Jenzabar CX

CX Implementation and
Maintenance

¢
JENZABAR

Technical Manual

Copyright (c) 2001 Jenzabar, Inc. All rights reserved.
You may print any part or the whole of this documentation to support installations of Jenzabar software.
Where the documentation is available in an electronic format such as PDF or online help, you may store
copies with your Jenzabar software. You may also modify the documentation to reflect your institution's
usage and standards. Permission to print, store, or modify copies in no way affects ownership of the
documentation; however, Jenzabar, Inc. assumes no responsibility for any changes you make.

Filename: tmcximmt
Distribution Date: 02/01/2002

Contact us at www.jenzabar.com

Jenzabar CX and QuickMate are trademarks of Jenzabar, Inc.

INFORMIX, PERFORM, and ACE are registered trademarks of the IBM Corporation

Impromptu, PowerPlay, Scenario, and Cognos are registered trademarks of the Cognos Corporation

UNIX is a registered trademark in the USA and other countries, licensed exclusively through X/Open Company Limited
Windows is a registered trademark of the Microsoft Corporation

All other brand and product names are trademarks of their respective companies

JENZABAR, INC.
CX IMPLEMENTATION AND MAINTENANCE TECHNICAL MANUAL

TABLE OF CONTENTS

USING THIS MANUAL ...ttt rrse s ssss s s s s e s ssn s s s s e s e e e s me e s e s mn e e e s san e e e s s sme e ea s smn s s snnn e s s snnnnss 1
L YT 11 USSR 1
PUrpose of ThisS ManUaL..............eeeiiii et e e e e e e e e e e e e e e e e nneeeeeaaeeas 1

T 10T o [=To N T 1= o o= TN USSP 1
o To [0 To D15 1=T 4 =Yg (o= SRR 1
Structure of ThiS MANUALcooiiiii et e e e e e st ee e e e s tee e e e st e e e e ateeeennteeeeenees 1
Conventions Used in ThisS MaNUAL...........c..oiiiiiiiie ettt e et e e st e e s et e e s sbaeeeeansaeeesntneaeeans 2
1] (o (U T (o o RSP 2
Y LI @70] 17T 1] I SRR STP 2
JenzZabar-SPECifiC TEIMSttt e e ettt e e e s bt e e e sbbe e e e saaeeeeesnbeeeeens 2
KBYSITOKES ...ttt ettt e ettt e e ettt e e e a ettt e e n bt e e e e n s bt e e e e nnbe e e e nb e e e e enbe e e e e nees 3
PART | - IMPLEMENTING JENZABAR CX....coooooteriitirranrssassssssssssssssssssss s sssssmsssassssssssssssmsssssssmsssssssnnas 5
L YT 11 USSR 5
10T [T 1o o SO EERR 5
Categories in Jenzabar CX Implementation.............ocuiii i e 5
Purpose of IMplementation...............oooiiiiiiiiiie e e e e e e e e e et reaa e 5
oo =T g TN 1Y/ F= T F= o =T RSP 5
SECTION 1 - PREPARATION PHASEoooiicieerccerssssce s s s ssme s s s s e s s ssms e s s s smn e ssssssme s s ssssmenessssmsnsssanenes 7
OVBIVIBW ...ttt ettt ettt ettt e e oottt e e e ea bt e e e e aate e e e e ettt e e e eabeeeeeaasteeeeeambeeeeeamteeeeeamteeeeanbeeeeeanteeeeesnsneeanns 7
a1 zoTo [0 o3 o] o IO POPPPPPPPPPP 7
Goals of the Preparation PRASEooiiiiiiiiieiicec ettt e e e e e s e e e e s nenaeees 7
Duration of the Preparation Phasecoo e 7
L= =T = B =]S 7
JeNzZabar INVOIVEMENT ... e e et e e e e e e st e e e e e e e e anntnte e e e e e e nnnneees 7
Jenzabar Implementation Policy and Pre-Implementation Requirementscooiiiiiiiiiiii, 8
0] o2 PP PRRN 8
Pre-Implementation System Modification Requirements ... 8
Pre-Implementation System Hardware ReqQUIremMENtScccviiiiiiiiiiiiiiie e 8
Customer Implementation: Suggestions for Organizing the Projectccocoveiiiiiiiiiiie e 9
1] (o (BT (o o RS RR 9
Making Project ASSIGNMENTS ..o 9
Key POSItIONS @NA ROIES.........coiieieiiiee e e e e e e e e e e e e e se b a e e e e e e s e anraaeeaaeeas 9
Jenzabar System AdmINISIrator.........c.ei e 9
Jenzabar System CoordiNator..........ooi i e 10

P o] ol Ter=1 i To] @ eTo] (o [{qT=1 (o] S PSSR 10
Jenzabar CX Users Group Representativescoooii i 10
Establishing the Jenzabar CX Users Group StrUCIUIEcueiiiiiiiiiii e 11
Jenzabar System Users Group STTUCIUIE...........oiuiiiiiiiii s 11
Reviewing Data in Tables and RECOIASooii i e e ee e e 12
(0T [T i o U 12

g o To Yo [= USSP 12
SECTION 2 - SETUP PHASE...........oo o oieiecce e rsere e essmse s sssssse s s s sase e s ssssme e s s ms e s sssms e s snssmnesssssmnnssesmnessassnns 13
OVBIVIBW ...ttt ettt ettt e e ettt e e ettt e e e sttt e e e e Rttt e e s sttt e e e anse e e e e amteeeeeansseeeesanbeeeansseeeesnseeaesanneeeas 13
1] (o (BT (o o TSRS 13
Goal Of the SEIUP PRaSEcoiieeiie ettt e e e s abeeee e 13
Duration of the SEtUP PRaSe ... s 13
LCT=T A= = B =]SSR 13
INSEAIlING e SYSIEM ...ttt e et s e e e e e 14

LYoo [V T3 1 o) o I 14

Y= aTo E=T e RS T=) (U o TR PP 14
Setting Tables and RECOIASoi et e st e e e e e s nneeeas 15
10T [T) o SR 15
SeleCting the TaDIESoo ittt e e e aab et e e eabe e e e e sbeeeeeans 15
L= 1= =Y Tt I U o =TSSP 15
The Process for Setting Up TabIes.ooo i 15
Table Macro @nd VAIUES........oooi et e ettt e e e e e e e ee e e e e e e e e e e nnneeeeaeeaeanns 15
L0700 010 aTe] 4T IF= 1 o] 1= -SSR 16
T (0T [T i o USRI 16
Prerequisite tasks ... 16
1070] 0 00 aTe] oI IF= 1 o] 1= SRS 16
Application-SPeCific TADIES ..o e e e e e e e a e e e e e e 17
10T [T i) o SR 17
PrereqUISITE TaSKS .. .uiii ittt e e et e e e e a bt e e e e b e e e e e be e e e e nnbe e e e e e 17
ApPlication-SPeCifiC TADIESoooi i s e 17
Communications Management Tables ... 17
Adding or Updating Entries in Tables ... e 18
How to Add or Update Entries in @ Table ... 18
Setting Macros and INCIUAESoouiiiiiiiie ettt e e st e e s s e e e s ansseeanseeeesanneeeas 19
(0T [T i o USRI 19

Y =T o 1S3 o To I [Ted 10T [TP 19
Customizing Screens, Menus, and REPOISccoiiiiiiiiiie e e e e et araea e 20
1] (o (BT (o o SRR 20
Screen DefiNitioN FlS..........iii ettt et e e e s bt e e ente e e e e sraeeeeaa 20
LY T IS == o T SO 20
[R=T 0T] o - TSR PR 20
SECTION 3 - TRAINING PHASE it sn s s s e s e s s e e e s e 21
L 1YY T SR 21
10T [T i) o SRR 21
Goals of the TrainiNg Phasecooiiiiiii ettt e s ee e 21
Duration of the Training PRASE..........coii ittt entae e e entee e e nnes 21
Yo LT (oz= 1 I I =1 11 o e [P PR PO PPRRTRPN 21
Creating @ Training Databasecooiiiiiiiiii e e e e e e e e e e e 22
1] (o (U T (o o PSSR 22
Tasks for Creating the Database............cooiiiiiiiiiiiiiiii e e e e e e e e e 22

N =T = o k=T 0 G I =11 1 o T PSSP 23
10T [T i) o SO 23
(07 (=T (] aTo T oo {0 - TSRO PPRRPPRR 23
SYSIEM BASICS ...ttt e e b e e e bt et e e e e e abaeee e 23
Product-Specific TraiNiNgGoouiiiiiiiie e b e e e e e e e 23
Training Facility and Equipment Requirements LiSt........ ..o 24
(0T [T i o USRI 24
Training Facility and Equipment ReqQUIrEMENTS..........oooiiiiiiiiiie e 24
SECTION 4 - GO LIVE PHASE ..o ceieirccreirsssse s s sms e s s sss e s sss s e s sssssne s ssssans e s snssnsessnssnsessassnsessnsnsessassnns 25
OVBIVIBW ...ttt ettt e e ettt e e ettt e e e ettt e e e e Rttt e e s nte e e e e anee e e e e amteeeeeansseeeesanbeeeannseeeesnssenenanneeeas 25
1] (o (BT (o o PSRRI 25
G0als Of the GO LiVE PRaSe........ueiiiiiiiiie ettt e et e e s et ee s anraeeeeans 25
Duration of the GO LiVE PRASEcooii ittt e e s e e e e e e e naaeeeeeee s 25
LCT=T A= = B =] SR 25
Additional Jenzabar ASSISIANCEuuiiiiiiii e e e 26
10T [T i) o SR 26
Product Modification Request Approval and SubmiSSIONooiiiiiiiiiii e 26
Product Modification REQUEST PrOCESSccuiiiiiiiiiie ettt e e 26

The Product ENhanCemMENt FOIM et e e e e e et e e e eaeaaa s 27

Ensuring Customer SatiSTaCtioNuviiiiiii e 28
10T [T) o SR 28
Confirming CorreCt FUNCHONINGcooiiiii ettt e e e e snbeeee e 28
Go Live-Implementation REVIEW............oi ittt sreee e 28

LT T I = L e= 7 0] g V7= = o o PSSR 29
10T [T i) o SRR 29
Tasks for Data CONVEISION ..ot e e e ettt e e e e e e e e e ee e e e e e e e e aannreeaeeeeaann 29

PART Il - MAINTAINING JENZABAR CXcoicccieiiieererissssressssssneessssssessssssmessssssmsesssssnsesssssnnesssssnessssssnees 31

OVEIVIBW ...ttt ettt ettt e e ettt e e e e ettt e e e sate e e e e sttt e e e e neteee e see e e e e ameseeeeamseeeeeaasseeeesnnseeeansseeeeansseaesannneeas 31
(oo [T i o USRI 31
GeNEral MaINTENANCEueiii et e ettt e e s bt e e e sttt e e e e anteeeeeanbeeeeeanbeeesantaeeeeans 31
Background KNOWIEAQE. ...ttt e e e e e e e e e e e e e e e e s e e anbaeeeeaaeessnraneeeaaens 31

SECTION 5 - SMOS AND REVISION CONTROLciiiiiiiriiererssr s sss s sssssss e s s e ssssssnssnnsas 33

L0 YT 11 SR 33
10T [T i) o SR 33
R 11V (@ 2 7= T 71T TSR 33
L0 (== o) I o T =TT SRS 33
e oTe 81 Yo |V =T o PSPPSR PPP 34
OCCT=T o] g To LU oI (o T I -1 (PP 34

L070] 01 (=Y a1 (3o 1= T] 1Y [2SR 35
g (oo [T i o USRI 35
Y =T aTo F= 1 do) VRS 1Y L@ I 1= PSPPI 35
10 o)1 [0] 0 T= 1] @ N 1 L= RSP PPRRRPP 35
Mandatory SMO SUDAIFECIOMIESeeieieiiiiiiieeie et e e e e e e e e e e e e e e e e e s raeaaaee s 35
Optional SMO SUDAIFECIOMIESceiiiiiiiee ittt e e e sb e e e s anbe e e e snbeeeeeans 36
SMO README SKEIBLONcoiiiiiieic ittt e e st e e e st e e e s etbee e e e aabeeeesanbaeeeesnbaeesearaeeeeans 37

SMO NamMING CONVENTIONS ...ttt et e ab e e e s en bt e e s s ane e e e e anneeeeeaneeeesanneeeas 39
10T [T i) o SR 39
L= =T = IS SRS 39
FIX SIMIOS ...ttt et e e e ettt e e e ettt e e e ettt e e e easte e e e e s teee e e e bae e e e e baeaeeanaeeeeanreeanteeeeeanreeeeeannes 39
RECEIPE Of FIX SIMOS.....eeeiiiiiieeeee et e e e e e e e e e e e e e e e e eaab e e e e e e e e e aabaeeeeeaeas 40

