, and comments appended to statements.

Comments that describe blocks of code, data structures, algorithms, etc., should be in block
comment form with the opening /* in column one, followed by a space and 5 hyphens. The
closing comment is similar with the 5 hyphens first, followed by a space, and the */ in column 7
and 8. Additional emphasis could be specified with an 80 column row of hyphens, but this is
usually not necessary.

System Reference 401 Standards

/* -----
 Here is a block comment.
 The comment text should be tabbed over
 and the opening and closing slash, asterisk, hyphens
 combinations should each be alone on a line.
----- */

As a position alternative, block comments inside functions may be indented to four columns less
than the code they describe, however this is not required. Short comments may appear on a
single line indented over to the tab setting of the code that follows.

if (argc > 1)
 {
 /* Get input file from command line. */
 if (freopen(argv[1], "r", stdin) == NULL)
 error("can't open '%s'", argv[1]);
 }

Very short comments may appear on the same line as the code they describe, but should be
tabbed over far enough to separate them from the statements. If more than one short comment
appears in a block of code they should all be tabbed to the same tab setting.

if (a == 2)
 return(TRUE); /* special case */
else
 return(isprime(a)); /* works only for odd a */

Compound Statements
Braces ({ and }) are used to group declarations and statements together into a compound
statement or block so that they are syntactically equivalent to a single statement. The opening
left brace and the closing right brace should each be alone on single lines, indented 4 columns
passed the beginning of the compound statement. The enclosed list should be lined up with the
opening and closing braces.

if (expr)
 {
 statement;
 statement;
 }
else
 {
 statement;
 statement;
 }
for (i = 0; i < MAX; i++)
 {
 statement;
 statement;
 }
while (expr)
 {
 statement;
 statement;
 }

It is possible to have a need for an empty loop body in for and while control structures. If this
occurs, it should be stated explicitly by using a comment before the semicolon on the line after
the statement. For example:

Standards 402 System Reference

for (i=0; (c = getchar()) != EOF; putchar(c), i++)
 /* null */;
while (more_to_do())
 /* null */;

do
 {
 statement;
 statement;
 } while (expr);

The do-while control structure contains an exception to the standard closing brace rule because
the resulting while portion would cause confusion. Therefore the while follows the closing brace
for the do-while control structure.

switch (expr)
 {
 case ABC:
 case DEF:
 statement;
 break;
 case XYZ:
 statement;
 break;
 default:
 statement;
 break;
 }

Note: When multiple case labels are used, they are placed on separate lines. The case
statements also follow the general indentation rule and begin in the same column as
the opening and closing braces. The non- case statements are indented an additional
4 columns.

 The fall through feature of the C switch statement should rarely if ever be used when
code is executed before falling through to the next one. If this is done it must be
commented for future maintenance.

Long Lines
Breaking long lines to less than 80 columns and keeping things readable is sometimes difficult.
The following rules should help:

• Break after for loop semicolons
• Break after function argument parameter commas
• Break after if logical operators
• Any remaining situations, break after operators with low expression precedence
• Long printf format strings can be put on the left wall if absolutely necessary

You may handle the remaining portion of long lines by a few different methods. If that portion is
just a few characters, it might be desirable to right justify it near the end of the previous line.
Otherwise, standard indentation applies. Additionally, loop segments might be broken on
semicolons and indented an additional 4 columns for each segment on the following line. For
example:

System Reference 403 Standards

if (status = find_routine(target_buffer, length, string_to_search,
 search_length);
 {
 ...
 }
for (dmm_start(&id_table_dmm);
 pid_type = (struct id_type *)dmm_getp(&id_table_dmm);
 dmm_next(&id_table_dmm))
 {
 ...
 }

Expressions and Constants
The following are standards for expressions and constants.

Expressions
The preferred use of operators is +=, =, *=, etc. In general, all binary operators except . and
> should be separated from their operands by blanks. Some complex expressions may be
clearer if the 'inner' expressions are enclosed in parentheses and/or are not blank
separated. In addition, C statement keywords that are followed by expressions in
parentheses should be separated from the left parenthesis by a blank.

Blanks should also appear after commas in argument lists to help separate the arguments
visually. On the other hand, macros with arguments and function calls should not have a
blank between the name and the left parenthesis. In particular, the C preprocessor requires
the left parenthesis to be immediately after the macro name or else the argument list will not
be recognized. Unary operators should not be separated from their single operand. Since
C has some unexpected precedence rules, all expressions involving mixed operators should
be fully parenthesized.

a += c + d;
a = (a + b) / (c * d);
strp>field = str.fl - ((x & MASK) >> DISP);
while (*d++ = *s++)
 /* NULL */;

Constants

Standards 404 System Reference

Use numerical constants only when the numeric value is actually the intent of the usage.
Use the define feature of the C preprocessor to substitute meaningful names to the intended
numeric value. This will also make it easier to administer large programs since the constant
value can be changed uniformly by changing only the define. These constant declarations
should occur in the mac.h or, if available for change by the user, in the application's include
file. The enumeration data type is an alternative way to handle situations where a variable
takes on only a discrete set of values, since additional type checking is available through lint.

There are some cases where the constant 0 (zero) may appear as itself instead of as a
define. For example if a for loop indexes through an array:

for (i = 0; i < ARYBOUND; i++)
 ...

The code does not.

fptr = fopen(filename, "r");
if (fptr == 0)
 error("can't open %s", filename);

In the last example the defined constant NULL is available as part of the standard I/O
library's header file stdio.h and must be used in place of the 0 (zero).

if (fptr == NULL)

Avoid character constants as well. If a particular character field can have a few specific
values, define meaningful names for those values and use them in the code. The result will
improve readability and maintainability.

Syntax Changing
Don't change syntax via macro substitution. It makes the program unintelligible to all but the
perpetrator.

Embedded Assignments
There is a time and a place for embedded assignment statements. The ++ and -- operators
count as assignment statements. So, for many purposes, do functions with side effects. In some
constructs there is no better way to accomplish the results without making the code bulkier and
less readable. An appropriate example would be the following common code segment:

while ((c = getchar()) != EOF)
 {
 process the character
 }

Using embedded assignment statements to improve run-time performance is also possible.
However, one should consider the tradeoff between increased speed and decreased
maintainability that results when embedded assignments are used in artificial places. For
example:

a = b + c;
d = a + r;

The code should NOT be replaced by the following even though the latter may save one cycle.

System Reference 405 Standards

d = (a = b + c) + r;

Note: In the long run the time difference between the two will decrease as the optimizer
gains maturity, while the difference in ease of maintenance will increase as the human
memory of what's going on in the latter piece of code begins to fade. Note also that
side effects within expressions can result in code whose semantics are compiler-
dependent, since C's order of evaluation is explicitly undefined in most places.
Compilers do differ.

Ternary Operator
There is also a time and place for the ternary (? :) operator and the binary comma operator. The
logical expression operand before the ? : should be parenthesized:

(x >= 0) ? x : x

Nested ?: operators can be confusing and should be avoided. There are some macros like
getchar where they can be useful. The comma operator can also be useful in for statements to
provide multiple initializations or re-initializations.

GoTo Statements
Goto statements should seldom be used. One acceptable use of the goto is in the main function
when there is need of going to an error processing section of code before exiting the program.
The use of the goto in the case where there is need to break out of several levels of switch, for
and while nesting might indicate that the inner constructs should be broken out into separate
functions with return codes.

Variable Definitions and Declarations
Each variable declaration should be on a separate line with a comment describing the role played
by the variable in the function. If the variable is external or a parameter of type pointer which is
changed by the function, that should be noted in the comment. All such comments for
parameters and local variables should be tabbed (or control-T) so that they line up underneath
each other. At least one blank line (and probably, two) should separate the declarations from the
function's first executable statement.

Variable declaration statements follow the general indentation rule by being indented 4 columns
more than beginning of the declaration statement.

For structure and union template declarations, each element should be alone on a line with a
comment describing it. The opening and closing braces should be alone on individual lines in
accordance with the general rule. The standard statement indentation applies, also. In addition,
it is recommended that tabs and control-T's be used to separate the member name from the
member type so that the names are aligned. For example:

Standards 406 System Reference

/* -----
 defines for boat.type
----- */
#define KETCH 1
#define YAWL 2
#define SLOOP 3
 ...
struct boat
 {
 int wl_length; /* water line length in feet */
 int type; /* see below */
 };

These defines may also be put right after the declaration of type, within the struct declaration,
with enough tabs and control-T's after # to indent define 4 columns more than the structure
member declarations.

struct boat
 {
 int wl_length; /* water line length
 in feet */
 int type; /* boat type and values */
define KETCH 1
define YAWL 2
define SLOOP 3
 };

When initializing structures the opening brace and closing brace and semicolon should appear on
individual lines. The member values should be indented to the respective member level and also
be one per line (indented additionally if more than one line is needed). If initializing a previously
specified template structure the equal sign follows the variable name and structure tag name on
the declaration line. Otherwise, the equal sign follows the variable name on the same line with
the closing brace (vertically matches opening brace).

Variable type grouping of declarations should be used to improve readability. This grouping is
from most to least significant type specification and separated by blank lines. For example:

struct pencil_type assoc; /* desc here */
struct telephone it; /* desc here */
struct terminal wyse; /* desc here */
double desksize = 63.5; /* desc here */
float lighter_than_air; /* desc here */
float ing_point; /* desc here */
int i; /* desc here */
int j; /* desc here */

The tabs between the type and the name are optional in a large list because the blank lines help
the reader. However, in short lists using few or no blank lines, or in template declarations, the
tabs or control-T's are recommended. Also, if storage class specification is used, tabs or control-
T's may be utilize to enhance the appearance of the declarations.