11 (@ B 1S3 (010 o] o T 0o = SRS 41
1] (o (BT (o o PSRRI 41
The DiStriDULION PrOCESSeiiiiiiiiie e e st e e e et e e e saeaeeesnnnaeeas 41
Advanced Beta DiStriDULIONSeiiiiiii e e 42
Beta DiStriDULIONS. ... e e e e e e et e e e e e e s et e e e e e e e e eeeeae s 42
Exceptional Beta DistriDULION. ... 42
LCT=Y o= T B I 4] U (oo SR 42

INSTAIIING @ SIMO ...ttt e e e bt e e oo b b e e s e bt e e e e e bbe s e nbe e e e e an e e e e e e 43
10T [T i) o SR 43
T3 =1 1= 11T o T o L= SO 43
SMO INSTAIIAtION RUIESeeiiiiieiie ettt e e sttt e e e s et e e e esnte e e e s anteeeesaneeeeeanraeeenans 43
Installing Third Party Software Upgrades...........cooiviiiiiiiiee et e 44
Loading the SMO TAPEeeiiiiiiiie ettt e e et e e e e e e e e st e e e e snte e e e e enteeeeeanteeeeeanseeeennseeeeennes 44
Review the SMO READMESooo ittt et e et e e et e e e st e e e e antee e e e anreeeenees 44
Prepare to Start the SMO INStallation..............ooiiiiiiiii e 45
(SR DT o To LS S (=T o1 TSSO 45
=T oTo T A0S T o1 SRR 45
Pre-Installation StEPSeiii e 50
INSEAIlING e SIMO ...ttt e st e ettt e e e st e e e e te e e e e nbee e e e annee 51
Lo Ty [T3 = L] (= o SO 51
RV o= o) IR (= o 1SS 53
Marking the SMO as INSTAIIEAeeiiiiiie et e e e e 53

Reviewing the Documents DIr€ClOrYcoooiiiiiiii i 53

Implementing the SMO FEALUIES............uuiiiiieeee e e e e e e e e srrae e e e e s 53
ATCIIVING SIMOS ...ttt e et e e e et e e s bttt e e e a bttt e e e nbe e e e e nbe e e e e abeeeeannbeeeeennes 53
1| (@Y = (T IF= 1 1= S SRS RPP 54
10T [T i) o SR 54
1| (O B =T o= £ PSP PU PP PP PPPOPPPPR 54
Dealing With LOCAI SIMOS ..ottt b e e e e s bt e e sbb e e e sbe e e e e sbaeeeeaas 56
L0 YT 11 SR 56
Steps for Incorporating Updates on Local Client SiteS...........ccocuiiiiiiiiiie i 56
Create a Local SMO t0 Capture ChangES..........uieiiiiiiieiiiiiee e eciieee et ee e steee e s steeeeesnseeeeesnneeeeessnseeeeans 56
Check in Revisions fOr the SIMO.........uuiiiiiiiiie ettt e et e e e st e e e sne e e enraeeeean 57
CloSE the LOCAI SIMO ...ttt ettt e e e ea et e e e s bt e e e sttt e e e abeeeeeasteeeesaeeeeeanraeeeeans 57
Put the SMO on Tape to Bring t0 CISC.......ooiiii et a e raea e 58
Integrating the Local SMO into the Jenzabar CX product............coooiiciiiiiiiee e 58
Extract the Local SMO frOm taPeeeiiiiiiie e e 58
Remove Local CUSTOMIZAtIONScoiiiiiiiieiieee et e e e e e e e e e e e e e e s s neeeeeee s 58
BUIld @ NEW REVIF Fl ...ttt e e e e e e e e e e e e nneneeeeeeens 58
Resolve Version NUMbDEr OVEIaPSceeiiiiiiiieiiii et e e e e e e e e e e e e nnneeeaeens 58
Create or Determine the Regular Jenzabar CX SMO to USe...........ooiiiiiiiiiiiieieeeee e 58
Deposit the Local SMO as Part of the Regular SMOcoocoiiiiiiiiiii e 59
Check for ANy MaKefilE.ICI FIlES......co it e e s st e e e st ee s anraeeeean 59
Address Files not Handled by SMONEWIEVcocuiiiiiiiiiie et e e e e e e 59
Update the README File for the Regular SMO............oooiiiiiiii e 59
Move the Local SMO to the ARCH Dir€COryuuuiiiiiiiec i 59
Troubleshooting SMO INSTAlIAtIONScccuiiiiiii e e e e e e erraaeeeaae s 61
10T [T i) o SR 61
DEPOSIt STEP ISSUES ...ttt ettt e e et e e e e a e e e e a e e e e e anbe e e e e aneeeeennbeeeeennes 61
Pre-Installation Step ISSUES........cooi e e 63
INSTAllatioN STEP ISSUES ...ttt e e e e e et e e e e e e e e et e e e e e e e nneeeeeeeeens 63
The ReVisSion CONrOl SYSTEIMiiiiiiii e e e 65
10T [T i) o SR 65
BacCKUP COPIES Of FlES.....oco ittt e e e e e e e e et e e e eeennbaeeeeaaeas 65
Reviewing Changes t0 FIlEScoii it et e e e e enrae e e entee e e e nnes 65
Reviewing File Header INfOrmationooiiiiiiiiiiiiie et e e e 65
File Version NUMDEISuiiiiieie ettt et e e e ettt e e e et e e e e nbe e e e e enbee e e nnbeeeeenees 66
Parts of @ Version NUMDETooii ettt e e et e e e e bt e e e e nte e e e nreeeeenees 66
Displaying All Versions Of @ Filecoo i e 67
Extracting an Earlier Version of @ File ... 67
SECTION 6 — DATABASE MANAGEMENT ...t r s s mn e s sn s s mn e s 69
L 1YY T SR 69
10T [T i) o SR 69
System ManagemMent IMENU.ooi ittt et e e e aabe e e e e areeeeeaa 69
Maintaining Multiple Databases on One COMPULET............coiciiii i et e e eeree e s enreeee e 71
g (oo [T i o USRI 71
Multiple Complete Jenzabar CX REIEASES...........c.uuvuiiiiiieiiecieeee e 71
Creating ANOLNEr REIEASEcco ittt e e e e e e e e e e e e e e e ar e e e e s e nnnnraees 71
Switching BetWeENn REICASESuvviiiiiiiie e e e e e e e e e e e e e e e 71

[101 (=1 NV @70 2Ty g F= 1 o PSR 71
Establishing the Default REIEASE...........ooueiiiiii e 72
SOftWAre MaiNtENANCEcoiiii et e e e e e s e e e e e e e se b te e e e e aeeeeaannnaeeeeeennnnreees 73
Multiple Jenzabar CX Databasesccuiiiiiiiiiiiiiiii et e 73
Creating Another Databasecoo it e e 73
Switching Between Databasesc..ooii i 73
SOftWAre MaNTENANCEeiiii et e e e st e e e st e e e sttt e e e aasteeeesaneeeesnraeeeeans 73
Multiple Operational Jenzabar CX REIEASES............uuueiiiiiiiiiiiieee e 74

Creating an Operational REIEASEoccuuiiiiiiiee e e e e e e e e e e e e saae s 74

Switching BetWeEN REICASESovviiiiiiiie e e e e e e s e e e ennerae s 74
SOftWAre MaiNENANCEcoiiii it e e e e e s e e e e e e e sa e teeeeaeeeseaannnaeeeeeeannnreees 75
Setting Up an Audit Trail Databaseoooiiiiiiiiii et 76
10T [T i) o SR 76
Separate Database........ ..o e e e e e e e e e e e e e e e e nneeees 76
Default Database NAmME ...ttt e e e e e e e e e e e e e e e enneneeeeaaens 76
F O Lo [= =1 o = T 1Y =T (o TS 76
BUIIAING SCREMAS ..o et e e e et e e e et te e e e s nae e e e e aeeeeeanbeeeeennnes 76
Adding Audit TrailsS 10 SCHEMASoiiiiiiiiieee e e e e e e e e e e e e e e 77
F U o L 1= o) [T @7 =1 1] o RSSO 77
Unnecessary Audit TrailS...........oooo oo 77
Setting Up Office Permissions Checking in CX AppliCatioNSccoiiiiiiiiiiiiee e 78
10T [T i) o SR 78
g 0 Yo=Y L1 SR 78
Setting Up Select And Sort Detail WIindow Features ... 79
10T [T i) o SR 79
THE SEIUP PrOCESS ...ceiii ittt e ettt e e e e e e et e e e e e e e e e e nneeneeeaaeeaaarnnneeaaaeaeaanns 79
Setting the PermiSSioNs MaACIO........ooiuuiiiiiiie e e e e e 79
PermiSSiON TaADIEottt e e e e e e e et e e e e e e e e nen e e e e e e e e annbreeeeaaens 79
Entry Selection/Sort Criteria TabIEScoii i e 80
Entry Selection Table FIields..........oo et e e e e 80
Sort Criteria Table FIEIASooo e e e st e e st e e e sree e e e sbaeeeean 81
Fields Controlling the Select and Sort Criteriacoovviiiiiiiiiie e 81
Selecting and Sorting in ENtry Programsooiiiiiiiiieee ettt e e e e re e e e e e 82
10T [T i) o SR 82
EXAMPIE SCIEENS......eeeie ittt et e e e ettt e e e e bt e e e e bt e e e e bbe e e e e anee e e annbeeeeennee 82
How to Use Selecting and Sorting in Entry Programs.............cueoiiiiiiiiiiiiee e 83
Setting Up the Automatic Address Update Feature ... 84
10T [T i) o SRR 84
What Fields Do the Entry Library Applications Update? ... 84
What Macros Require Setting UD7eii oottt et e e e e e annae e snnaee s 84
HOW t0 SEt UP the MACIOS........uiiiiiiiii et e e e e e e e e e e e e e saabeaeeeaae s 85
INSTAlliNG YOUIr ChANGESt e et e e e e e e et e e e e e e e e st s baeeeeaeeansnraneeeeaens 85
How to Save Previous Addresses in the Alternate Address Record..........cccooccveeiieeeiiniiee e 86
Example of Creating an Alternate AdAreSScooeeiiiiiiiie e a s 86
How to Set Up the Alternate Address Table...........oouoiiiii e 86
How to Set Up the Relationship Tables and ReCOrds ..o 87
How to Complete the Relationship Tables and ReCOrds...........ccooiiiiiiiiiiiiiiiie e 87
Updating Addresses in Relationship RECOIASoiiiiii e e e 89
10T [T i) o SR 89
How to Update Records AutomatiCallyc.eeiiiiiiiiiiiiie e 89
Discontinued RelationShips ... 89
Reinstating a Discontinued RelationNShipcooo e 89
Saving Multiple Names and Social Security NUMDETSoccuiiiiiiiiieciie e 90
1] (o (BT (o o TSRS 90
Setting Up the Configuration Tablec.euriiiiiii e 90
Privacy Act Highlighting of Confidential Informationoooiiiiiiiii e 91
10T [T i) o SR M
1= TV = o] = PP 9
Privacy FIeld TabIeot e e e e et e e e e e e e e M
L o) 1 LT =T o o S 91
PrIVACY ACE REPOIT ... e et e e e bt e e e be e e e e anb e e e e e e 91
L 1VZ= oY 1= (o USSP 92
How to Highlight Confidential StatuSEsccuiiiiiiiiii e e 92

SECTION 7 - MAINTAINING SECURITY WITH PERMISSIONSccooiiiirnernnnn s 93

OIVEBIVIBW ...ttt h et h oot eh e e e ettt e bt e e b et e ket e e b et e ea et e bt e eab e e e b e e e e r e e nnn e 93
10T [T) o SR 93
Table of Permissions and CONMrOIS..........c.oouiiiiiiiiii e 93
[F= o = o [RSP RPR 94
DesCription Of DIAGIamcoiiiiiiie e s e a e e e a e e e e e 95

UNIX Groups and PermiSSIONS ... ittt e et e e e e e e e e et e e e e e e e e e aennneeaaaeaeanns 97
10T [T i) o SR 97
HOME DireCtory PErMISSIONSeiiiiiiiiiie ettt e e e e e e e et e e e e e e e aneeeeeeaeens 97
CommOoN JENZADAr CX GIOUPSuvuiiiiieeeieiiiitie et e e e e eee ettt e e e e e e et e e e e e e e e e e eabbaaeeeeeeeeesanabaseeeaeeeaeasreens 97
Using the Common JENZAbar CX GrOUPSuuiieiiiiieeeiitiieeesetieeeeseeteeeessstaeeesstaeeessseeeessasseeeessnseeeesanes 97
INtErPreting PeIMIUSSIONS ... e e e e e e e e e e e s e e e e e e e e e snnbaseeeeeeeaansntaneeeeaeas 99
EXamples Of PErMISSIONSuuiiiiiiiiiiiiiitiiie et e e e s e e e e e e e e e e e e e e e e saenasbeeeeaaeeessnraaeeeeaens 99
The Purpose of a Fourth Permissions Digit.............ooiiiiiiiiii e 99
Other COMMON GIOUPSiiiiiiiiiiee ettt ee ettt ettt e e ettt e e e e be e e e e sttt e e e e beeeeeaaateeeeeanbeeeeeanbeeeeeanbeeesantaeeeaans 99
F Y o] ol To= 1o T O T=T g (o TU] o T USSR 100
INSrUCHIONAl SYSTEM GrOUPSoiiiiiiiie it e e et e e e 100

UNIX Programming PermMiSSIONS.ccuiuuiiiiiiiiiiieiiit ettt ettt e e e e e e s nnn e e nneee s 101
10T [T i) o SO 101
AddItioNal SUGGESTIONSooiiiiiiie et e e et e e et e e e et e e e et e e e nreeaeennes 101
Bl o]0][] g oo 1 T [SRR SURTRR 102

Users Permissions to Schemas in the Data DiClionaryccccoveiiiiiiiiiie e 103
INEFOAUCTION ...ttt b e e bt e st e e et e st s r e e e ean e e 103
Changing Schema and Reassigning Permissionscccceeiiiiiiiiiiiii e 103

SECTION 8 — SYSTEM ADMINISTRATION.......ooiiiiiiininisnin s sss s s s sss s s sas s s snmsssnes 105

L0 YT 11 S 105
1o T [T o) o SO 105

Maintaining Directories and Files Using the Make ProCessor.............ooiiiiiiiiieiiiieeee e 106
10T [T i) o SO S 106
GINU MaKE PrOCESSOT ... eeeeeeeeeeee ettt e ettt e e e e e e ettt e e e e e e e e eeeeeeaeeeaanneaeeeeaeeeeaannsnneeeaeeaaannnnenes 106
Maintaining @ History Of Changes..........cuuiiiiiiiiii e 106
Expanding, Translating, and Installing SoUrce Fil€Scooiiiiiiiiiiiie e 106
Separate INStalled SOUICEuuviiiiiiic e e e e e e e e e e e e e anaees 107
(0] o] (=1 Al D1 (= Tox (o] (=T3PPS 107
Directory Structure Maintained by MaKeocooiiiiiiiiiiiee e 107
RCS DIFECIOMIES ...ttt ettt ettt h e s ettt e bt e s b et e b e e s an e e e an e e nar e e e nane e 107
R B =Ter (o] VA Y o= TR ORI 109
Initializing a Directory: the Makeinit Commandccoi i 112
File Names Maintained ...t e e e e e e e e e e e e e e s s ee e e e e e s nnneeees 112

USING the MaKE PrOCESSONeiiiiiiiiieiite ettt et e e et e e et e e sne e e e s eanneeas 113
10T [T i) o SO 113
Make Command LiNe STTUCIUIE...........ooiiiiiiii e 113
Standard MaKe TargelSueiii ittt st e e st e e s sttt e e e ase e e e e anse e e e s nreeeeannteeeaannaeeas 113
Target Naming Conventions: PrefiXeS.......oouuiiiiiiiiii et enees 113
Target Naming Conventions: SUMfIXEScoiuiiiiiiiie e e 113
Make Variables @nd VAlUES...........uoi it 114
LT 1= 1 1] £ PP PEUR ST 114

Make Processor Command QUICK REFEIENCEooviiiiiiiiiiii e 122
(07 (=T (oo J= T 1= RSP 122
(07 aT=Tel (1o To IO 1T o= T [USSP 122
TranSIating FilEs ..ottt e e s e e e et e e e et e e e e nb e e e e e 122
107 aT=Te (o To I [=T 11 PSPPSR 122
INSEAlliNG ODJECE FIlES ... e et e e 123
Checking In and INStalliNG FilES........c.uviiiiiiiie ettt et e e enaee e s nneeeas 123

vi

(070 1010 gF= T lo IS T=To [UT=Y o Lot SRS 123

Locating Macros Within @an AppPlICAtIoNooiiiiiiiiee e e e e e ee e e e e 124
10T [T o) o S SR 124
How to Locate Macros within an Applicationc.ooii i 124

Locating All Files That Contain @ MaCIO............coiiiiiiiie e 126
10T [T i) o SO 126
How to Locate All Files that Contain Macros. ... 126
How to Locate All Files that Contain a Specific Macro...........cc..eeiiiiiiiiii e 126

ST 1T aTo 8 o T 1Y = o7 o1 SRS 127
10T [T i o TSP 127
T PrOCESS. ... ettt ettt et e oo oo ettt e e e e e e e e aa bttt e e e e e e e e e anbeeeeeeeeeaanbereeeaaeeeeaaan 127
[(01T (o TS Y=Y AL o TN =Tl (o 1= SRS 127

Reinstalling Files That Reference a Modified Macro..............ueiiiiiiiiiiiiiiiiee et 129
1o T [T o) o OO 129
When t0 ReINSTAIl FlES e e e e e e r e e e e e e e s rreeeeaaeeeenans 129
WHhiCh Files t0 REINSIAIIeoiiiieieee e e e e e e e et ee e e e e e e e e snreeeeaaeeeenans 129
HOW t0 REINSLAIl FIlES ...t e e e e e e e e e ee e e e e e nneeee 129

Creating and Deleting USEr ACCOUNTSuiiiiiiiiiiiiiiie ettt eb e e e e 130
10T [T i) o SO 130
User ACCoUuNt REQUIFEMENES ... 130
Group REQUIFEMENTSuviiiiiii ittt e e e et e e e e e e e et e e e e e e e e e senbabeeeeeesaansnseees 132
Standard USer LOGIN NAMESooiiiiiiiieiiiiie et ee e sttt e e st e e e sttt e e e ssseeeessseeeesssaeeesnseeeenseeens 132
Standard Login NamEs LiSt.......ccoeuiiiiiiii e e e e e e e s e e e e 133
Home DireCtory PErmMISSIONSveiiiiii i e e e e e e e e e e e e e e e e enenreees 133
Users Permissions t0 SCheMI@S..........ooi it et e e st e e e sneee e 133
Accessing Multiple Database SYSIEMSouuiiiiiiiiie e 134
THE ADUSEIS.S FlE ..cceiieieeeeie ettt e e e e e st e e e e e e e e e et seeeeeeeeestnneeeeaeeeeennns 134
AQAING NEW USEIS ...ttt h et e e e a e e e e e i et e e e anb e e e e e eabe e e e e anneeeenbeeeeennee 135
Adding a User Needing Multiple PermiSSiONScooiiiiiiiiiiiiie et 136
Restricting @ User's ACCESS t0 IMENUSooiiiiiiiiii e 136
User Login INitIalIZationeeooiii et ab e 136
F e o[o = TS U] =Y 6 T RS 136
REMOVING USEI ACCOUNES ...ttt e e et e e e e e e e e et e e e e e e e s e snnbeeeeeaeeennenneees 137

Security for JENZabar CX Data........coiiiiiiiiiieiiie e e e e e e e e e e e e e e e e areaaaaas 138
] (o (BT (o o USRS 138
Types of Individuals AttemMPLiNG ACCESSccuuiiiiiieee et e e e e e e e e e eeaaeeeaes 138
PRYSICAI ACCESS ...ttt e e ettt e e e bt e e e aa bt e e e e enbeee e e anbe e e e e anbeeeeanbeeeeeabaeeaeaa 138
0o [T o g 1o oSSR 138
Login Usernames and PasSSWOIUS...........cuuiiiiiiiiiiiiiiie ettt st e et e e e s sbeeee e sneeeeans 138
= TS Yo T o AV F= T] (=T o F= T o o S 139
Changing PasSSWOITS.......couieiii ittt a bttt e e a bt e e e bt e e e aabb et e e aabe e e e e abeeeesnnneeas 139
LOGIN PrOCEAUIES.ottt ettt ettt ettt e e ettt e e e b bt e e e s bb e e e e sabb e e e e e anbeeeeeabeeeeesnbaeeeeaas 139
1= TS) (=Y o RSOSSN 139

Monitoring SystemM PerfOrManCEocueiiiiiiiiiie et e et e e s st e e e ssaee e e snneeesnneeeas 140
10T [1o i o TSP 140
The Process of Gathering System INformationcooocoiiiiiii e 140
SnNap-Shot Of SYSTEM ACHVITYueeiiiiiiee e e e e e e e 140

Testing SP00Ied PriNter DEVICESceiiiiiiiiieie et e e e e e e e e e e e s e seaabaree e e e e s nsnneees 141
10T [T i) o SO 141
Jenzabar CX Print SPOOIET ... et e e e e 141
The Lpinit COMMEANGoiiiiiiii et e et et e e s bt e e s e st e e e e enbe e e e e nbeeeennbeeeeennee 143
Testing a Printer USING LPINIT ...t 143

Setting UP @ SIAVE PrINTETcoo e s e 145
10T [T i o PSSP 145
SIAVECAP.S FilE ..veeeiiiiiieeee ettt e e e e e e e e e e e e e e e e e e anarees 145
Slave ENvVironmMeNnt Vari@bleoooiiiiiiiiiiie ettt e et e et e e s 145

vii

(g0 ToT=Yo (U] (= 3R 146

USING TAPE CONVEISIONeiiiiiieiiee e e e ettt e e e e e e et e et e e e e e et e aeeeeaeeeeaassssaaeeeaeeesaassssaneeeaeesaaassneeaaeeesaanns 147
10T [T o) o S SR 147
Other USEs fOr TPCONVETL ..ottt ettt e e et e e e e e e e e snee e e e anbeeesnneeeas 147
Program ParameEtersoooi it e e e e e sbr e e aeea e 147
What the Configuration File DOES...........ueiiiiiiiiiii e 148
What a Configuration File LOOKS LIKE..........cuuuiiiiiiiieiii e 148
Configuration File EXamMPIES.........coo it 148
Configuration File DefinitioNS.........ccoiiiiiieiiiie et e et e e et e e s e e e s nneeeesnnnneeas 150
File OPEIatiONS ...t e e e e et e e e e e e e e e et r e e e e e e e e esaaeeeaaeeeaeannsrees 151
FIEIA VAIUBS ...ttt ettt e e e e e e e et e e e e e e e e e e annreeeeaaeeeeaannneeee 152
o [o [1aTe I ¥ g o1 1] o 1= PP 153
FUNCHON PArametersocuiiiiiii ettt 154
OULPUL LEVEIS. ...ttt ettt ettt e e skttt e e e ne bt e e e e bt e e e e anbee e e snnneeeeannneeas 159

Performing Backup ProCeAUIESoo ittt as 162
10T [T i) o S 162
= Tod (W o 300U g oL S 162
= Ted (W 0 IR o | | S 162
Backup Of LOGICAI LOGSeeiiiiiiiie ittt sttt e e e s bt e e e s rabeee s sabeeee e 162
BacCKUD TapESo 162
=T o 1S3 =T o= 11 T PP UUPSURPRR 164
Examples of Information on Tape Seals or Outside Labels..............ccoooviiiiiiiiiiiiiii e, 164
Examples of Information on Tape LabelS..........ccoooiiiiiiiiiii e 165

Transferring Data ACross File SYStEMS..........ouiiiiiiiiii e 166
INEFOAUCTION ...ttt re et b e e b et e st e e b et e e e eane e 166
Preparing 10 MOVE Data.............oiiiiiiiee et e e 166
Process t0 Add @ NEW DiSK DIiVe........coo ittt e e e e e e e e ae e e e e e e e nenneees 166
Steps 10 MOVING the Datacooouiiiiee et 167

EXIracting Data t0 TaPES ...ccoiuiiiiiiiiiii ettt 168
10T [T i) o SO 168
Extracting Data Using an ACE RePOIcoo i 168
Executing the Tape RecOrd ACE REPOI........ocuiiiiiiiiie ettt e e st e e e sneeea e 168
TESHNG the OUIPUL ...ttt e st e e e et e e s e st e e e enbeeeeeanteeeennreeeeennnes 168
(01 ¢=Y=) ([a o R [T 1K= o= PSP SP 169