Constants used to initialize long type variables should be explicitly long using the trailing capital
letter L. It also follows that floating point and double constants should be initialized explicitly with
a decimal point even if the value is whole (eg 1.5 3.0 4.2).

In any file which is part of a larger whole rather than a self-contained program, local variable and
functions should be explicitly declared as such by using the static storage class keyword. If there
is a clear need for the variable to be accessed from another file, the variable definition should be
moved to the def.c file.

Function Definition
Function headers, length, return values and variable declarations should follow standard
guidelines.

System Reference 407 Standards

Function Header
Each function should be preceded by a block comment called a function header comment that
provides a summary description of the function's purpose. The format of the header is:

/* -----
===
Procedure: <procedure name>
Description: <brief description of the function's purpose>
Inputs: <arguments to the program and accompanying description;
 also considered inputs are globally referenced variables>
 example:
 stucw - passed student structure buffer
 stu.tot_reg - globally referenced total hours reg'ed.
 stu.tot_aud - globally referenced total hours audited.
Returns: <list of ALL possible return values from function and what
 each means>
 example:
 REG_OK - no errors
 REG_ERR - student prog_enr_rec not found
 REG_FAIL - fatal error.
Outputs: <list any inputs whose value has been changed by this
 function>
 example:
 stucw
 stu.tot_reg
 stu.tot_aud
Notes: <any unusual issues in the function that should be
 especially noted>
===
----- */

Properly creating and maintaining the function headers is a significant help in program
maintenance and clarity. It can also assist in the development process by forcing the developer
to clarify the function's purpose and how it relates to other functions.

Function Return Types and Parameters
If the function returns a type of value other than "int", then its declaration should proceed the
function name. If the function does not return a value then it should be given the return type of
"void". If the value returned requires a long explanation, it should be given in the function header;
otherwise it can be on the same line as the declaration after the formal parameters. Each
parameter should be declared (do not default to "int"), with a comment on a single line.

Function Variable Declarations
The opening brace of the function body should be alone on a line beginning in column 1. All local
declarations and code within the function body should be indented 4 columns. If the function
uses any external variables (other than those in the dec.h or in the top of the file), these should
have their own declarations in the function body using the extern keyword. If the external
variable is an array the array bounds should be repeated as a comment on the declaration.
There should also be extern declarations for all functions called by a given function (other than
those in the dec.h or in the top of the file). This is particularly beneficial to someone picking up
code written by another. If a function returns a value of type other than int, it is required by the
compiler that such functions be declared before they are used.

A local variable should never be redeclared in nested blocks. In fact, avoid any local declarations
that override declarations at higher levels. Local variables within blocks, other than at the
beginning of functions, may cause trouble with the symbolic debuggers.

Function Length
Functions will differ in length as they are diverse in purpose. However, a function should
generally be one to two pages in length and probably never be longer than three to four pages.
Lengthy functions become hard for the reader to follow. Execution structure is not as obvious
and will be confusing. Therefore, keep the functions small.

Standards 408 System Reference

Function Endings
All functions will be non-brace terminated. Main line programs will terminated with an exit call
and functions will terminated with a return call. The only exception to this is if the routine is
terminated other than at the bottom. In this case, the intent should be commented and indicated
at the bottom of the routine before the final closing brace.

Functions and Macros
Care is needed when interchanging macros and functions since functions pass their parameters
by value whereas macros pass their arguments by name substitution. This difference also
means that carefree use of macros requires care when they are defined. Remember that
complex expressions can be used as parameters, and operator-precedence problems can arise
unless all occurrences of parameters in the definition have parentheses around them. There is
little that can be done about the problems caused by side effects in parameters except to avoid
side effects in expressions (a good idea anyway).

The following examples illustrate some of these points.

skyblue(hour)
int hour;
{
 if (hour < MORNING || hour > EVENING)
 return(FALSE); /* black */
 else
 return(TRUE); /* blue */
}

In the above example, the dec.h file defines MORNING, EVENING, FALSE, and TRUE. NODE
and NULL are defined in the dec.h file in the following example. Note, that NULL is defined in the
standard include file stdio.h. CX takes advantage of this by including stdio.h in the dec.h file.

NODE *tail(nodep)
NODE *nodep; /* pointer to head of list */
{
 register NODE *np; /* current pointer advances to NULL */
 register NODE *lp; /* last pointer follows np */
 np = lp = nodep;
 while ((np = np->next) != NULL)
 lp = np;
 return(lp);
}

Portability
The advantages of portable code are well known. This section gives some guidelines for writing
portable code, where the definition of portable is taken to mean that a source file contains
portable code if it can be compiled and executed on different machines with the only source
change being the inclusion of possibly different header files. The header files will contain defines
and typedefs that may vary from machine to machine. The following is a list of pitfalls to be
avoided and recommendations to be considered when designing portable code:

Separate Portable and Non-Portable Code
First, one must recognize that some things are inherently non-portable. Examples are code to
deal with particular hardware registers such as the program status word, and code that is
designed to support a particular piece of hardware such as an assembler or I/O driver. Even in
these cases there are many routines and data organizations that can be made machine
independent. Jenzabar suggests that you organize the source file so that the machine-
independent code and the machine-dependent code are in separate files. Then if you move the
program to a new machine, it is a much easier task to determine what you need to change. It is
also possible that code in the machine-independent files may have uses in other programs.

System Reference 409 Standards

Avoid Dependence On Word Sizes.
The following describes general minimum and maximum sizes that should be expected of C
types. These rules are not hard and fast, just rules of thumb.

type minimum maximum low numeric high numeric
short 8 16 +/-127 +/-32767
int 16 32 +/-32767 +/-2147483647
long 32 32 +/-2147483647 +/-2147483647

Note: The C type char has not been included because numerics should not be maintained in
char type variables. Any unsigned type other than plain unsigned int should be
typedefed, as such types are highly compiler-dependent. This is also true of long and
short types other than long int and short int. Programs will have a central header file
(mac.h) which supplies typedefs for commonly-used width-sensitive types, to make it
easier to change them and to aid in finding width-sensitive code. If a simple loop
counter is being used where either 16 or 32 bits will do, then use int, since it will get
the most efficient (natural) unit for the current machine.

 Beware of making assumptions about the size of pointers. They are not always the
same size as int. Nor are all pointers always the same size, or freely interconvertible.
Pointer-to-character is a particular trouble spot on machines which do not address to
the byte.

Specific Bit Representation
Word size also affects shifts and masks. For example:

Example: x &= 0177770

The above clear only the three rightmost bits of an int on a PDP11. On a VAX it will also clear
the entire upper half word. Use the following instead which works properly on all machines

Example: x &= ~07

The or operator (|) does not have these problems, nor do bit fields (which, unfortunately, are not
very portable because of defective compilers).

Do not use code that takes advantage of the two's complement representation of numbers on
most machines. Optimizations that replace arithmetic operations with equivalent shifting
operations are particularly suspect. You should weigh the time savings with the potential for
obscure and difficult bugs when your code is ported to another machine.

Special Character Expectations
Do not use signed characters. On the PDP-11, characters are sign extended when used in
expressions, which is not the case on any other machine. In particular, getchar is an integer-
valued function (or macro) since the value of EOF for the standard I/O library is 1, which is not
possible for a character on the AT&T 3B or IBM PC. Code which assumes either that characters
are signed or that they are unsigned is unportable. It is best to completely avoid using char to
hold numbers. Manipulation of characters as if they were numbers is also often unportable.

Alignment Considerations
Alignment considerations and loader peculiarities make it very rash to assume that two
consecutively declared variables are together in memory, or that a variable of one type is aligned
appropriately to be used as another type. The DEC processors number the bytes from right to
left within a word. Most other machines number the bytes from left to right. Hence any code that
depends on the left-right orientation of bytes in a word deserves special scrutiny. The same
applies to bit fields. Bit fields within structure members will only be portable so long as two
separate fields are never concatenated and treated as a unit.

Standards 410 System Reference

Boolean Testing
Do not default the boolean test for non-zero.

Example: if (f() != FAIL)

The above is better than the following even though FAIL may have the value 0 which C considers
false.

Example: if (f())

This will help you out later when somebody decides that a failure return should be 1 instead of 0.
A particularly notorious case is using strcmp to test for string equality, where the result should
never ever be defaulted. The preferred approach is to define a macro such as STREQ:

Example: #define STREQ(a, b) (strcmp((a), (b)) == 0)

An exception is commonly made for predicates, which are functions that meet the following
restrictions:

• Has no other purpose than to return true or false.
• Returns 0 for false, 1 for true, nothing else
• Is named so that the meaning of (say) a `true' return is absolutely obvious (example

predicate name: is valid or valid, not checkvalid).

Numeric Values
Be suspicious of numeric values appearing in the code. Even simple values like 0 and 1 (used
as false and true) could be better expressed using defines like FALSE and TRUE (see previous
item). Any other constants appearing in a program would be better expressed as a defined
constant. This makes it easier to change and also easier to read.

Function Argument Evaluation Order
Do not expect particular order of function argument evaluation. This may suggest that side
effects are being used in the code. Avoid side effects if possible.

Project Dependent Standards
Individual projects may wish to establish additional standards beyond those given here. The
following issues are some of those that might be addressed for a particular project.

• What additional naming conventions should be followed? In particular, systematic prefix
conventions for functional grouping of global data and also for structure or union member
names can be useful.

• What type of include file organization is appropriate for the project's particular data
hierarchy?

• What procedures should be established for reviewing lint complaints? A tolerance level
needs to be established in concert with the lint options to prevent unimportant complaints
from hiding complaints about real bugs or inconsistencies.