Setting Up a User’s File Transmit Capability...........cccuueiiiiiiiiiiiee e 170
INEFOAUCTION ...ttt re et b e e b et e st e e b et e e e eane e 170

Setting Up a User’s File Transmit Protocol - FTP Settingsccoooiiiiiiii e 171
Lo (T TS (o] ol I RSP 171
Macros Used t0 Set UP FTPttt e st e s s nee e e e sreeee e 171
FTP Settings in the .XFerrC Fileoo e 171
Sample XFerrc File fOr FTP ... ettt et e e e et e e e e e e e e e e e e e e e e e e e annes 171
FTP Settings in the .Nerc Filecoo i 172
SAMPIE NEIITC Fl ..t e e e e e e e e e e et ae e e e e e e e e anaeees 172

Setting Up a User’s File Transmit Protocol - QuickMate Settings..........cccceerieiiiiiiiii e, 173
Settings for QUICKIMAEEeiie ettt st e et st esnee e 173
Set XFER_PROTOCOL Macro for QUICKMate...........cuuiiiiiiie e 173
Modifying the XFER SCrIPL ... e e e e e e e e e e 173
Changing Default Location in the .XfErrC Fileoooouriiiiiii et 173
Adding a Menuopt for QuickMate DOWNIOAAScoiiiiiiiiiiiiiiie e 174

ReiNstalling JENZAbar CXottt ettt e e st e e s e e e n e e e nneeeas 176
1o T [T 1o) o SO 176
S Tel g o U 1= T T PSPPI 176
RUNNING thE SCIIPL ...t e et e e st e e e sbe e e e s abreee e 176
ProCesSING NOTEottt et e e e e e e e st ee e e e e e e e e annbeee e e e e e e nnnneeee 176
Maintaining Local CUSTOMIZAtIONSc.uuiiiiiiiie et e et e e s stae e e e sraeaeeans 177
Troubleshooting CUSIOMIZATIONSc..eiiiiiiiiie e e e et e e e e nee e e ennreeeeanees 177

viii

Restoring Your CUStOMIZAtIONScoooiiiiieiee e e e e e e e e e e e eaenreees 177

SECTION 9 — SYSTEM MAINTENANCE.........oo o oiiircrrrrrrmrerssssresssssr e s ss s e s ss s e eesssne e sesssnsenssssnsesens 179
L0 YT 11 SO 179
1o T [T o) o SO 179
Shutting DOWN the SYSTEM ... s s e e 180
10T [T i) o SO 180

ST U)o (o111 I o T =T U] 4 S 180
Powering DOWN the SYSIEIM ... et e e e e e 180
PoWeEriNg UP the SYSTEMcoiiiiiiiie ettt ettt e e ettt e e e e st e e e e snbee e e e sneeeesnraeeaeans 181

F Y= 1= o] L= 0o Ty g 4= T o £ USRS 181
Managing DiSK SPACE........ciiiiiiiieiiiiiie ettt e e e sttt e e st e e e ste e e e e aseeeee s sseeeeeansteeeeanneeeannteeeeeanneeeas 182
INEFOAUCTION ...t re et b e e bt e st e e st e st s e e enne e 182

P o [o [T aTe l DI Q] o= Lo YRR 182
Reorganizing DiSK SPACEouuuiiiiiiiiii ettt e e e e 182
Removing Bad BIOCKS from @ DiSKcoouueiiiiiiiiii et e 184
10T [T i) o S 184
Determine the Partition Relative Sector NUmber ... 184
Determine Which File Contains @ Bad SECIOr ... 185
Create a Link to the Bad SECHOro e 186
Remove the File with the Bad SECIOr..........cooiiiiiii e 186
REDOOE thE SYSTEIM ...ttt e et e e e ettt e e e snte e e e s snteeeeesbeeeeesaneeesanraeeaeans 187
SECTION 10 — CUSTOMER ASSISTANCE ... s s ssss s s sss s sssssssmsssses 189
OVEBIVIBW ...ttt h oot eh e e e ettt e bt e e bt e e b et e ea b et e ea et e eabe e ebe e e s b e e e s e e enne e 189
INEFOAUCTION ...ttt re et b e e b et e st e e b et e e e eane e 189
JENZADAT SEIVICES ...ttt ittt b e s et e et et e s et e ae e e et e e ene e eab e e e nnreenareas 189
Corporate COMMILMENTSooiiiiiie ettt e e st e e s aaab e e e e abe e e e e anneeesnneeeas 189
Quality Customer Service: How Jenzabar Delivers SUPPOIt.........occueiiiiiiiiie i 190
SMO and Revision Control System (RCS).......ouuiiiiiiiie e 190

RS TU] o] oTo] o ARST=] Vo= S 190
QUAILY ASSUFANCE SUIVEYciiiiiieiie ettt ettt eat e e et e e st ee e e aeeeaaeeeameeeesmseeanseeanseeeaneeesseeanneeans 190

L A 1 USROS 190
National Association of Jenzabar USers (NACU)cooiiiiiiiiiiiiie et 191
The National Association of CX USErs (NACU)........cuiiii ittt 192
INEFOAUCTION ...ttt ettt b e e bt e st e e et st e e e enn e e 192

) LTy T aTo J@7e) 0 010111 (=T USSP SP 192
ANNUAI CONFEIENCE ...ttt ettt eb e s e an e 192
SORWAIrE EXCRANGEooiiiiie ettt et e s et e e e e nte e e e e anne e e e s anneeeas 192
Yo T T =3 O 0] 1T SR 193
(07 | o] g =T o 1= £ RSP 193
SECTION 11 - TROUBLESHOOTINGoiiiiiiiirier s ssms s s smsssssss s s s ssms s ns s sms s sssmssnsmnsssnns 195
L YT 11 S 195
10T [T i) o SO 195
Product-specific TroubleShOOTINGcicuiiiiiiiiie e e sree e e e nreee e 195
Crash RECOVENY PrOCEAUIEoiiiiiiiie ittt ettt e s e e e et ee e e e annt e e e e anste e e e enbeeeeennteeeeennees 196
107 LI B 0T a g oI (=T oT0 1YY SRR 196
Troubleshooting Tips for System AdmINISratorseevviiiiiiii e 198
INEFOAUCTION ...ttt ettt b e e bt e st e e et st e e e enn e e 198
(0T 3 I OF= 1] Lo A I |1 o ST PP 198
Users Get Errors and Return to Menu or Login Prompt..........occeeiiiiiiiiee e 198
Users/Shell Commands are HanGiNgcoooiiiiiiiiiiiea et e e e sreee e 199
User/Program Permissions ProblemsS ...t 200
File Installs with Different than Expected Permissions............cciiiiiiiiii e 200
FSCK Errors That REOCCUN...... ... ettt e e e e e et e e e e e e e e e e e e e e e e nenneees 200

Locally Added Detail Window Causes COre DUMPooeiiiiiiiiiiiiiiiiee et 201

Print Jobs Sent to Spooler Do NOt Print.........oooiiiiiiiee e 201
APPENDIX — CX UNIX COMMANDS ... imre s s sssss e s sams s ssme s sms s s mn e s s s mna s e s mmn s 203
L YT 11 S 203
T 10T [T i) o S 203
Descriptions Of COMMEANASttt ee e e e e e e s et e e e e e e e e e nneeeeeeaeeeanenneees 203

£= o [0 (oo |1 o IO TP PPPOPPPRPOE 204
E= 1013 = PPNt 205
=] LT 1=)ROSR 206
(o= | c= | USROS 207
oo | (=1 o PRSP 209
(o3[o= | (= 10 SRR 211
L0707 0]/ 1 o 1 SRRSO 212
L©70])7/ 111 SO USROS 214
o7 o | PSR RPR 215
o3 ¢ T PSS 216
Lo €] 1= S 217
Lol oTaal o 4 F=T g T To = T PR PPPOPPPRPOE 218
Lo =T oo S 219
Lo]] U SRRSO 220
Lo =1 oo 1o SRRSO 221
L{1=T o= 1 4TSS URTURRRRUPOOt 222
LT 154 Ta Vo [P O PPRRRRIOt 225
1 E] oo o 1= USSP PRPPR 226
oo PRPPRR 227
o7 PSRRI 229
o7 o SRR 230
01T 1] SRS PPRO 231
o0 SO 232
DT ettt ettt et oo e e et et e oaeeeeeeeeeeeeaaoanteeeeeeeeeeaaaasseeeeeeeeeeiaaassteeeeeeeeeianseteeeeeeeeaaaannnneneeaaaaaann 233
o= To o1 QSO 235
0] =TT TSR RRPR 236
1 0 0 SRR STPTRRPR 237
L aF= 1 SRR 238
L0016 oo To 1= OO PPPPPR 239
TS0/ [T 1o TSSO PSPPI 242
(o111 (a LY o TU TR o] 41T RSO SR 244
o] ESTe] o PP PPPPPPPPPPPPN 246
(o] E=T oIz T To I o] (o] o] 110] o 1= TN USSR 247
Lo J PPN 248
L 0] 0o Lo] [T OSSPSR 249
LY T [18 o7 o TR 250
L] (o | o SRRSO 251
SetUP_ WED dbm ... 252
L] = Y= SRRSO 253
S SRS 254
00724 0TSSP PRPPR 255
0 oo LS =1 £SO PRPPR 256
1T OSSP PPTRPPPRPOt 257
INDEX ... s e s s e e s ame e s s me e s s me e e Se e e e eeaEe e e e aneeEeneneeneanneeeesaneeeenaanneriaaans 261

USING THIS MANUAL

Overview

Purpose of This Manual

This manual provides guidance and information on these processes:
e The general processes of implementing the CX system
¢ Information and procedures to guide you in the maintenance of the CX system

Intended Audience

This guide is for use by those individuals responsible for the implementation, customization, and
maintenance of the product.

Product Differences

This manual contains information for using all features developed for the Jenzabar CX product.
Your institution may or may not have all the features documented in this manual.

Structure of This Manual

This manual contains information for implementing and maintaining the common features of
Jenzabar CX. The manual’s organization follows:

Part | - Implementation
Section 1 - Preparation steps to implementation
Section 2 - Setup steps to implementation
Section 3 - Training steps to implementation
Section 4 - Go Live steps to implementation

Part Il - Maintenance
Section 5 - Product Releases and Revision Control
Section 6 - Database management information
Section 7 - System administration information
Section 8 - System maintenance information
Section 9 - Customer assistance information
Section 10 - Troubleshooting

Reference information
Appendix - Jenzabar CX UNIX Commands
Index

Implementation and Maintenance 1 Using this Manual

Conventions Used in This Manual

Introduction

Jenzabar has established a set of conventions to help you use this manual. The list of
conventions presented below is not exhaustive, but it includes the more frequently-used styles
and terms.

Style Conventions

Technical manuals observe the following style conventions.

Boldface type
Represents text that you type into the system (e.g., Type UNDG), command names (e.g.,
Finish), or keys you use to execute a command or function (e.g., <Enter>).

Bulleted lists
Show items not ranked or without a sequential performance.

CAUTION:
Indicates a caution or warning of a potential risk or condition.

<Enter>
Represents the Enter, Return, Line Feed, or ! key on your keyboard.

Italic type
Is used in any of these ways:
e To represent a new or key term
e To add emphasis to a word
e To cross-reference a section of text
e To represent a variable for which you substitute another variable (e.g., substitute
filename with an appropriate filename)

<Key name>
Represents a key that you must press.

Note:
Indicates a note, tip, hint, or additional information.

Numbered lists
Show ranking of items or sequence of performance.

Parentheses
When used around a field name, indicate the field is unlabeled. The field description
includes the location of the field.

Quotation marks
Represent information written in this guide exactly as it appears on the screen.

Example: The message, "Now Running..." appears.

Jenzabar-Specific Terms

The following list identifies term conventions used in this guide.

Application
A group of one or more software programs that enables you to perform a particular
procedure, such as entering student information.

Using this Manual 2 Implementation and Maintenance

Data
Specific information you enter into fields on a particular data entry screen.

Enter
To type information on a keyboard and execute by any of the following actions:
¢ Pressing the <Enter> key
o Clicking on the OK button
¢ Selecting Finish.