User Interface Standards
It is imperative that interactive application programs use common standards for menus, windows,
error and message handling, and other items that pertain to how the user views and uses the
program.

Screens
The screen format, screen prompts and pop-up windows all have standard guidelines that should
direct their development. Some general guidelines include:

• Do not use scr_getc

System Reference 411 Standards

• If an application must do its own table lookup, use the scr_dotable function

Format
Below are important standards guidelines for program screen format:

• All screens should have a centered title; this title should be specified in the program
screen via the SCREEN_INFO attribute

 SCREEN_INFO: optional,
 gui_title = "Gifts";

• White space, rather than dashed lines, should be used to separate logical data groups
on the screen

• Program screens are to be stored under the module: modules/<module
name>/progscr/<program name>/<screen name>

• Every field must contain a comment
• Comments should begin with "Enter" unless the comment is a question
• The phrase "Valid values are:" will not be used in comments; instead the values will be

displayed in the comment

 example:
 comments = "Enter salutation type. (I)nformal, (F)ormal."

• Minimize hardcoding of values in progscrs; use macros whenever the value is
referenced multiple times in different progrscr or menu options, etc. Common
comment macros include: COMMENT-QUERY (for name lookup), COMMENT-TBL
(for table lookup), and COMMENT-YN (for giving yes-no options. Review existing
progscrs and the macros/custom/comment file for more information.

• If there are more valid values than can be displayed on one line, then an example
should be used:

 "Enter the type of accomplishment, ACCOMP_TYPE_EG".
 which expands to
 "Enter the type of accomplishment, eg: ACADEMIC, ATHLETIC."

• Comments will use normal upper/lower case convention
• Comments will end with either a ">" or a "?"
• The first character of each screen descriptor will be capitalized
• The colon will not be used in comments; the only exceptions will be after the work

"format" and with the use of "eg"

 Format: mm/dd/yyy.
 Enter calendar year, eg: 1990.

• The attributes section of progscr files should maintain the following structure: list one
attribute per line in alphabetical order, indented 5 spaces; the one exception to this is
the optional attribute which should immediately follow the database field name on the
same line. The lookup and joining clauses should be listed on one line.

Prompts

Standards 412 System Reference

Prompt lines for screens should always be generated in an application program using the
library functions scr_prompt2 and scr_mesg2. See the platform documentation for how
these functions are to be used. Also, the last argument to the menu structures passed as
parameters to these functions is the icon identifier. For all options in an application, either
the default icon for that option is used, or an icon is specified in the menu definition that is
appropriate for the option. When run in gui-mode, all options in an application should have
an accompanying icon.
The standard options used for scr_getset functions are:

 SCR_DONE Finish
 SCR_ABORT Cancel

The commonly used options used for scr_scget functions are:

 SCR_DONE Finish
 SCR_ABORT Cancel
 SCR_ADD Add
 SCR_ERASE Delete

Windows
Pop up windows are used extensively in applications as a means to provide access to a
wide range of data. In order for the gui interface to work properly, it is important that the
scr_pushwin and scr_popup calls follow one another, without any other screen library calls
between them.

When a pop up window is used to display a progscr, keep in mind that the number of lines in
a screen determines its height, and the width is determined by the longest line in the screen
definition. For a pop up window to display the border around the screen, it is necessary to
have at least two blank spaces on both the left and right sides of the screen.

Output/Mail
In an application that produces a lot of output (like an audit program), use a header similar to the
type used in ACE reports. Include the date and time, school, report title, etc. Audit output should
be saved to a file in the user's home directory, or preferably, in the audit directory, or both.

In an application that performs some batch process, it is recommended that a status mail
message be sent to the user upon completion of the program. This status mail might include
number of IDs/students processed, etc.

• If the program terminates unsuccessfully, a mail message explaining the reason must be
generated

• All mail handling in an application should be done using the msg functions provided in
libmsg

Errors/Messages to User
It is important that you handle status and error messages consistently across applications. Also,
be sure that any message, whether just informative or used to describe a fatal error condition,
includes sufficient information to understand the condition described.

Which Function to Use When
Below are some guidelines for how to choose the appropriate library function to handle
particular messages to the user:

• scr_info: use when you need to tell something to the user, and it is acceptable, or
preferable, to have the user acknowledge this message by pressing the return key.
This is primarily for messages meant to inform where it is important that the user be
aware of the message content.

System Reference 413 Standards

• scr_dialog: use when user response is required, and the response is not a simple yes
or no, nor just an acknowledgment.

• scr_yesno: use when you need to ask the user a question that has only two possible
responses - yes and no.

• scr_askexit: use when you are processing the command that causes the program to
exit. This function will ask the user to confirm that he/she wishes to exit the program.

• scr_perror: use for field level errors that prevent the user from continuing to the next
field.

• scr_pstatus: use for simple status messages where it is acceptable that the user may
not be aware of them. These are normally considered "optional" kinds of information,
such as messages that tell the user the screen is loading, table is loading, student data
loaded, etc. msg_errhandle: use for all error messages that result in the termination of
the program. Also use for warning or status messages that are important for the user
to acknowledge.

How to Handle Errors
Program errors should be handled as close as possible to where the error occurs. If the
error occurs 8 function levels down in the program, print the message at that time; do not
leave error message handling to the calling function(s).

Always use the library function msg_errhandle to handle program errors. Error messages
should include a description of the process or function having the error, and appropriate data
values that might help identify the nature of the problem. For example, if an ESQL
statement results in a row not found error, it is important to identify the data values that were
being used. Some sample error messages follow:

 (void)msg_errhandle(MSG_ERR_MAIL, _displ,
 "Database open error. Database: %s. Status=%d", dbname,SQLCODE);
 (void)msg_errhandle(MSG_ERR_MAIL,_displ,
 "scr_print error: %s",scr_errm());
 (void)msg_errhandle(MSG_ERR_MAIL,_displ,
 "Program enrollment record not found for ID: %d Prog: %s",
 p_e->id, p_e->prog);
 (void)msg_errhandle(MSG_ERR_MAIL, TRUE,
 "Cursor error on %s. Status=%d", AUDIN_REC, SQLCODE);

Always provide the SQLCODE value in any error message describing an ESQL error or
warning. Mail all fatal errors to the user. When the application receives an error from a
library function, include the error message string available from the library (see second
example, above).

Menus
All interactive application programs will use ring menus wherever possible to control option
access by the user. The library function, scr_getmenu, will be used to handle the menu
processing. Some guidelines for menu creation follow:

On the main ring menu, place the name of the process, in user terminology and capitalized, as
the text for the ring menu (first argument to the getmenu function). Example:

 REGISTRATION: Query Register ...

On subsequent menus, the mode description, also capitalized, is given on the menu line.
Example:

Standards 414 System Reference

 REGISTER: DOWN ARROW add. TAB enroll. ...

Example C Code
When creating C-code, keep in mind the following:

• Make proper use of white space and comments so that the structure of the program is
evident from the layout of the code

• When writing code is that it is likely that you or someone else will be asked to modify it or
make it run on a different machine sometime in the future

The following is example C code.

System Reference 415 Standards

/* -----
===
 C Style Summary Sheet (Modified from H Spencer, U of Toronto)
 Block comment describes function
 Standard header should be above (or replacing) this comment
===
----- */
#include "dec.h" Headers
#define STREQ(a, b) (strcmp((a),(b)) == 0) /* ... */
#define ERROR 5 /* ... */
struct bar
 {
 Seqno alpha; /* ... */
 int beta; /* ... */ Don't assume 16 bits
 };
static char *foo = NULL; /* ... */ Static whenever poss
/* -----
 Start routine here
----- */
static bletch(a)
int a; /* ... */ Don't default int
{
 int bar; /* ... */
 extern int errno; /* ..., changed in this routine */
 extern char *index();
 if (foobar() == FAIL)
 {
 return(ERROR);
 }
 while (x == (y & MASK))
 {
 f += ((x >= 0) ? x : x); Parents improve reading
 }
 do
 {
 /* Avoid nesting (? :) */
 } while (index(a, b) != NULL);
 switch (...)
 {
 case ABC:
 case DEF:
 printf("...", a, b);
 break;
 case XYZ:
 x = y;
 /* FALLTHROUGH */
 default:
 break; /* Limit imbedded = s */
 }
 if (!isvalid())
 {
 errno = ERANGE;
 }
 else
 {
 x = &y + z>field;
 }
 for (i = 0; i < BOUND; i++)
 {
 /* Use lint hpcax */
 }
 if (STREQ(x, "foo"))
 {
 x |= 07;
 }
 else if (STREQ(x, "bar"))
 {
 x &= ~07;
 }
 else if (STREQ(x, "ugh"))
 {
 /* Avoid gotos */
 }
 else
 {
 /* last else */
 }
 while ((c = getc()) != EOF)
 /* NULL */;
 exit(0);
}

Standards 416 System Reference

Software Maintenance Standards

Introduction
The following are standards for Software Maintenance Orders.

Product Advisory
The Product Advisory is a periodic publication sent to Jenzabar coordinators on client campuses.
The Advisory is distributed in two forms, a hard-copy format put together with MS Word and an
electronic version distributed over Internet to all subscribers of the CARS-PA list.

The publication contains the following types of information:
• Known problems with the operation of the software, CX, Informix or UNIX
• Suggestions to improve system performance or to solve problems that several clients have

experienced
• To provide minor program, report, script, etc., patches to correct an error condition. These

are distributed prior to their release in a SMO.

For the programmer/analyst, the product advisory is most often used to provide a "fix" to a
problem that can be performed by clients themselves with relatively simple instructions. In this
way, a problem can be corrected temporarily without immediate need for a fix SMO. It is the
analyst/project leader's responsibility to determine if an advisory item is required to deal with a
problem.

The Product Advisory is prose in nature, describing the problem or situation and then providing
the solution. Corrections to programs, screens, reports, etc., are provided as the client sees
them in the respective file. Before and after images are given in most cases.

The Senior Product Manager is currently responsible for the publication of the Product Advisory.
Information for a future advisory is submitted through e-mail, file, etc., as long as it is a ASCII text
file that can be manipulated using UNIX tools. At the present time, vi, is used to format the
electronically distributed advisory information. The information from the file is manipulated,
enhanced, dated and put into the database.

Several rounds of update are made before any advisory is distributed. Suggestions for
modification are solicited from the product managers, the developers, the quality assurance staff
and the research staff.

Product Issues
The purpose of the product issue process is to alert the product managers and development staff
of potential oversights, bugs or problems in general, that exists within the product.

The Response Center, in their callentry record can mark a client call for "Product Review". A
report is run by the product managers that prints out all of the calls marked for product review
within a specified date range. The product managers review the call record, Notes and Solution
to determine the nature of the problem or referral. Within the callentry program are tables for
update that are used to track the issue as it is reviewed. The review classifies the call as
Referred, In progress, Solved, Pending, Done, Merge, Zap or Blackhole.

If the review finds that a product change must be made then an entry in the Suggest file is made.
On the CX database, a file called "suggest" contains information on suggested enhancements
and reported bugs within the system.

Entries are added to the suggest file based on issues from the response center as well as issues
brought up internally. Tracking information can relate the entry back to the call, if it originated as
a response center issue. Once a change has been made to the system on a suggest file item,
the suggest entry is updated to reflect a solution has been added to the product, should an
update be necessary.

System Reference 417 Standards

Program Documentation Standards

Introduction
Program documentation contains an abstract and the following sections: introduction,
procedures, parameters, compilation values, program flow, program errors, crash recovery,
database input, database output, and output samples. The introduction and procedures sections
are designed specifically for the end user, while the other sections are intended for the Jenzabar
coordinator.

Note: These standards are intended for program documentation; the overall guidelines are
the standards for CX documentation. Where the above guidelines do not specify
exactly how to format any section, readability for the targeted audience is the key.
Thus, the intent of program documentation is to explain a program so the coordinator
will better understand how the program works and how to resolve program errors and
problems.

Abstract
The abstract of the document is a short paragraph about the program and contents of the
document. Observe the following guidelines:

1. Do not use program names (except system utilities like FPS, PERFORM, ...).

2. Keep it short -- three to six formatted lines.

3. Use key words later referenced in the document.

4. Do not define terms in the abstract.

5. Avoid use of terms other than standard CX terms.

6. Do not include phrases such as "This document contains".

Introduction Section
The purpose of the introduction is to give a brief overview of the purpose of the program and
what is covered in the document. Observe the following guidelines:

1. Give the program name.

2. Keep it general but meaningful.

3. Use the heading "Introduction" instead of "Purpose", etc.

Procedures Section
The procedures section describes the options available and the information displayed in an
interactive program. This section does not apply to background programs. For interactive
programs, give screen examples and list the command options available in the program
organized by each screen displayed. Observe the following guidelines:

1. Use the schema file and field names where appropriate.

2. Make the language as plain as possible.

3. Include any screens used by the program with informative data displayed.

Parameters Section
All parameters accepted by the program must be specifically documented. The coordinator will
use this section to set up menu options, etc. The end user may also use it to gain an
understanding of what menu options require. Observe the following guidelines:

Standards 418 System Reference

1. Use the schema file and field names where appropriate.

2. Provide examples of the use of each parameter.

3. Include sample MENU parameter prompts (PP) and parameter assignment (PA) lines for
each parameter.

Compilation Values
The compilation values used by the program that are included in the directory
"$CARSPATH/include/custom" should be listed and described in this section. If the coordinator
can change any of the values, indicate what kind of decisions should and/or could be made.
Also, include procedures on how to change the flag and remake the source.

Program Flow Section
A (block) diagram of the procedures followed by the program will be included in each document.
The diagram will give a picture of the logic flow of the program in general terms, followed by a
more detailed explanation. Observe the following guidelines in the diagram:

1. Keep the diagram simple -- it is not a detailed flowchart.

2. Number each procedure box in the diagram.

3. Link boxes in the diagram showing logic flow.

4. The detail following the diagram is intended to give the coordinator insight into how data is
being used.

5. Refer to each box by its number in the diagram.

6. List FPS and SCR screen structure binds and any special field names used, selection criteria
for database records, keys and "joins" used in record selection, and any important features or
special use of data values.

7. Use schema file and field names where appropriate.

8. Leave out anything that is not useful to the coordinator.

Program Errors Section
Give an alphabetical listing of all error messages that the program generates. This does not
include system or utility software errors except where the error is a common recurring error
unique to a program, or the resolution of the error is based on program operation or data input.
This section should also include a description of what the error means, what caused the error,
and how to resolve the error. If any error is to be resolved by personnel at CISC (i.e. it is beyond
the usual coordinator's ability and understanding), describe research procedures so that as much
information as possible is found and recommend that they refer the matter to their account
manager.

List the error messages so you can find them quickly and easily. For programs that have few
error messages with short descriptions, just list the error messages and follow them with one or
two short paragraphs. Where there are many errors or long discussions on the errors, Jenzabar
recommends that you list the errors in an index format so the reader can look up the error easily
in one section, and then refer to another section detailing the error.

Crash Recovery Section
Outline recovery procedures so the coordinator can recover the program to allow users to
continue processing. List any specifics regarding data recovery and cleaning up any system files
that are not complete. It may not be possible or desirable to outline recovery procedures that
involve complicated decision making and data or file manipulation. In this case, recommend that

System Reference 419 Standards

the coordinator look up as much information as possible, and refer the matter to their account
manager.

Database Input and Output Sections
Each document will have a list of all schema files that are used by the program. The input
section lists all schemas read as input, and the output section lists all schemas that are updated.
This is only a quick reference, alphabetized list. No explanation of the purpose of the schemas
should be included here since database interaction is covered in the "Program Flow" section
above.

Output Samples Section
Any hard copy output that that the program generates should include a representative sample
included. This section will only include standard CX package forms and reports.

System Reference 421 Index

INDEX
_
_varaccum function, 287
_vardef function, 285
_varget function, 286
_variaccum function, 289
_variget function, 287
_varistore function, 286
_varpctcor function, 289
_varpctold function, 289
_varstore function, 286

A
abbreviations

data standards, 333
schema standards, 347

absolute holds, 85
abstracts

in program documentation, 417
academic year macros, 147
accesing

Configuration table, 50
accessing

Accomplishment table, 36
ADR table, 38
Alternate Address table, 40
Building table, 44
Citizen table, 46
common macros, 139
Communication table, 48
Contact table, 53
Country table, 56
County table, 58
Day table, 60
Degree table, 62
Denomination table, 64
Division/Department table, 66
Entry Selection table, 70
Ethnic table, 73
Exam table, 75
Facility table, 77
Form Entry program, form files, 166
Form Order table, 80
Handicap table, 83
Hold table, 85
ID Office Permissions table, 90
Interest table, 92
Involvement table, 94
Marital table, 96
Occupation table, 98
Office table, 100
Permission table, 102
Privacy Field table, 104

Privacy table, 104
Relationship table, 106
scearray functions, 283
Sort Criteria table, 70
State table, 108
stored procedures, 26
Subscription table, 110
Suffix table, 112
Tickler table, 114
Title table, 116
Veteran Chapter table, 120
Zip Code table, 124

Accomplishment record, 34
Accomplishment table, 36
ACE

in database dictionary, 329
Ace reports

debugging, 280
ACE reports, 269–93

acearray functions, 283
after group, 380
aggregate commands, 275
before group, 380
body, 380
command summary, 270
compiling, 381
creating menu options, 382
define statements, 378
example sortpage macros, 216
examples, 275–77
execution, 381
footers, 381
formatting, 278
formatting footers, 279
formatting page headers, 278
formatting page trailers, 279
last page, 381
location, 378
mandatory sections, 270
numeric fields, 380
on every record, 380
on last record, 380
output, 381
output definition, 379
page specifications, margins, 274
print commands, 274
read statements, 379
report format, 379
running, 270
sort clauses, 379
SQL functions, 294
standard header, 370, 378
standards, 378
support, 382