F key
Any of the function keys located on your keyboard (e.g., <F1>).
Hot key
The capitalized and underlined (or highlighted) letter of a command on a menu.
ID
The number assigned to each student or organization associated with your institution (e.g.,
12345).
Institution
An established organization of postsecondary education that supports all operating functions
(e.g., a college or university).
Parameter
A variable in the system that is given a constant value for a specific application (e.g., a date
can be a parameter for producing a report).
Select
To execute a command by any of the following actions:
¢ Performing the keystrokes
¢ Pressing the hot key
¢ Highlighting the command or option and pressing the <Enter> key
¢ Clicking with the mouse
System
The Jenzabar product, CX.
Type
To press keys on a keyboard so that text or characters to appear in a specific position on the
screen. To execute a command or function, you must also perform either of the following
actions:
o Press the <Enter> key
¢ Click on the OK button
¢ Select Finish
Keystrokes

When you see two keys separated by a dash (e.g., <Ctrl-c>), hold down the first key (Ctrl) while
pressing the second (c).

Implementation and Maintenance 3 Using this Manual

PART | - IMPLEMENTING JENZABAR CX

Overview

Introduction

Part | of this manual provides information about the phases of the implementation process.
These general phases, which occur for the implementation of each CX product, are as follows:
e Preparation
e Setup
e Training
e Go Live

Each phase contains defined tasks for the institution and Jenzabar staff.

Categories in Jenzabar CX Implementation

The following lists the major categories into which CX implementation is divided.
Letter of Intent
Implementation Schedule
Signed Contract

Client Preparation
System Installation
Setup

Client Training
Consultation

Go Live

SMOs

Support

Purpose of Implementation

The purpose of performing the system implementation is to ensure that the system functions as
follows:
¢ At the performance level, standardized in the design of the CX base product.
o At the performance level, required as a result of modifying the CX base product to meet an
institution’s unique needs.
o A fully-integrated system.

Program Manager

Upon the contract being signed, Jenzabar assigns the institution a program manager from
Implementation Services. The program manager is the daily point-of-contact between Jenzabar
and the institution for the implementation of all contracted modules, and has expertise in one or
more of the functional areas being implemented. The program manager does the following:

e Calls upon Jenzabar coworkers with expertise in other areas

e Contacts Jenzabar coordinator to help begin the project

¢ Focuses on setting up institutional values in CX, and on converting appropriate information

from existing systems into CX

Implementation and Maintenance 5 Overview

SECTION 1 - PREPARATION PHASE

Overview

Introduction

This section describes the general tasks in the Preparation phase of implementing CX. The
Preparation phase occurs for each area of the institution that is implementing CX product(s).

Goals of the Preparation Phase

The goals of the Preparation phase of implementation are:
¢ To gather the specific information needed to set up CX product(s) according to the
institution’s needs and desires
e To determine the effects of switching from the old system to CX to the institution’s offices,
staffing, processes, and policies

Duration of the Preparation Phase

This phase in the implementation process begins with the sending of the Letter of Intent. The
phase ends when the institution delivers a Data Conversion plan to Jenzabar. A typical duration
for this phase is six to eight weeks.

General Tasks

The following lists the general tasks that the institution must complete in the Preparation phase.
Develop and complete a data conversion plan

Determine changes to processes

Determine office/staffing structure

Determine inter-office processing issues

Determine reporting/letter writing requirements

Determine changes to screens

Determine the institution’s readiness to continue to the Setup phase

Provide Preparation phase information to Jenzabar

Jenzabar staff uses the information gathered from these tasks in the Setup phase of
implementation.

Jenzabar Involvement

This phase involves one or more on-site visits by Jenzabar personnel, including the program
manager and other Jenzabar staff, depending on the number of modules being implemented.

Training comprises the major component of the Jenzabar implementation on-site visits. Also, the
account manager works closely with institutional staff to monitor the progress of the setup and
conversion. To achieve this, the account manager:
¢ Reviews institutional needs
¢ Advises institutional staff on how to ensure that screen and report designs meet institutional
needs
e Conducts a demonstration, providing an overview of CX to members of the customer
administration and staff
o Determines the setup for the institution

Implementation and Maintenance 7 Preparation Phase

Jenzabar Implementation Policy and Pre-Implementation
Requirements

Policy

The institution must complete a list of requirements to prepare for system implementation. This
list of requirements includes all tasks necessary to ensure the following:
¢ The institution provides required training to appropriate staff
¢ The institution identifies and lists required system modifications
o The institution tests system hardware to ensure correct functioning
e The institution reports hardware malfunctions to the Jenzabar Support Services prior to the
on-site implementation visit by Jenzabar

These requirements must be completed before the Jenzabar on-site visit; any task not completed
will critically affect the success of the implementation. If Jenzabar must spend additional hours
providing training, that was not completed before the on-site visit, less time will be available for
implementation. If such a situation occurs, the institution will be billed for any additional
implementation hours.

Pre-Implementation System Modification Requirements

The implementation process requires your institution to complete procedures for customizing
standard system features. These include macros, includes, parameters, menu options, screens,
and reports, that are contained in the CX standard product.

During the implementation process, the Jenzabar system coordinator must identify any required
changes to customize the CX standard product. If an institution requests that Jenzabar make
these modifications during implementation, the institution may incur charges for the extra hours
spent on customizations.

If the Jenzabar system coordinator identifies extensive system modifications (e.g., modifications
to source code libraries), then Jenzabar must be notified.

Pre-Implementation System Hardware Requirements

The institution must prepare for the on-site implementation visit by ensuring that all hardware
required for implementation, including personal computers, printers, and peripherals, is tested
and working properly.

Preparation Phase 8 Implementation and Maintenance

Customer Implementation: Suggestions for Organizing the Project

Introduction

When the customer signs a contract they make a major commitment to enhancing the way
business is conducted. This commitment may be motivated by a desire to provide better service
to students, to provide better reporting to internal and external constituencies, or to improve a
competitive position. In a well-organized implementation project, these desires are expressed as
objectives, the completion of which will result in achieving the major goals.

You must do the following to ensure the implementation's success:

Keep senior administration's commitment throughout the duration of the project
Maintain constant sight of project goals

Keep all project staff apprised of the primary goals

Keep all project staff aware of specific responsibilities

Making Project Assignments

Success is achieved when senior administrators are involved throughout the project, at each

appropriate level. Jenzabar recommends that an existing executive council or cabinet establish

a steering committee for the project. The committee should have the following responsibilities:
o Setting the project structure and organization

Assigning key roles, and identifying project leaders

Setting the overall implementation timeline

Making major decisions about policy issues

Ensuring regular substantive progress reports

Taking action on progress reports

Reviewing Jenzabar trip reports after each visit

Acting on Jenzabar trip reports, as required

Key Positions and Roles

Jenzabar recommends that the institution identify the following implementation staff:
e Jenzabar system administrator
e Jenzabar system coordinator
e Person responsible for an institutional function
e User group
e Project team

Jenzabar System Administrator

This position requires that the individual:
o Be at the institution's executive level
¢ Be responsible for monitoring the contract with Jenzabar
¢ Be in a position to ensure that the contract terms are being met
¢ Will have been involved in the negotiation of the contract

Note: This placement of the role ensures that any changes requested by lower-level staff
receive appropriate scrutiny.

The Jenzabar points of contact for the Jenzabar administrator are normally at the management
or executive level.

Implementation and Maintenance 9 Preparation Phase

Jenzabar System Coordinator

This individual is the primary point of contact between the institution and Jenzabar. This
individual must:
¢ Be responsible for the operation of an CX product as it is configured at the institution
¢ Be the chair of a CX users group
¢ Have a wide view and understanding of the institution's operations
e Have seniority sufficient to enable effective communication and authority at all levels of
staffing

Note: The Jenzabar system coordinator must have a strong technical background, must
know the structure of CX in its operating environment, and must champion the use of
the system by end users.

Application Coordinator

This individual:

¢ Is responsible for implementing a CX module or application

¢ Holds a technical or functional position at the institution and is able to perform

implementation tasks

¢ Chairs the project team (key users from offices directly affected by the module or
application)
Coordinates needs assessment for a module to identify required changes in functionality
Identifies tasks that correspond to institutional policies and operation of CX
Assists the Jenzabar system coordinator in setting up and configuring CX
Develops an ongoing training program for end users, based on Jenzabar training
Represents the office of the Jenzabar users group

Jenzabar CX Users Group Representatives

Implementing CX often results in changes to customer policies and procedures. These changes,
which affect several areas of operations, result from opportunities to improve policies and
procedures developed for manual, paper-driven environments.

The purpose of the Jenzabar CX users group is to ensure that the causes and benefits of these
changes (often referred to as cross-functional issues), and the resulting new policies and
procedures, are adequately communicated to everyone who is affected.

Jenzabar strongly recommends that a user group be formed, with the following membership:
e Chair: this is the Jenzabar system coordinator
¢ Anyone responsible for the institutional function
¢ Anyone affected by a CX module or application

Representation could, for example, include the persons responsible for the institutional function
for each of the following modules: Admission, Registrar, Program and Degree Audit, Financial
Aid, Student Services, Student Accounting, Financial, Payroll, Alumni/Development, Academic
Affairs, Academic Advising, Housing, Library, and Bookstore.

Preparation Phase 10 Implementation and Maintenance

Establishing the Jenzabar CX Users Group Structure

Jenzabar System Users Group Structure

Cross-functional issues should be reviewed by the Jenzabar CX users group, which identifies
policy issues, informs the steering committee of them, and establishes new procedures that
expedite operation of CX.

For each module being implemented, a project team needs to be established. This team is led by
the persons responsible for the institutional functions directly affected by the module, as well as
other designated institutional staff.

The project team for the Registrar module might include the following:
o Person representing the Registrar's office as the chairperson
e Person representing Admissions
e Person representing Financial Aid and Student Accounts
o Person representing Academic Affairs and other academic departments

In addition, representatives from Housing, the Bookstore, and the Library might participate when
the module affects their operations.

Note: When policies and procedures, which were traditionally the responsibility of the
Registrar's office, have been decentralized and moved to other offices, it is important
to include representatives from those operations.

Implementation and Maintenance 11 Preparation Phase

Reviewing Data in Tables and Records

Introduction

After assessing features of the CX product and setting the appropriate enable macros, you must
review the setup of CX tables and records.

Procedure
The following list provides the steps to review the values of the CX tables and records.

1. For each table, review the codes supplied with CX. Determine whether or not the codes
meet the needs of your institution. Make updates as appropriate.

2. Review the institution’s records converted from the previous system. Determine whether or
not the records need to be updated to meet the needs of CX reports. Make updates as
appropriate.

Preparation Phase 12 Implementation and Maintenance

SECTION 2 - SETUP PHASE

Overview

Introduction

This section describes the general tasks in the setup phase of implementing CX. The Setup
phase occurs for each area of the institution that is implementing a CX product(s).

CX contains database tables, macros, includes, and parameters that enable you to change the
following:

What text appears on the screens

o How text appears on the screen

¢ Which system options are available to you

e How the system options function

Thorough knowledge of an institution's processing policies and procedures, coupled with skill in
using UNIX, ensures that you can implement and modify the tables, macros, includes, and
parameters in CX.

Goal of the Setup Phase

The goal of the Setup phase of implementation is to set up the features of CX product(s)
according to the institution’s needs and desires.

Duration of the Setup Phase

This phase in the implementation process begins with the Project Kick-off, the first on-site
implementation visit by Jenzabar staff. The phase ends when the institution agrees that CX
product(s) has been set according to their needs and desires. A typical duration for this phase is
four to six weeks.

General Tasks

The following lists the general tasks that Jenzabar must complete in the Setup phase.

¢ Installing CX and INFORMIX software on the institution’s UNIX system
Set macros and includes for CX product in accordance with the institution’s desired setup
Set the institution’s desired values in CX Common tables
Set the institution’s desired values in CX product-specific tables
Customize screens, menus, and reports in accordance with the institution’s desired setup
Set up the Communications Management product in accordance with the institution’s
desired setup

Implementation and Maintenance 13 Setup Phase

Installing the System

Introduction

When the hardware and operating system are in place at the institution, a Jenzabar Technology
Consultant does the following:

e Configures the hardware and UNIX operating system for CX software
Installs CX software
Installs the INFORMIX software
If purchased by the institution, installs the associated third party software (e.g., PowerPlay)
Tests the system processes to ensure the system is functioning as negotiated

Jenzabar Technology Consulting also provides appropriate follow-up support for the installation.

Standard Setup

The Jenzabar Technology Consulting group installs CX with each product that the institution has
purchased. Since you can customize CX, many features of the product can be enabled and
disabled according to your institution’s needs. Jenzabar delivers CX products in a standard setup
where:

e Macros and includes are set with a commonly used setting

e Tables contain standard values (e.g., State table contains State codes)

During the Setup phase of implementation, Jenzabar staff may customize the standard settings
for the CX product using the information gathered during the Preparation phase of the
implementation.