Index 422 System Reference

testing, 382
translating, 381
translation, 381
variables and functions, 273

acearray functions, 283–91, 283
usage, 284
variables, 284

Add-ID command
on detail windows, 170
results of selecting, 171

Addressee record, 34
Addressing record, 34
ADR table, 38
after group

in ACE reports, 380
aggregate commands

in ACE reports, 275
Alter table, 9
Alternate Address record, 34
Alternate Address table, 40
Alternate Recipient window, 166
analysis output, 18
attributes

menu descriptions, 321
menu options, 314
PERFORM screens, 371
tables, 13

audit columns, 22
audit script example, 211
audit scripts

in Database Administration, 212
audit trail permissions, 23
audit trails, 21
auditing

id records, 186
audits

in Database Administration, 210
in mergeid program, 194

B
batch mode

mergeid program, 206
batch mode, mergeid program, 194
before group

in ACE reports, 380
Building table, 44
bulk mail

in sortpage program, 218
business macros, 142
Business record, 34

C
C programs

relationship to macros and includes, 128
campus building/facility macros, 142

carsu, 21
check functions, 226, 248
Church record, 34
Citizen table, 46
column types

in tables, 16
columns

default values, 17
in tables, 16
table, 31

commands
alter table in DBMAKE, 9
MKSPOOLER, 308
PERFORM screens, 254
sortpage program, 218
used in ACE reports, 270

common enable macros, 139
common includes, 157
common macros, 139
common periodic macros, 141
common programs, 161–212
common records, 34–35
communication management macros, 142
Communication table, 48
community college macros, 146
compilation

make processor, 371
compilation values

in program documentation, 418
compile process

stored procedures, 28
compiling

ACE reports, 381
Configuration table, 50
constraint analysis

in schemas, 18
constraints. See DBMAKE constraints

analysis output, 18
field level, 19
implementing, 20
table level, 19

Contact BLOB record, 34
Contact Detail record, 34
Contact Image record, 34
Contact record, 34
Contact table, 53
controlling menu access, 325
Country table, 56
County table, 58
crash recovery

idaudit, 191
section in program documentation, 418
sortpage program, 219

creating
entry library screens, 377
form definition files, 256

System Reference 423 Index

menudesc files, 322
menuopt files, 318
menuoptions for ACE reports, 382
schemas, 8
screen definition files, 256
spool queues, 308

criteria,for merge ID, 193
custom include files, 156
custom macros, 135

D
data flow diagrams

in program documentation, 418
sortpage, 217

data integrity, 333
data records

standards, 332
data tables

standards, 332
database

definitions in dupid program, 176
files in dupid program, 175

Database Administration program, 192–212
database dictionary, 327, 328

ACE reports, 329
application software, 330
definition, 328
elements, 330
files, 333
make processor for schema, 330
PERFORM screens, 329
source, 330
standards, 328

database dictionary, 328
Database Field record, 34
Database File record, 34
database input

section in program documentation, 419
database output

section in program documentation, 419
date macros, 143
Day table, 60
dbadmin. See Database Administration program
dbmake

alter table processing, 9
attributes in schema, 13
constraints

conflict, 20
unique, 20

environment variable, 8
ISAM error, 20
options, 8
rebuilding check constraints, 20, 22
trigger names, 22
triggers, 22

action statements, 22
syntax, 22

unique indexes, 20
DBMAKE

alter table command, 9
schema table section, 13

debugging Ace reports, 280
def.c

specifying ptp fucntionality, 241
def.c file

linking tables, files, 236
local functions, 226
macros, 223
program parameters, 228
scroll screens, 230
special check functions, 239
specifiying tables for screens, 231
specifying update order, 234
variables, 224

define statements
in ACE reports, 378

definitions
SQL tables, 31

Degree table, 62
deleting

ID records, 186
deleting records

in Schedule Entry program, 213
Denomination table, 64
Department table, 66
DESC attribute, 13
differences

in product, 1
Division table, 66
Division/Department table, 66
documentation

standards for program documentation, 417
dupid. See Duplicate ID Detection program
duplicate ID

background mode, 177
database definitions, 176
database files, 175
interactive mode, 179
merging, 192
program arguments, 174
review mode, 183
test functions, 172
testing limitations, 178

Duplicate ID Detection program, 172–85

E
Education record, 34
Employment record, 34
enable macros

common, 139

Index 424 System Reference

enrollment status macros, 143
Entry Library program, 221–52

adding tables, 222
binding columns, 237
definition file macros, 223
linking tables, fields, 236
program parameters, 228
scroll tables, 230
special check functions, 239
special flags, 231
specifying local functions, 226
specifying update order, 234
table level functions, 232
tables for screens, 231
updating records, 237
variables, 224

entry library programs
screen standards, 374

Entry Library programs
ptp functionality, 241
transaction procedures, 252

Entry Selection table, 70
environment variables

dbmake, 8
ESQL

programming standards, 396
Ethnic table, 73
Event record, 34
events/scheduling macros, 143
Exam table, 75
Examination record, 34
examples

ACE report sorting, 303
ACE reports, 275–77
audit script, 211
def.c add field array, 238
def.c check function array, 240
def.c common fields array, 237
def.c macros, 223
def.c update field array, 238
def.c update order array, 235
def.c variables, 225
Entry Library program parameters, 229
Entry Library ptp functionality, 242
includes, 153
local functions, 227
macro file, 130
menu, 320
menu options, 389
menudesc file, 320
menuopt file, 312
schemas, 29–30
section in program documentation, 419
sortpage macros ACE report, 216
special flags, 233
special functions, 251

transaction procedure in Entry Library
programs, 252

triggers, 25
executing

ACE reports, 381
Expanded Merge Item window, 205

F
Facility table, 77
faculty macros, 144
Faculty record, 34
fatal error messages

programming standards, 412
fatal errors

in program documentation, 418
field descriptions

locating, 33
fields

order in entry screens, 374
order in perform screens, 374

Fields By File report, 33
Fields By Track report, 33
file format macros, 144
file transfer macros, 144
files

data dictionary, 333
menu definition

PERFORM screens, 372
menudesc, 320
menuopt, 312
menuparam, 323
naming conventions, 397
nomenu, 325
nomenu_$CARSDB, 325
stored procedures, 26

Files By Track report, 33
footers

in ACE reports, 279, 381
Form Entry program, 161
Form Order History window, 166
Form Order table, 80
form/label macros, 144
format

schema file, 10
formatting

ACE reports, 278
in ACE reports

page headers, 278
page trailers, 279

PERFORM screens, 370
forment. See Form Entry program
Forms Order record, 35
functions

_varaccum, 287
_vardef, 285

System Reference 425 Index

_varget, 286
_variaccum, 289
_variget, 287
_varistore, 286
_varpctcor, 289
_varpctold, 289
_varstore, 286
ACE reports, 273
acearray, 283–91
check, 248
GET_PRIMARY_REC, 244
IS_DISPLAY_ONLY, 247
special, 250

G
GET_PRIMARY_REC function, 244
Group Scheduling record, 35

H
Handicap table, 83
Hold Action table, 85
hold permissions, 85
Hold record, 35
Hold table, 85

I
ID Audit

permissions, 186
program arguments, 187, 207

ID Audit program, 186–91
ID column, for mergeid, 193
ID Contact record, 35
ID Entry program, 170–71
ID Office Permissions table, 90
ID record, 35
ID records

auditing, 186
duplicate records, 186
maintained in detail windows, 170

ID/Profile macros, 145
idaudit. See ID Audit program

crash recovery, 191
identry. See ID Entry program
Image Document record, 35
implementing

constraints, 20
triggers/audit trials, 23–24

includes, 149–59
common, 157
custom, 156
customizable, 155
examples, 153
file contents, 151
file types, 154

function, 150
implementing, 152
macro dependency, 149
non-customizable, 155
relationship to macros and C programs, 128
setting up, 159

indexes
in mergeid, 194
in schema, 12, 346, 347

INFORMIX
data files, 328
DBMS, 328

input parameters
stored procedures, 28

interactive mode
mergeid program, 200

interactive mode, mergeid program, 194
Interest record, 35
Interest table, 92
Interest table macros, 146
introduction

section in program documentation, 417
Involvement record, 35
Involvement table, 94
Involvement table macros, 146
IS_DISPLAY_ONLY function, 247

K
keys

composite, 346
primary, 346
schema standards, 346

L
last page

in ACE reports, 381
libentry. See Entry Library program
linking

tables and fields in Entry Library programs,
236

locating
field descriptions, 33
ID Maintenance feature, 170
spooler files, 309
tables, 33

LOCATION attribute, 13
LOCKMODE attribute, 13, 341
logical index, in mergeid, 195

M
macros, 127–48

benefits, 129
common, 139
custom, 135

Index 426 System Reference

customizable, 132
definition file macros, 223
directory structure, 134
file contents, 130
file types, 132
non-customizable, 133
relationship to includes and C programs, 128
sort break in ACE, 215
standards

in menu options, 359
in menu source files, 356
in program screens, 364
in screens, 369

user, 137
Mail program, 324
make

Makefiles, 400
manual

intended audience, 1
purpose, 1

margins
in ACE reports, 274

Marital table, 96
menu access, 325
menu definition file

PERFORM screens, 372
menu descriptions

attributes, 321
menu option

runreports script, 307
menu options

attributes, 314, 385
basic standards, 386
examples, 389
file location

for ACE reports, 382
for ACE reports, 382
Mail, 324
News, 324
run description scripts, 388
standards, 383
tags, 383
testing, 388

menu parameter file, 323
menu system, 311–419
menudesc files, 320

creating, 322
menuopt files, 312

creating, 318
modifying, 319

menuparam file
setup, 323

menus
in Database Administration, 208
option standards, 358
programming standards, 413

source file standards, 355
Merge ID Interactive screen, 201
Merge ID List screen, 203
Merge ID program

batch mode, 194, 206
criteria for columns, 193
description, 192
entering pairs, 200
features, 194
foreign key, 192
ID column, 193
interactive mode, 194, 200
Interactive screen, 201
list screen, 203
logical index, 195
merge index, 195
merge types, 198
permissions, 199
running audits, 194
tables and records, 197
unique index, 194

merge index
in mergeid, 195

Merge Table List window, 204
Merge Type table, 197
Military record, 35
modifying

menuopt files, 319
multi-column constraint, 19

N
naming conventions

C source files, 398
file names, 397
functions, 398
header files, 398
object files, 398
program names, 397
standards, 397
variable standards, 398