Setup Phase 14 Implementation and Maintenance

Setting Tables and Records

Introduction

You must set up database tables in order to successfully implement and use CX. You update
these tables from the CX menu system, rather than from the UNIX prompt.

This section provides the following important information for setting up tables:
e An overview of setting up tables, which includes information on selecting the table(s) to add
or update, and further reference materials you can use while setting up tables
e The procedure for adding or updating tables

The data that you enter in the database tables establishes the values that will appear on the
PERFORM screens and on reports.

Selecting the Tables

Select the tables to set up from the System Management: Table Maintenance Menu. While you
use the table maintenance menus, be aware of the following information:
e The modules and tables listed on the table maintenance menus are not necessarily
presented in the order in which you will complete them.
¢ You can modify or delete table entries at a later time.
¢ You should run the reports for the tables you set up. These reports not only provide a
paper copy of each table's contents, but also allow you to review the table data for
accuracy.

Reference Guides

Use the Technical Reference manual corresponding to the application to assist you in setting up
the tables. The reference material contained in the following guides includes tables for a
particular module or application, as well as supporting information and the table reports to assist
you in setting up tables.

The Process for Setting Up Tables

The following list describes the process involved in setting up tables.

1. Review the data that currently resides in the existing tables and compare them with the
institution's requirements.

2. Ensure that table macros and their table values coincide.

3. Review all tables that were added or updated by other areas of an institution during
implementation, and add values to the tables as necessary.

Table Macro and Values

Step 2 of the process for setting up tables (from above) requires that you ensure that table
macros and their table values coincide. This phase is very important in the process for setting up
tables because you must not only add or update the tables to ensure that the required values
exist, but you must ensure that there is a link between each of the table values and the table
macros that exist.

Implementation and Maintenance 15 Setup Phase

Common Tables

Introduction

Common tables are tables that can be accessed from any of the applications of CX. For
example, several applications use the Contact table (ctc_table).

Note: For more information about the Common tables, see Common Tables and Records in
the CX System Reference Technical Manual.

Prerequisite tasks

Before you begin to modify any common tables, you must check with other departments at an
institution to find out if any other Jenzabar implementation(s) has occurred, and which common
tables were affected by the prior implementation(s). It is very important that you perform this
checking so that you do not inadvertently negate the work performed by individuals in other areas
of an institution.

Common Tables

You can find a list of the particular common tables to review or update while implementing a
certain application by referring to the implementation process checksheet for the application you
are implementing. It is important to update the common tables in the order in which they are
listed.

Setup Phase 16 Implementation and Maintenance

Application-Specific Tables

Introduction

Application-specific tables are tables that only a particular application accesses. Any
modifications you make to application-specific tables should not have an effect on how other
Jenzabar applications run.

Prerequisite Tasks

Before you begin to modify any tables, you must first gather the data that will be used to populate
the tables (e.g., the grades issued by the college).

When you are ready to begin modifying the tables, refer to the implementation process
checksheet for the application you are implementing. The checksheet will give you the order in
which you should review or update the application-specific tables.

Application-Specific Tables

You can find a list of the application-specific tables to review or update while implementing a
particular application by referring to the appendix of the application you are implementing. It is
important to update the application-specific tables in the order in which they are listed in the
process checksheets.

Communications Management Tables

You must set the tables required for the Communications Management product. Various CX
products use Communications Management to automatically create Contact records and
schedule the creation of letters. For more information, see the Communications Management
User Guide.

Implementation and Maintenance 17 Setup Phase

Adding or Updating Entries in Tables

How to Add

or Update Entries in a Table

Use the following procedure to add or update entries in a table.

1.

Select System Management from the Jenzabar CX College: Master Menu. The system
prompts you for your password.

2. Enter your password. The System Management: Main Menu appears.

3. Select Table Maintenance. The System Management: Table Maintenance Menu appears.

4. Select the module group that contains the table you want to add or update. The System

Management: Table Maintenance Menu - Modules (A-L) or Modules (M-Z) appears.

Select the module that contains the table in which you want to add or update entries. The
table maintenance menu for the module you selected appears.

Select the table in which you want to add or update entries. A window that contains
instructions for producing the table you selected appears.

7. Select Finish. The PERFORM screen for the table you selected appears.

8. Select Query. The cursor moves to the first field on the screen.

9. Press <Tab> to move to a field on which you want to query, then enter the value in that field.

10.

11.

12.

13.

14.

The cursor moves to the next consecutive field on the screen.

Repeat step 9 for all the fields on which you want to query. Select Finish.
¢ If a record meets your criteria, then the data from that record appears in the fields on
the screen.
¢ If more than one record meets your criteria, the data from the first record appears, and
a message appears on the comment line to tell you how many records were found for
this query.
¢ If no record meets your criteria, a message appears on the error line indicating this.

Do you want to add or update a table?
¢ If you want to add a table to the database, select Add and go to step 13.
¢ |f you want to update the table on which you queried, select Update and go to step 13.

The cursor moves to the first entry field on the screen.

Enter data in as many of the fields as necessary, according to the field descriptions in the
corresponding Tables and Table Reports Reference guide, then press <Esc>. The data is
added to the database.

Do you want to add or update another database table?
o |f yes, go to step 12.
¢ If no, go to step 15.

Select Exit, then press <Enter>. The System Management: Table Maintenance Menu
appears.

Setup Phase

18 Implementation and Maintenance

Setting Macros and Includes

Introduction

You must set macros and includes for a CX product to define default values in screens and to
enable and disable features of the product.

Note: For more information about macros and includes, see the following in the CX System
Reference Technical Manual.
— CX Macros
— CXIncludes

Macros and Includes

Before you begin to modify any macros and includes, you must first gather the data that will be
default values used in fields and know which features of the system that you want to enable or

disable.

When you are ready to begin modifying the macros and includes, refer to the implementation
process checksheet corresponding to the application you are implementing to find out the macros
and includes that you must set.

Implementation and Maintenance 19 Setup Phase

Customizing Screens, Menus, and Reports

Introduction

This task in the Setup phase is based on the institutions desired changes to the standard CX
screens and menus.

Screen Definition Files

To modify a standard CX screen, you must access and modify the screen’s definition file. See
Screens and Forms in the CX System Reference Technical Manual for more information on
modifying screen definition files.

Menu Screens

To modify CX menus and menu options, you must do the following:
¢ Modify a menusrc file to add or delete menu options in a menu screen
¢ Modify a menuopt file to change a menu option screen
¢ Modify a menuparam file to change menu processing parameters

See The Menu System in the CX System Reference Technical Manual for more information on
modifying menu option and parameter files.

Reports
To modify CX reports, you must use the ACE Report Writer to modify the report.

See Reports and Output Control in the CX System Reference Technical Manual for more
information on modifying ACE reports.

Setup Phase 20 Implementation and Maintenance

SECTION 3 - TRAINING PHASE

Overview

Introduction

This section describes the general tasks in the Training phase of implementing CX. The Training
phase occurs for each area of the institution that is implementing a CX product(s).

Goals of the Training Phase

The goals of the Training phase of implementation are:
e To create a training database
¢ To provide user training on the basics of CX
e To provide user training on locating and entering data using CX
o To provide training on the features and processes of the specific CX product

Duration of the Training Phase

This phase in the implementation process begins with the first End User Training visit by
Jenzabar staff. The phase ends when the institution agrees that the training has been complete
and effective. A typical duration for this phase is ten to twelve weeks.

Technical Training

Jenzabar delivers technical training after the contract is signed. The person responsible for the
daily operation of CX, the Jenzabar system coordinator, attends Jenzabar technical training. The
technical training is delivered with the following courses:
o Fundamentals of UNIX, INFORMIX SQL and INFORMIX Online, which teaches the client
the CX technical operating environment
e Database Tools and General Utilities, which teaches the client the CX structure, and how to
manage this structure
e Conversion Workshop, which teaches the client the method to converting the institution’s
data to CX format

Implementation and Maintenance 21 Training Phase

Creating a Training Database

Introduction

To allow users the ability to practice and become skilled in using CX product(s), the institution
must create a training database. To create the database containing test data, which users can

use in training, you must perform the data conversion process using a Jenzabar-provided utility,
tpconvert.

The Jenzabar system coordinator attends the Data Conversion course offered by Jenzabar
before performing the data conversion process.

Note: A benefit to creating the training database is that you perform a dry run of the

conversion process before performing the final data conversion, the last task in the Go
Live phase.

Tasks for Creating the Database

The Jenzabar system coordinator does the following to create the training database:
o Creates a configuration table that defines:
— The positions within an input record that contains pertinent data
— What to do with that data
o Executes the tpconvert tool, specifying the configuration table
o Tests that the converted files have correct fields and information
¢ Tests a sampling of reports for correct functioning using the converted data

Note: For more information, see Using Tape Conversion in this manual.

Training Phase 22 Implementation and Maintenance

Jenzabar CX Training

Introduction

The Jenzabar system coordinator provides the basic CX training the end users of the institution.
This basic training occurs prior to the product-specific training visits by Jenzabar staff. The
product-specific training provides instruction on using the features of the particular product area
that users will use.

Creating Logins

The Jenzabar system coordinator must create user logins and establish appropriate permissions
before the users can log in and use the training database. For more information, see the
following in this manual:

e Creating and Deleting User Accounts

e CX Groups and Permissions

System Basics

The Jenzabar system coordinator provides the following basic training to users:

Using terminals and/or PCs, and printers

Logging in and out of the system

Using CX menus

Using electronic mail

Using CX Query, Table Lookup, and ID-type command procedures to locate data on the
system

¢ Using CX data entry screens and detail windows to add and update records

Note: Jenzabar recommends that the Jenzabar system coordinator provides this basic
training to end users just prior to product-specific training provided by Jenzabar.

Product-Specific Training

The Jenzabar staff provides product-specific training occurs in the following ways:
e Overview training on the product’s features
e Training on the processes for using the product
¢ Training on using the product’s reports, forms, and letter producing features

Implementation and Maintenance 23 Training Phase

Training Facility and Equipment Requirements List

Introduction

To successfully implement the CX product at an institution, the institution must meet specific
facility and equipment requirements. These pages list the facility and equipment requirements
necessary for Jenzabar to assist the institution in implementing CX products.

Training Facility and Equipment Requirements

The following list contains the requirements that an institution must meet before implementing
CX:

Cleared schedules of key implementation individuals

Freedom from telephone calls

A training room that is quiet and distanced from other activities

A blackboard or flip chart (optional, but recommended)

An overhead projector (optional)

Terminals (preferably one terminal per trainee)

Note: Test all terminals, PCs, and printing devices for proper functionality before Jenzabar
representatives arrive at the institution.

Training Phase 24 Implementation and Maintenance

SECTION 4 - GO LIVE PHASE

Overview

Introduction

This section describes the general tasks in the Go Live phase of implementing CX. The Go Live
phase occurs for each area of the institution that is implementing a CX product(s).

Goals of the Go Live Phase

The goals of the Go Live phase of implementation are:

e To determine if the institution requires additional Jenzabar assistance in:
— Fixing problems with processing, data conversion, or end user procedures
— Making further modifications or enhancements to CX

o To confirm that the institution is satisfied with:
— The functioning of CX
— The implementation project as a whole

o To perform final data conversion and begin processing live data using CX

Duration of the Go Live Phase

This phase in the implementation process begins with the determined Go Live date. The phase
ends when the institution agrees that the institution is processing correctly using live data. A
typical duration for this phase is eight to ten weeks.

General Tasks

The following lists the general tasks that the institution must complete in the Go Live phase:
Determine if the institution needs Jenzabar assistance

Determine if the institution needs modifications and/or enhancements made to CX
Revise the computer system policies and procedures towards operating CX

Confirm that CX is functioning correctly

Review the implementation project

Determine if the institution is prepared for final data conversion

Perform the final data conversion

Implementation and Maintenance 25 Go Live Phase

Additional Jenzabar Assistance

Introduction

Some issues, which arise on every project, are unique to the institution and cannot always be
resolved according to standard implementation strategy. Jenzabar contracts contain provision for
consulting with Jenzabar staff, who have expertise in areas where choices and alternatives exist.

Note: The significant background of Jenzabar staff in higher education proves highly
beneficial in this area.