News program, 324
nomenu file, 325
nomenu_$CARSDB file, 325
non-fatal error messages

programming standards, 412
non-fatal errors

in dbmake, 20
in program documentation, 418
running sortpage, 219

numeric fields
in ACE reports, 380

O
Occupation table, 98
Office Permission table, 85

System Reference 427 Index

office permissions, 85
Office table, 100
on every record

in ACE reports, 380
on last record

in ACE reports, 380
Operator Form Request screen, 166
operators only, 81
options

Database Administration menu, 208
in Database Administration, 210

Order Quantity screen, 167
Organization record, 35
output

ACE reports, 381
definition

in ACE reports, 379
output parameters

stored procedures, 28

P
page headers

in ACE reports, 278
page specifications

in ACE reports, 274
page trailers

in ACE reports, 279
parameter labels

in Entry Library programs, 229
parameter types

in Entry Library programs, 228
parameters

special functions, 251
parameters

Form Entry, 164
section in program documentation, 417

PERFORM
in database dictionary, 329
screen standards, 367, 370

PERFORM screen commands, 254
periodic macros

common, 141
Permission table, 102
permissions, 85

audit trails, 23
merge ID, 199

Phone Call record, 35
PREFIX attribute, 14, 342
primary ID, for merging, 192
print commands

ACE reports, 274
print spooler
printer macros, 146
printers

spooling software, 308

Privacy Field table, 104
Privacy table, 104
private

style in entry screens, 104
procedures

section in program documentation, 417
process

spooling, 308
process to process functionality

in Entry Library programs, 241
processes

Form Entry program, 162
processing

constraints in dbmake, 20
product differences, 1
Profile record, 35
program screen

standards, 361
programming

arguments in entry programs, 397
arguments standards, 396
coding structure, 401
conventions, 395
declaration files, 399
definition files, 399
design, 395
ESQL standards, 396
function definition, 407
include files, 399
macro files, 398
make files, 399
Makefiles, 400
naming conventions, 397
portable code, 408
project dependent standards, 410
SMO standards, 327, 416
source files, 400
standards, 395
user interface standards, 411
variable definitions, 405

programs
Duplicate ID Detection, 172–85
Entry Library, 221–52
Form Entry

parameters, 164
process flow, 162
program screens and windows, 166

ID Entry, 170–71
Schedule Entry, 213
sortpage, 214

Programs
Form Entry, 161

prompts
in dbadmin audits, 211

punctuation
standards

Index 428 System Reference

in menu options, 359
in menu source files, 356
in program screens, 363

Q
query statements

in Database Administration audits, 211

R
read statements

in ACE reports, 379
records

Accomplishment, 34
Addressee, 34
Addressing, 34
Alternate Address, 34
Business, 34
Church, 34
common, 34–35
Contact, 34
Contact BLOB, 34
Contact Detail, 34
Contact Image, 34
Database Field, 34
Database File, 34
Education, 34
Employment, 34
Event, 34
Examination, 34
Faculty, 34
Forms Order, 35
Group Scheduling, 35
Hold, 35
ID, 35
ID Contact, 35
Image Document, 35
Interest, 35
Involvement, 35
Military, 35
Organization, 35
Phone Call, 35
Profile, 35
Relationship, 35
standards definition, 340
Step Objective, 35
Step Requirement, 35
Temporary ID Data, 35
Tickler, 35

Relationship record, 35
Relationship table, 106
removing

ID records, 186
repair statements

in dbadmin audits, 211
report format

in ACE reports, 379
report sorting, 302
reports, 269–93

Fields By File, 33
Fields By Track, 33
Files By Track, 33
idaudit, 190

restricting access of menu, 325
Right To Know macros, 146
ROWLIMITS attribute, 14, 342
rows

table, 31
running

ACE reports, 270
audits on id records, 186
dupid, 177
idaudit, 189
idaudit with options, 190

runreport script, 302, 304
runreports script

menu file, 307

S
schd_rec, 213
schdentry. See Schedule Entry program
Schedule Entry program, 213

adding records, 213
setup, 213
windows, 213

schema
composite keys, 346
data field section, 11, 343
database section, 11, 341
header section, 341
indexes, 347
location, 340
naming conventions, 340
primary key, 346
standard abbreviations, 347
standards, 327, 340
suffixes, 347
table names, 11, 341
table section, 13
type and length standards, 347

schemas
audit trails, 21
constraint analysis, 18
examples, 29–30
file structure, 10
specifying columns, 16
stored procedures, 26–28
table attributes, 13
template, 10
triggers, 21

school/community college macros, 146

System Reference 429 Index

SCR. See screens
screens

attributes, 258, 260, 261, 264
creating in entry library programs, 377
definition files, 253, 256
field types, 256, 257
Form Entry, 166
GUI attributes, 262
instructions, 267
Merge ID entry, 201
Operator Form Request, 166
Order Quantity, 167
private style in entry screens, 104
programming standards, 411
standards for attribute section, 376
standards for detail windows, 376
standards in entry library programs, 374
Student Form Request, 166

scripts
audit

in Database Administration, 212
runreport, 302, 304
used in creating menu option run descriptions,

388
search fields

in Database Administration, 208
secondary ID, for merging, 192
sections

in ACE reports, 270
mandatory

in ACE reports, 270
security

data integrity, 333
setup for SQL functions, 301

session/academic year macros, 147
setting

includes, 159
setting up

ID Entry screen, 171
menu processing, 323

single-column constraint, 18
site macros, 147
sort clauses

in ACE reports, 379
Sort Criteria table, 70
sorting

capabilities in entry program detail windows,
70

reports, 302
sortpage

ACE output, 214
header macro, 215
macros in ACE reports, 214
using UNIX sort utility, 214

sortpage program, 214
bulk mail, 218

commands, 218
crash recovery, 219
data flow diagram, 217
define macro, 214
non-fatal errors, 219

special flags
in Entry Library programs, 231

special function, 250
special functions, 226

events, 250
example, 251

spool queues
creating, 308

spooler files
locations, 309

SQL
table definition, 31

SQL functions
security setup, 301
troubleshooting, 301

standards
arguments in entry programs, 397
audit on summary fields, 396
C source file names, 398
coding structure, 401
data abbreviations, 333
data dictionary, 328
data records, 332
data structure, 332
data tables, 332
declaration files, 399
definition files, 399
ESQL, 396
for ACE reports, 378
for detail windows, 376
for screen attribute section, 376
function definition, 407
function names, 398
header files, 398
include files, 399
macro files, 398
macros

in menu options, 359
in menu source files, 356
in program screens, 364
in screens, 369

Makefiles, 400
menu options, 358, 383, 386
menu source files, 355
menus, 413
naming conventions, 397
object file names, 398
PERFORM screens, 367, 370
portable code, 408
product advisories, 416
product issues, 416

Index 430 System Reference

program arguments, 396
program coding, 395
program documentation, 417
program name abbreviations, 335
program screens, 361
programming, 395
project dependent, 410
punctuation

in menu options, 359
in menu source files, 356
in program screens, 363

schema, 340
SMOs, 327, 416
source files, 400
status and error messages, 412
user interface, 355, 411
using transaction processing, 396
variable definitions, 405
variable naming conventions, 398

State table, 108
STATUS attribute, 14
status messages

programming standards, 412
Step Objective record, 35
Step Requirement record, 35
stopping menu access, 325
stored procedures

accessing, 26
compile process, 28
input parameters, 28
output parameters, 28
privilege definitions, 27
schemas, 26–28

Student Form Request screen, 166
Subscription table, 110
Suffix table, 112
suffixes

in schema, 347
support

for ACE reports, 382
supporting

PERFORM screens, 372
syntax

schema names, 7
system

includes, 149–59
macros, 127–48
menus, 311–419

T
table attributes

in schemas, 13
table level functions

in Entry Library programs, 232
table lookup

standards in screens, 374
table names

database tables, 11, 341
in schema, 11, 341

tables
Accomplishment, 36
ADR, 38
Alter, 9
Alternate Address, 40
Building, 44
Citizen, 46
columns, 31
Communication, 48
Configuration, 50
Contact, 53
Country, 56
County, 58
Day, 60
Degree, 62
Denomination, 64
Division/Department, 66
Entry Selection, 70
Ethnic, 73
Exam, 75
Facility, 77
Form Order, 80
Handicap, 83
Hold, 85
Hold Action, 85
ID Office Permissions, 90
Interest, 92
Involvement, 94
locating, 33
Marital, 96
Occupation, 98
Office, 100
Office Permission (holds), 85
Permission, 102
Privacy, 104
Privacy Field, 104
Relationship, 106
rows, 31
Sort Criteria, 70
specifying columns, 16
standards definition, 340
State, 108
Subscription, 110
Suffix, 112
Tickler, 114
Title, 116
Veteran Chapter, 120
Zip Code, 124

Tables
Merge ID, 197

telephone number macros, 147
Temporary ID Data record, 35

System Reference 431 Index

testing
ACE reports, 382
menu options, 388
PERFORM screens, 372
program standards, 395

TEXT attribute, 15
Tickler record, 35
Tickler table, 114
Title table, 116
TRACK attribute, 15
track macros, 148
transaction procedures

in Entry Library programs, 252
translating

ACE reports, 381
triggers, 21

categories of, 22
examples, 25
syntax in dbmake, 22

triggers/audit trials
implementing, 23–24

troubleshooting
acearray functions, 291
SQL functions, 301

U
unavailable features. See product differences
unique indexes

in dbmake, 20
in mergeid, 194

UNIX

table names, 7
UNIX sort utility, 214
user interface

standards, 355
user macros, 137
using

acearray functions, 284
dbadmin options, 207
dupid in interactive mode, 179
dupid in review mode, 183
EdVanta System print spooler, 269, 308
idaudit options, 187
programming standards, 395
transaction processing, 396

V
variables

ACE reports, 273
acearray functions, 284

Veteran Chapter table, 120

W
windows

Alternate Recipient window, 166
Form Order History, 166

word processing macros, 148

Z
Zip Code table, 124

	CX System Reference Technical Manual
	SECTION 1 – USING THIS MANUAL
	Overview
	Purpose of This Manual
	Intended Audience
	Product Differences
	Structure of This Manual

	SECTION 2 – JENZABAR CX OVERVIEW
	Overview
	Introduction
	Background Knowledge

	System Integration Features
	Diagram
	Product Integration
	Enabling and Disabling Jenzabar CX Products
	User Access of Products
	Reporting and Output

	SECTION 3 – JENZABAR CX SCHEMAS
	Overview
	Introduction
	Access
	File Naming Conventions

	Creating Schemas Using Dbmake
	Introduction
	DBMAKE Environment variable
	Dbmake Options
	Alter Table Processing

	Schema File Structure
	Introduction
	Schema Template
	Database Name
	Table Section
	Column Section
	Constraint Section
	Index Section
	Grant Section

	Specifying Table Attributes in Schemas
	Introduction
	Table Attributes Section
	Table Attributes

	Specifying Columns in Schemas
	Introduction
	Column Section
	Column Type
	Default Values

	Constraint Analysis in Schemas
	Introduction
	Column Section
	Analysis Output
	Constraint Format
	Field Level Constraints
	Table Level Constraints
	Implementing Constraints
	Unique Index/Constraint Conflict
	Check Constraints Rebuilds

	Specifying Triggers/Audit Trails in Schemas
	Introduction
	Tracking Changes
	Tracking Changes Made by Programs
	Grant/Trigger Section
	Trigger/Audit Trail Section Syntax
	Trigger Naming Convention
	Trigger Processing
	Audit Columns
	CAPTURE FOR Clause
	FOR CHANGE OF Clause
	Triggered Actions
	Audit Trail Permissions
	Regular Triggers
	The Process
	Simple Trigger Example
	Complex Trigger Example

	Specifying Stored Procedures in Schemas
	Introduction
	Access
	Stored Procedure
	Procedure File Header
	Privilege Definitions
	Grant Option Privileges
	Storage of Permissions
	Input Parameters
	Output Parameters
	Compile Process

	Example Schemas
	Introduction
	Basic Schema Example
	Complex Schema Example

	SECTION 4 – COMMON TABLES AND RECORDS
	Overview
	Using this Section
	Accessing Tables and Records
	What Is a SQL Table?
	What Is a Jenzabar CX Table?
	What Is a Jenzabar CX Record?
	Disabled Fields

	Locating Tables and Field Descriptions
	Introduction
	Fields By File Report
	Files By Track Report
	Fields By Track Report

	Common Records
	Introduction

	Accomplishment Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	ADR Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Alternate Address Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	App Server Message Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Building Table
	Purpose
	How to Access
	Creation Sequence
	Screen Example
	Field Descriptions
	Report Example

	Citizen Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Communication Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Configuration Table
	Purpose
	Changes to Table
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Contact Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Country Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	County Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Day Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Degree Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Denomination Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Division/Department Table
	Purpose
	How to Access
	Creation Sequence
	Screen Example
	Field Descriptions
	Report Example
	Report Example

	Entry Selection/Sort Criteria Table
	Purpose
	How to Access
	Creation Sequence
	Screen Example
	Field Descriptions
	Report Example

	Ethnic Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Exam Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Facility Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Form Order Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Handicap Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Hold Tables
	Purpose
	How to Access
	Creation Sequence
	Hold and Hold Action Relationships
	Absolute Holds
	Office Permissions
	Screen Example
	Field Descriptions
	Report Example
	Report Example (Hold Action Table)
	Report Example (Office Permissions Table Report)

	ID Office Permissions Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Interest Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Involvement Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Marital Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Occupation Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Office Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Permission Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Privacy Act Tables
	Purpose
	How to Access
	Creation Sequence
	Screen Example
	Field Descriptions
	Report Example

	Relationship Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	State Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Subscription Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Suffix Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Tickler Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Title Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	User ID Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Veteran Chapter Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Visa Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	Zip Code Table
	Purpose
	How to Access
	Screen Example
	Field Descriptions
	Report Example

	SECTION 5 – JENZABAR CX MACROS
	Overview
	Introduction
	What Is a Macro?
	Configuration Table
	The Relationship Among Macros, Includes, and C Programs.

	Benefits of Jenzabar CX Macros
	Introduction
	Benefits of Jenzabar CX Macros

	Contents of a Macro File
	Introduction
	Example Macro File
	Parts of a Macro File
	M4_Include Statements

	The Four Types of Macro Files
	Types of Macro Files
	Macro Files That the Institution Can Customize
	Macro Files That the Institution Should Not Customize

	The Macro Directory Structure
	How to Access the Macro Files
	Macro Directory Structure

	Custom Macro Files
	Descriptions of Custom Macro Files

	User Macro Files
	Descriptions of User Macro Files

	Common Macros
	Introduction
	Access
	Enable Feature
	Common Enable Macros
	Common Periodic Macros

	SECTION 6 – JENZABAR CX INCLUDES
	Overview
	Introduction
	Policy Decision
	Macro Dependency

	How an Include Works
	Relationship Between a Macro, Include, and C Program

	Contents of an Include File
	Introduction
	Parts of an include file
	How to Interpret the Include
	Description of the Parts of an Include File

	Examples of Includes
	Introduction
	Example of an Active Include Outside a Comment
	Example of an Inactive Include Inside a Comment
	Interpreting the Include Inside the Comment

	Nine Types of Include Files
	How to Access the Include Files
	Include Directory Structure
	Types of Include Files
	Include Files That an Institution Can Customize
	Include Files That an Institution Should Not Customize

	Custom Include Files
	Descriptions of custom include files
	Common Includes

	Setting Up Includes
	What is the Process?
	How to Set Up an Include

	SECTION 7 - FORM ENTRY PROGRAM
	Overview
	Introduction
	Program Features Detailed

	Process Flow
	Diagram
	Data Flow Description
	Program Relationships
	Tables and Records Used

	Parameters
	Introduction
	Parameter Syntax
	Parameters
	Operational Modes

	Program Screens and Windows
	Introduction
	Access
	Screen Files and Table/Record Usage

	SECTION 8 – COMMON PROGRAMS
	Overview
	Introduction
	Common Programs in this Section

	ID Entry Program
	Introduction
	Accessing the ID Maintenance Feature
	The ID Add for Individual Screen
	Setup for this Feature
	Results of Selecting the Add-ID Command

	Duplicate ID Detection Program
	Introduction
	Dupid Terms
	Program Arguments
	Dupid Modes
	Dupid Main Menu
	Database Tables Used by Dupid
	Modifying Table Definitions
	Loading Data

	Running Duplicate ID Detection in Background Mode
	Introduction
	Scheduling a Process
	Starting from an Interactive Login
	Dupid Configuration
	Limitations
	System Demands

	Running Duplicate ID Detection in Interactive Mode
	Introduction
	Interactive Mode Screen Example
	Data Displayed On The Screen
	Fields Accessed with the Parameters Command
	Initial Screen Commands
	Screen Commands after Selecting Query ID or Input
	Interactive Mode Detail Pop-up Window
	Command Options for Detail Window

	Running Duplicate ID Detection in Review Mode
	Introduction
	Review Mode Screen Example
	Data Displayed On The Screen
	Screen Commands

	ID Audit Program
	Introduction
	The Process
	Permissions
	Running Idaudit Without Program Arguments

	Idaudit Program Arguments

	Running ID Audit
	
	Processing Time

	Processing Notes
	The Idaudit Report
	Running Idaudit With the Update Options

	The allow_delete Flag
	Crash Recovery

	Merge ID Program
	Introduction
	Merge Logic
	Overview of the Process
	What is an ID Column?
	Merge ID Features
	Merge ID Terms

	Merge ID Tables and Records
	Introduction
	Configuration Macro

	Running Merge ID in Interactive Mode
	Introduction
	Entering ID Pairs for Merge Processing

	Merge ID Interactive Screen
	Introduction
	Data Displayed on the Screen
	Commands on the Merge ID Interactive Screen

	Merge ID List Screen
	Introduction
	Fields on the Merge ID List Screen

	Merge Table List Window
	Introduction
	Column Descriptions

	Expanded Merge Item Window
	Introduction
	Fields on the Expanded Merge Item Window

	Running Merge ID in Batch Mode
	Database Administration Program
	Introduction
	Program Arguments
	Dbadmin Screen
	Menu Options
	Options Pop-Up Window
	Options Pop-Up Window Fields
	Audit Processing
	Audit Scripts
	Example Audit Script
	Additional Table

	Schedule Entry Program
	Introduction
	Windows Available in Schedule Entry
	Records Used in Schedule Entry
	Setup Issues for Schedule Entry

	Sortpage Program
	Introduction
	Macros You Must Set
	Sample ACE Report
	Program Flow
	Sortpage Processing
	Sortpage Process Commands
	Bulk Mailing Mode
	Setting Up Bulk Mail Sorting
	Program Error Messages
	Crash Recovery

	SECTION 9 – JENZABAR CX ENTRY LIBRARY
	Overview
	Introduction

	Adding Tables for Use in Entry Library Programs
	Introduction
	Adding a Table
	Adding a Detail Table
	Displaying Specific Detail Table Rows on a Form
	Adding a Lookup Table
	Limiting the Number of Detail Tables in a Form

	Entry Library Def.c Macros
	Introduction
	Def.c Macro Definitions
	Example of Macros

	Entry Library Def.c Variables
	Introduction
	Variables That You Can Specify
	Example of Variables

	Entry Library Def.c Local Functions
	Introduction
	Check Functions
	Special Functions
	Local Functions Example