When an institution wants to modify the CX product, there are three options:
o Perform a local modification, with or without the assistance of Jenzabar
e Submit a Product Modification Request (PMR), requiring Jenzabar to perform the
modification based on specifications, which the customer prepares.
e Submit a Product Enhancement form, requiring Jenzabar to make a specified
enhancement to a CX product

Note: See your Program Manager for copies of the Product Modification Request or Product
Enhancement form.

Product Modification Request Approval and Submission

A designated representative of the institution submits the PMR to Jenzabar after personnel at the
institution complete, review, and approve the PMR. The personnel are the following:

The designated representative of the institution

¢ Computer center staff

o Appropriate administrators

e End users of the CX product

Product Modification Request Process

The following lists the steps in the product modification request process. The client must submit
all documents related to the product modification process to the Jenzabar vice president of
Product Services.

1. Client obtains the PMR form from the Jenzabar account manager, completes it, and submits
it to Jenzabar .

2. If Jenzabar is to develop or assist in developing the PMR, or develops a requirements
document on the client's behalf, the client submits a purchase order for this cost. This is
done before Jenzabar begins developing these documents.

3. Jenzabar performs the following activities within 30 working days of receiving the PMR:
¢ Reviews the PMR and/or requirements document, and advises the client in writing of a
decision of whether or not to proceed
e Sends the client a written quote for the projected total cost of the project, in addition to
a Requirements Acceptance Agreement

4. Client signs and submits to Jenzabar the Requirements Acceptance Agreement and a
purchase order for the cost of the top-level design.

5. Jenzabar does the following:
¢ Advises the client in writing of the decision of whether or not to proceed, and sends the
client a top-level design schedule within 10 working days of receiving the
Requirements Acceptance Agreement and the purchase order
o Completes the top-level design

Go Live Phase 26 Implementation and Maintenance

e Sends the client a design document, a revised cost quote (if one is required), and a
Design Acceptance Agreement

6. Customer signs and gives Jenzabar the Design Acceptance Agreement, and the purchase
order for the cost of the remainder of the project.

7. Jenzabar provides the client in writing a design schedule and product modification delivery
date. This is done within 10 working days of receiving the Design Acceptance Agreement
and a purchase order.

The Product Enhancement Form

An institution requesting Jenzabar to modify the CX standard product must complete a Product
Enhancement form. Institutions use the Product Enhancement form to define only the general
product modification requirements in the CX standard product.

After an institution completes the Product Enhancement form, the institution submits the form to
the Jenzabar senior product manager. The senior product manager evaluates the form and
directs the Product Enhancement form to the appropriate product manager.

Note: An institution requesting Jenzabar assistance to implement a local modification unique
to the institution must complete a Product Modification Request (PMR) form.

Implementation and Maintenance 27 Go Live Phase

Ensuring Customer Satisfaction

Introduction

Before Jenzabar completes the implementation process at an institution, they perform various
tasks to ensure that the institution is satisfied with the functioning of CX and the implementation
project.

Note: For more information on Jenzabar customer assistance, see Customer Satisfaction in
this manual.

Confirming Correct Functioning

Jenzabar requires that the institution confirms that CX is functioning correctly. The objectives of
this task are as follows:
e To ensure that CX is functioning and being used in accord with institutional policy (review
the integration of the system and end user processes)
o To ensure that the user interface is correct, efficient, and effective
o To ensure that the appropriate staff are assigned to tasks
e To ensure that procedures are documented and are usable and current

If the institution determines that the system is not functioning correctly in any of the above
aspects, Jenzabar will take steps to correct the situation.

Go Live-Implementation Review

Jenzabar conducts a Go Live-implementation review, based on the strong belief that the end of
the implementation project is as important as all other phases.

Jenzabar conducts this review, which involves members of the Jenzabar executive

management, meeting on campus with members of the customer's executive administration and
project team.

In this joint review, both parties evaluate whether or not those responsible met the objectives
identified and agreed upon at the beginning of the project. Also, both parties look for the best
strategy to maintain the customer/Jenzabar relationship.

Go Live Phase 28 Implementation and Maintenance

Final Data Conversion

Introduction

The Jenzabar system coordinator must perform the final data conversion process before the
institution can use live data using CX. The Jenzabar system coordinator must perform the final
data conversion process using a Jenzabar-provided utility, tpconvert.

The Jenzabar system coordinator attends the Data Conversion course offered by Jenzabar
before performing the data conversion process.

Note: The Jenzabar system coordinator performs a dry run of the conversion process by
creating the training database; however, Jenzabar recommends that the process be
performed multiple times before the final go live date..

Tasks for Data Conversion

The Jenzabar system coordinator does the following to convert the institution’s data:
o Creates a configuration table that defines:
— The positions within an input record that contain pertinent data
— What to do with that data
o Executes the tpconvert tool, specifying the configuration table
¢ Verifies that the converted files have correct fields and information
o Tests screens for correct functioning
¢ Tests a sampling of reports for correct functioning using the converted data

Note: For more information, see Using Tape Conversion in this manual.

Implementation and Maintenance 29 Go Live Phase

PART Il - MAINTAINING JENZABAR CX

Overview

Introduction

Part Il of this manual provides information and procedures for maintaining CX and the UNIX
machine. This part of the manual groups maintenance information in four categories:

¢ SMOs and Revision Control

o Database Management

e System Administration

¢ System Maintenance

Also provided are customer assistance and troubleshooting information.

General Maintenance

This section provides information for maintaining the common aspects of CX. For maintenance
information and procedures for specific CX products, refer to the Technical Manual for the
specific product.

Background Knowledge

The following list describes the necessary background information that you should know to
support CX.

UNIX
Know the following about the UNIX operating system:
e Csh environment and commands
¢ Editor commands (e.g., vi)

INFORMIX-SQL
Know about the following INFORMIX tools:
e SQL database
e PERFORM screens
o ACE reports

Jenzabar CX database tools and utilities
Know how to use the following database tools:
e Schemas
e Macros
¢ Includes
e Program screens

Jenzabar CX
Know the following about the CX standard product:
e CX directory structure
e The menu processor
e The Jenzabar CX database engine

QuickMate features
Know the following about the Jenzabar CX Graphical Server:
Client/Server processing
o Network settings
o Keyboard settings
e Mouse settings
¢ GUI mode commands

Implementation and Maintenance 31 Part Il - Overview

SECTION 5 - SMOS AND REVISION CONTROL

Overview

Introduction

This section provides information about SMOs (System Modification Orders) and the Revision
Control System (RCS). Jenzabar distributes all enhancements and changes to CX by means of
SMOs. A SMO is the following:
o A directory containing subdirectories and files.
e The outcome of a development activity or project, which, when installed on a client site,
updates the system.
¢ Everything necessary for a client to update CX, including all changes to schemas, reports,
documentation, screens, objects, and/or C code.

This section discusses the following about SMOs:
e Depositing the SMO

Installing the SMO

Resolving local customizations

Troubleshooting

Merging files

Archiving

Macros

CX uses the Revision Control System (RCS) to maintain and control all changes to files,
programs, and reports.

SMO Definition

A SMO is a set of software revisions to accomplish given tasks and typically contains changes to
one or more of the following:

Schemas

Reports

Documentation

Screens

Objects

C code

Macros

Creation Process

The following lists the phases that occur in the creation of a SMO.
1. A project is approved and scheduled, usually as a result of an internal or client request.

2. When beginning the project, Jenzabar does the following:
¢ Assigns a new SMO number to the project
e Adds a SMO directory onto the CX development database, where all changes are
checked into the SMO

3. When ending the development work of the project, Jenzabar does the following:
e Closes the SMO
¢ Finalizes the README file

Note: READMEs are reviewed by at least three Jenzabar personnel.

4. The SMO is ported to all in-house beta databases and the responsible Quality Assurance

Implementation and Maintenance 33 SMOs and RCS

Manager ensures that the SMO is ready for distribution to the Beta sites.

Product Advisory

Jenzabar sends a Product Advisory when important changes in the procedures or a short term
solution to an existing problem are needed. Please be sure to read all of your mail and e-mail
that you receive from Jenzabar regarding SMOs. Jenzabar sends some fixes via the modem to
clients when an issue warrants a quick response.

Keeping Up to Date

Jenzabar attempts to get enhancements and fixes to its clients in a timely manner. It is important
that clients install SMOs and Product Advisories as soon as they receive them.

SMOs and RCS 34 Implementation and Maintenance

Contents of a SMO

Introduction

All SMOs reside in the following directory path: $CARSPATH/smo. To access a specific SMO,
you must enter the specific directory named after the SMO number. The following describes the
contents of a SMO directory and a skeleton of the SMO README file.

Mandatory SMO Files

The following lists the files that are required in a SMO.

README
Contains the installation instructions for the SMO. It also includes other important
information related to the SMO installation.

Note: For an example of a README file, see SMO README in this section.

Revtr
Contains a list of all the files affected by the SMO. Any file listed in the Revtr is relative to
$CARSPATH.

Note: The Revitr file is not used during the SMO installation and is present for
Jenzabar purposes only.

Revtr.dist
Contains a list of the files, relative to §CARSPATH, that will be deposited during the
installation of the SMO. The Revtr and Revtr.dist files will differ if proprietary source is
contained within the SMO.

Makefile
Defines the directory to be a SMO directory structure so the appropriate make targets can be
executed. This file must be present but should never need to be reviewed or modified.

Optional SMO Files

The following lists the files that are optional in a SMO.

Revtr.mv
Contains a list of files that will be moved during the installation of the SMO. The files listed
are relative to $SCARSPATH. The smomove make target uses this file as input and moves
the files accordingly.

Revtr.rm
Contains a list of files that will be removed during the installation of the SMO. The files listed
are relative to $CARSPATH. The smoremove make target uses this file as input and
removes the files from the system.

Reinstall.tbi
Contains a list of files that must be reinstalled.

Mandatory SMO Subdirectories

The following lists the subdirectories that are required in a SMO.

RCS
Contains information for the Revision Control System.

Implementation and Maintenance 35 SMOs and RCS

Dist
Contains the new versions of the files distributed in this SMO, along with log files that will be
appended to the RCS for each file. This subdirectory structure is identical to the directory
structure relative to §CARSPATH. The new versions of the files listed in the Revtr.dist
reside in the Dist directory.

Optional SMO Subdirectories

The following lists the subdirectories that are optional in a SMO.

Procedures
Contains files and scripts that are used to install the SMO. Following are two files, which
may be located in the Procedures subdirectory:

Objectlist
Contains a list of any proprietary source distributed with the SMO. The smodoproc script
uses the Objectlist as input when depositing proprietary source.

Makelist
Contains a list of make targets. The smodoproc script reads this file and performs the
specified make target on the source listed within this file.

Objects
Contains the actual proprietary source files and other files that Jenzabar distributes as
objects. The objects are copied into the install path by the smodoproc script, which uses the
Objectlist file in the Procedures directory as input. The Objects subdirectory contains a
subdirectory named for the operating system which the objects were created under; i.e.,
hpux, aix.

Tables
Contains the ASCII files to be loaded into the database when initializing tables or files.
Scripts under the Procedures directory read the ASCII files and load them into the database.

SMOs and RCS 36 Implementation and Maintenance

SMO README Skeleton

The following is the skeleton file that Jenzabar uses to produce a README file for a SMO.

SMO#SMO_NOSMO_DESC

OVERVIEW:

INSTALLATION INFORMATION:
1) Number of Files............: 0
2) Module(s) Affected.........:
3) Approximate Time Required..: 0 hours/minutes

NOTE: The approximate time does not take into consideration time
required to merge local customizations or time required for

rebuilds.
REFERENCE:
1) Schema/View Files Build or Rebuild
NONE
2) Object Files Owner Group Mode
NONE
3) Macro Files Default Value
NONE
4) Special Installation Considerations Action
NONE
5) Documentation New or Updated
NONE

6) Dependencies

NEW FEATURES/ENHANCEMENTS:
1) Feature:
Benefits/Who:

PROBLEMS/SOLUTIONS:
1) Problem:
Solution:

INSTALLATION INSTRUCTIONS:
Refer to the "Instructions for Installing SMOs on Client Sites" document,
located under $DOCPATH/common/smos/clismo.doc, for general SMO
installation information.

1) Pre-Deposit Steps: Time: 0 minutes
NONE
2) Deposit Steps: Time: 0 minutes

a) Deposit the files.
% cd $CARSPATH/smo/SMO_NO-ip
% make smodeposit >& Deposit.Out
b) Resolve any errors in Deposit.Out file
c) Check in any files listed in the Revtr.CO file. Re-run deposit
steps (a & b) as necessary.
d) Verify that all files deposited by checking that the number of
lines in the Revtr.dpst is the same as in the Revtr.dist.
% wc -1 Revtr.d*
% print Revtr.LCL
e) Resolve any files contained in Revtr.LCL file.