	Entry Library Def.c Program Parameters
	Introduction
	Parameter Types
	Parameter Labels
	Program Parameters Example

	Detail Tables
	Introduction
	Def.c Scroll Tables Array
	Example Scroll File Array

	Tables for Entry Library Screens
	Introduction
	Filename Array Fields
	Special Flags You Can Specify
	Other Special Function Flags
	Table Level Functions
	Special Flag Example

	Table Update Order
	Introduction
	Update Order Array Fields
	Matching Entries in the Filename Array
	Update Order Array Example
	TABLENAME Array in an Entry Library Program

	Table and Field Links
	Introduction
	Common Field Array Structure Definition
	Common Field Array
	Information for Loading Rows
	Buffers for Binding Columns and Updating Records
	Common Fields Array Example
	Update Field Array
	Update Field Array Example
	Add Field Array
	Add Field Array Example

	Special Check Functions
	Introduction
	Check Field Array Fields
	Check Functions You Can Specify
	Check Function Array Example

	Process to Process (PTP) Functionality
	Introduction
	Process to Process Field Structure
	Specifying PTP Functionality
	Process To Process Example

	Address Maintenance
	Introduction
	Relationship Field Structure
	Address Maintenance Example

	GET_PRIMARY_REC Functions
	Introduction
	GET_PRIMARY_REC Processing
	Suggestions for Writing a GET_PRIMARY_REC Function
	File Type Structure Example
	File Type Structure Members

	IS_DISPLAY_ONLY Functions
	Introduction
	Determining a Column’s Value

	Check Functions
	Introduction
	Check Function Return Statuses
	Check Function Parameters
	Check Function Pointers

	Special Functions
	Introduction
	Return Statuses
	Events
	Special Function Parameters
	Special Function Example

	Transaction Procedures
	Introduction
	Transaction Procedure Example

	SECTION 10 – SCREENS AND FORMS
	Overview
	Introduction
	Typical Entry Screens
	Typical Detail Windows

	Using the PERFORM Screen Commands
	PERFORM screen commands

	Creating Screen and Form Definition Files
	Introduction
	Screen Section
	Types of Fields
	Screen Section Features
	Attributes Section
	Attributes Section Format
	Guidelines for the Attributes Section
	Attributes You Can Specify
	Instruction Section Format
	Instructions You Can Specify

	SECTION 11 – REPORTS AND OUTPUT CONTROL
	Overview
	Introduction
	ACE Reports Sorting Program

	ACE Report Writer Commands
	Introduction
	Running an ACE Report
	ACE Commands
	Defining Variables and Functions
	Information Macros in the Define Section
	Output Commands
	Print Commands
	Aggregate Commands
	Pause Command
	Skip Commands

	Example ACE Reports
	Introduction
	Report to Print All Names in the Database
	Select and Sort Report
	Example SELECT and ORDER BY Reports

	Formatting ACE Reports
	Introduction
	FORMAT Command Clauses
	Page Headers
	Page Trailers
	ON LAST RECORD Statements

	Troubleshooting ACE Reports
	Introduction
	Apparent problem with data
	Core dump when translating the report
	Core dump when the Ace report is run

	Acearray Functions in ACE Reports
	Introduction
	Access to Acearray Functions
	Summary List of Acearray Functions
	Use of the Acearray Functions
	Acearray Function Variables
	The _vardef Function
	_vardef Examples
	The _varstore Function
	_varstore Examples
	The _varistore Function
	_varistore Examples
	The _varget Function
	_varget Examples
	The _variget Function
	_variget Examples
	The _varaccum Function
	_varaccum Examples
	The _variaccum Function
	_variaccum Examples
	The _varpct Function
	_varpct Examples
	The _varpctold Function
	_varpctold Examples

	Troubleshooting Array Functions
	Sample Report
	Sample Output

	SQL Functions
	Introduction
	The _exec_sql Function
	The _ctrl_trans Function
	The _ctc_add Function
	The _ctcdetl_add Function
	Sample Report

	Troubleshooting Use of SQL Functions
	Introduction
	Security Setup with SQL functions

	Runreport Script: A Report Sorting Enhancement
	Introduction
	File Locations
	WHERE and SORT Clauses
	Example WHERE and SORT Clauses
	Runreport Script
	Runreport Processing
	Script Menu Option File

	Using Print Spooler Software
	Introduction
	The Spooling Process
	Creating a Spool Queue
	Spooler File Locations

	SECTION 12 – THE MENU SYSTEM
	Overview
	Introduction
	The Process for Placing a Screen or Report on the Jenzabar CX Menu

	Menu Option (Menuopt) Files
	Introduction
	Example: Dean’s List Menuopt File
	Menu Option Prompt
	Menu Option Attributes
	How to Create a Menuopt File
	How to Modify a Menuopt File

	Menu Description (Menudesc) Files
	Introduction
	Example: Jenzabar CX master menudesc file
	Example: Jenzabar CX Master Menu
	Menu Description Attributes
	How to Create a Menudesc File

	Menu Parameter (Menuparam) File
	Introduction
	Example
	Menu Parameter Options

	News and Mail Menu Features
	Introduction
	Different Mail Program
	News Program

	Nomenu Feature: Controlling Menu Access
	Introduction
	Nomenu Files
	Menu Process

	SECTION 13 - CX SYSTEM STANDARDS
	Overview
	Introduction
	Use of the Standards

	CX Data Dictionary Standards
	Introduction
	Definition
	CX-Specific Definition
	INFORMIX Data Files
	ACE Reports
	PERFORM Data Entry Screens
	Application Software
	Dictionary Data Schemas
	Schema Definitions
	Entering Data
	Retrieving Data

	Data Structure Standards
	Introduction
	Data Tables
	Data Records
	Comments
	Names
	Social Security Numbers
	Phone Numbers
	Data Integrity/Security
	Data Dictionary Files
	Standard Data Abbreviations

	Program Name Abbreviations
	Introduction
	Files In BINPATH
	Files In UTLPATH

	Schema Standards
	Introduction
	Naming of Files and Fields
	Location
	Table or Record
	Testing for Correct Naming Conventions
	The Schema File
	Header Section
	Database Section
	Table Section
	Column Section
	Text and Description
	Common Types of Fields
	Constraint Section
	Index Section
	Grant Section
	Keys
	Use of Indexes:
	Naming of Suffixes
	Standard Types and Lengths
	Standard Schema Abbreviations

	User Interface Standards: Menu Source
	Introduction
	General Conventions
	Punctuation
	Macros

	User Interface Standards: Menu Options
	Introduction
	General Conventions
	Punctuation
	Macros

	User Interface Standards: Program Screens
	Introduction
	General Conventions
	Punctuation
	Macros

	User Interface Standards: PERFORM Screens
	Introduction
	General Conventions

	User Interface Standards: Comment Macros
	Introduction
	General Conventions

	PERFORM Screen Standards
	Introduction
	Access
	Source Code: Documentation Header
	Source Code: Format of screen
	Source Code: Attributes
	Source Code: Instructions (joins)
	Compilation
	Menu Definition
	Testing
	Support

	Entry Library Screen Standards
	Introduction
	Introduction of Entry Library Features
	Differences Between Libentry Screens and PERFORM screens
	Locations for Forms and Detail Windows
	File Naming Conventions
	Screen Field Naming Conventions:
	Screen File: The Attribute Section:
	Tips for Creating Entry Screens

	ACE Report Standards
	Introduction
	Definitions
	Access
	Source Code: Documentation Header
	Source Code: Defined Variables, Parameters, and Functions
	Source Code: Output definition
	Source Code: Read Statements (Including JOIN, WHERE clauses)
	Source Code: Sort Clauses
	Source Code: Report Format
	Compilation (Translation)
	Executing ACE Reports
	Menu Definition
	Testing
	Support

	Menu Option Standards
	Introduction
	Menu Option Tags
	Menu Option Attributes
	Menu Option Standards
	Related Scripts and Menu Option Testing
	Testing a Menuopt
	Menu Option Examples

	Programming Style, Standards, and Conventions
	Introduction
	Design Guidelines
	Program Design
	Use of Standard CX Functions
	Use of Transaction Processing
	Audit on Summary Fields
	ESQL Guidelines
	Program Arguments
	General Guidelines for Program Arguments
	Program Arguments for Entry Programs
	Naming Conventions
	Variable Naming Conventions
	Function Names
	Common CX Files for Program Development
	Building a Make File
	Source File Organization
	General Coding Structure Rules
	Indentation
	Braces
	White Space
	Comments
	Compound Statements
	Long Lines
	Expressions and Constants
	Syntax Changing
	Embedded Assignments
	Ternary Operator
	GoTo Statements
	Variable Definitions and Declarations
	Function Definition
	Function Header
	Function Return Types and Parameters
	Function Variable Declarations
	Function Length
	Function Endings
	Functions and Macros
	Portability
	Separate Portable and Non-Portable Code
	Avoid Dependence On Word Sizes.
	Specific Bit Representation
	Special Character Expectations
	Alignment Considerations
	Boolean Testing
	Numeric Values
	Function Argument Evaluation Order
	Project Dependent Standards
	User Interface Standards
	Screens
	Output/Mail
	Errors/Messages to User
	Menus
	Example C Code

	Software Maintenance Standards
	Introduction
	Product Advisory
	Product Issues

	Program Documentation Standards
	Introduction
	Abstract
	Introduction Section
	Procedures Section
	Parameters Section
	Compilation Values
	Program Flow Section
	Program Errors Section
	Crash Recovery Section
	Database Input and Output Sections
	Output Samples Section

	INDEX
	00-Menu