3) Pre-Install Steps: Time: 0 minutes

Implementation and Maintenance 37 SMOs and RCS

4) Install Steps: Time: 0 minutes

Install the files.
cd $CARSPATH/smo/SMO_NO-ip
make smoreinstall >& Install.Out
Resolve any errors in the Install.Out file.

a°

a°

NOTE: Ignore compile warnings containing the following:
"Runtime error is possible..."
"Current declaration of..."
"/* detected in comment..."
"Optdriver: Exceeding compiler..."

5) Post-Install Steps: Time: 0 minutes
NONE

6) Verification Steps: Time 0 minutes
NONE

IMPLEMENTATION CONSIDERATIONS:

Special In-house Installation Instructions (at CARSC ONLY) :

SMOs and RCS 38 Implementation and Maintenance

SMO Naming Conventions

Introduction

Jenzabar assigns SMO numbers when the development work begins on a SMO. SMO numbers
can have additional characters that describe the specific purpose of the SMO. The following
describes the conventions for adding characters to SMO numbers.

Note: Since the SMO installation order is based on the development completion schedule,
SMOs are not necessarily installed in numerical order. However, it is important to
install the SMOs in the correct order.

General SMOs

The following naming conventions exist for general SMOs. When SMOs have multiple versions,
additional characters are added to differentiate the versions. For example, a financial aid SMO
can come in two versions:
e 10907 for those clients who have not purchased the Financial Aid Packaging module
o 10907M for those clients who have purchased the Financial Aid Packaging module, but still
need some of the files included in the SMO

Note: M in 10907M above stands for modified.
Fix SMOs

Jenzabar can create Fix SMOs for the stages in the distribution process. The following naming
conventions exist for Fix SMOs for each stage in the process.

Exceptional or Advanced Beta Fix SMO
A fix SMO sent only to the Exceptional or Advanced Beta site has the following naming
conventions:
e An A appended to the SMO number, followed by a lower case letter to indicate the
proper installation sequence of the fix(es).
¢ The changes in the fix SMO are placed in the original SMO, so that only one SMO, the
original, is needed for proper installation on a client system.

For example, if SMO 70000 is only at an Exceptional or Advanced Beta site and a fix SMO is
needed, the fix SMO will be named 70000Aa. Any subsequent Beta fixes for this SMO will
follow the sequence 10000Ab, 10000Ac, etc.

Beta Fix SMO
A fix SMO that is to be sent only to the Beta sites and the Advanced/Exceptional Beta site
has the following naming conventions:
¢ A Bappended to the SMO number, followed by a lower case letter to indicate the
proper installation sequence of the fix(es).
e The changes in the fix SMO will also be placed in the original SMO, so that only one
SMO, the original, is needed for proper installation on a client system.

For example, if SMO 70000 is in regular Beta testing and a fix SMO is needed, the fix SMO
will be named 70000Ba. Any subsequent Beta fixes for this SMO will follow the sequence
10000Bb, 100008c, etc.

Note: If a fix SMO has been sent to an Exceptional Beta site it will also use the
naming conventions for the standard Beta Fix SMO explained above.

Implementation and Maintenance 39 SMOs and RCS

Pre-General Distribution
A fix SMO that is sent only to one Pre-General site to test the SMO installation order of

individual SMOs that have been at various Beta sites.
¢ A lowercase letter appended to the SMO number to indicate the proper installation
sequence of the fixes.
e The changes in the fix SMO will also be placed in the original SMO, so that only one
SMO, the original, is needed for proper installation on a client system.
For example, if SMO 10000 is in regular Beta testing and a fix SMO is needed, the fix SMO
will be named 710000Cc. Any subsequent Beta fixes for this SMO will follow the sequence
710000Cb, 10000Cc, etc.

General Distribution Fix SMO
A fix SMO that is to be sent to all client sites has the following naming conventions:

¢ A lower case letter appended to the SMO number to indicate the proper installation

sequence of the fix(es).
¢ In this case, the changes in the fix SMO are not included in the original SMO, since the

clients will have already received the original.

For example, if SMO 70000 is in General Distribution and a fix SMO is needed, then the fix
SMO will be named 70000a. Any subsequent fixes for this SMO will follow the sequence
10000b, 10000c, etc.

Receipt of Fix SMOs

Depending on the type of site, clients can receive Fix SMOs in the following manner.

e The Advanced or Exceptional Beta site could possibly receive each of the fix SMO
naming conventions (10000Aa, 10000Ba, and 10000a) explained above, if a fix is
needed at each stage of the distribution.

¢ A Beta site can receive (10000Ba and 10000a).

¢ A general site can only receive the naming convention (10000a) for a fix SMO.

SMOs and RCS 40 Implementation and Maintenance

SMO Distribution Cycle

Introduction

Jenzabar has developed a distribution cycle of SMOs that provides for advanced testing of
enhancements to CX before the general client base receives the SMO. The phases of the
distribution process are described below.

Note: Jenzabar distributes SMOs in the US mail or overnight services, when necessary.
Some distributions also occur via modem and the Internet. For example, distributions
to Beta sites and SMOs for Financial Aid when timing is critical.

The Distribution Process

The following describes the distribution process for SMOs.

1. Exceptional or Advanced Beta Testing phase

e The Advanced Beta site receives the SMO about eight weeks prior to general
distribution.

¢ If necessary, an Exceptional Beta site can enter the testing cycle at any point. This
site can serve as an Advanced Beta or Beta site.

e On occasion, a client other than the contracted Beta site can serve as an Exceptional
Beta test site. This occurs when a specific client provides the best test environment for
the SMO. To serve as an Exceptional Beta site, the client must have all prior SMOs
installed.

¢ If necessary, the README and the SMO are modified based upon the experience at
the Exceptional Beta site. The site will receive these fixes in a SMO with an A in the
suffix. These fix SMOs will also be sent to any other client that has already received
the original SMO.

2. Beta Testing phase

e Jenzabar has at least one Beta testing site for each supported operating system,
currently HP and IBM. The Beta sites should receive the SMO about eight weeks prior
to general distribution.

¢ If necessary, the README and the SMO are modified based upon the experience at
the Beta site. The Beta sites receive these fixes in a SMO with a B in the suffix.
These fix SMOs are sent to any Exceptional Beta site that has already received the
SMO.

3. Pregeneral Testing phase

o Following beta testing and one week prior to general distribution of the SMO, the SMO
is sent to a Pregeneral test site. This site installs the SMOs in the same order the
general client base will. The Pregeneral site attempts to locate any hidden
dependencies due to the installation order that may not have been discovered at the
other test sites.

¢ If necessary, the README and the SMO are modified based upon the experience at
the Pregeneral site. The Pregeneral site receives these fixes in a SMO with a C in the
suffix. These fix SMOs are also sent to any Exceptional Beta, and Beta site that
received the original SMO.

4. General Distribution phase
¢ SMO tapes are mailed to the remainder of the client population in a general
distribution.
¢ |f problems arise that were not discovered through the testing process, then a fix SMO
will be developed. The client base will receive these fixes in a SMO with a lower case
alpha character suffix. These fix SMOs will also be sent to all test sites.

Implementation and Maintenance 41 SMOs and RCS

Advanced Beta Distributions

Jenzabar has established an Initial Beta site agreement with one of our clients. Under this
agreement, the following occurs:

1. The Advanced Beta site follows the README and installs the SMO.

2. Jenzabar personnel carefully observe the installation, implementation, and end-user testing
of the SMOs and are available to clarify any instructions and assist with any problems which
arise.

Note: This enables Jenzabar to learn of any errors in the SMO instructions or
clarifications required in the SMO README file. If any problems occur, the
problems are rectified before releasing the SMO to other beta sites.

3. The Advanced Beta site verifies that the general features in a SMO function as they should
and verify that the new features do not adversely affect current operations.

Beta Distributions

Jenzabar has established at least one Beta site for each hardware vendor currently supported. If
a SMO has gone to Advanced Beta, the changes are made to the SMO and then it goes to Beta.

The Beta sites also install and test the SMO. These sites report any problems detected to CX.
Jenzabar works with the Beta sites to get their comments back as soon as possible. Quick
response from our Beta sites allows Jenzabar to make necessary changes before the SMOs go
to General Distribution.

Exceptional Beta Distribution

Enhancements can occur that cannot be thoroughly tested by the Beta sites because the features
in the SMO are not relevant to those sites. To facilitate the testing of such enhancements within
a SMO, Jenzabar makes arrangements with a client who will utilize the new feature. This client
must become an Exceptional Beta Site and take the responsibility of testing the SMO. Jenzabar
provides this client with an Exceptional Beta Agreement that they will be asked to sign and return
to Jenzabar. Exceptional Beta sites must:

¢ Be up to date on the installation of the SMOs they have received prior to this time

¢ Receive and install all outstanding, completed SMOs they have not received in a General

Distribution to date. These SMOs may still be at Beta.

When there are prior Beta SMOs to receive, the Exceptional Beta Site becomes an additional
Beta site for these SMOs. This measure is being taken to improve the quality assurance of the
SMOs in the General Distribution.

General Distribution

All clients that did not receive a SMO in the previous distribution, receive the SMO at General
Distribution when it has satisfactorily passed Beta testing.

SMOs and RCS 42 Implementation and Maintenance

Installing a SMO

Introduction

The following provides the procedures for installing a SMO.

Installation Order

It is extremely important that SMOs be installed in the order specified by Jenzabar. Note the
following:
¢ The SMO installation order is listed on the label affixed to the tape.
¢ The installation order is determined by dependencies
e The smoorder command lists SMOs by the order of installation. The command also displays
the SMO title for reference. Following is an example of the smoorder command output:

DEVbetai7: /usr/local/cisc/smoorder
Installation
Order SMO Description
SMO 12090 Document Imaging Release
SMO 12278 IVR Credit Card Bill Payment
SMO 12338Bc Faculty/Student Web Access
SMO 12544 Taxpayer Relief Act 19
SMO 12538 Financial Maintenance
SMO 12517 Resource/Schedule 25 Interface
SMO 12367a Web Registration
SMO 12367aBa Web Registration
SMO 12519 Misc. Degree Audit
SMO 12519Ba Miscellaneous Degree Audit
SMO 12518 Web Access - FinAid
SMO 12071 FinAid Loan Module 1.0
SMO 12100 Lead Entry/Lead Tickler
SMO 12530 RPA 1.40-Simplified Invoice Entry
SMO 12509 MHCC Enhancements

CAUTION: If SMOs are installed out of order, Jenzabar will not handle issues through
Support Services. If any logical dependency issues occur with SMOs installed out
of order, you will need to contact Jenzabar Consulting Services for assistance if
needed. This assistance will be handled on a time and materials basis.

SMO Installation Rules

The following lists the rules for installing a SMO.

¢ Read the entire README prior to installing the SMO.

¢ Install all SMOs.

¢ Install SMOs in the proper order. Use the smoorder command to determine the installation
order.

¢ Install the SMO using your normal user login. Do not perform any installation steps as root
or super user (su) unless the README instructions specifically state to do so.

¢ Install the SMOs promptly.

o Redirect the output from all processes to a file. If you run the same process more than
once, save the output to a different file so the original file is not overwritten.

e Examine the output for errors or informational messages.

¢ Finish each step before proceeding to the next step.

¢ No SMO is complete until the users have been informed about the new features and
enhancements within the SMO.

Implementation and Maintenance 43 SMOs and RCS

Installing Third Party Software Upgrades

Jenzabar distributes SMOs for third party software upgrades, (e.g. the operating system).

CAUTION: Do not install the upgrade for the third party software received from the third party
vendor without the SMO from Jenzabar, which contains the proper instructions
concerning the upgrade.

Loading the SMO Tape

The following lists the steps for loading the SMO tape:

1.
2.

Mount the SMO tape onto the tape drive, and put the drive online.

Change directories to the SMO directory.
% cd $CARSPATH/smo

To display the SMO tape's contents to the terminal screen, perform the following:
% copyin -t

To extract the SMO tape contents, enter:
% copyin -v

Note: Do not extract the SMO tape as super user (su) or root.

Review the SMO READMEs

The following lists the steps for reviewing the SMO README file:

1.

Print all the READMEs for all the SMOs contained on the tape. Each tape may contain
multiple SMOs.

% cd $CARSPATH/smo

% print SMO#/README

Review the OVERVIEW section within the README. This section provides general
information regarding the purpose of the SMO.

Review the MACROS section within the README. This section provides information on any
macros in the file and their default values.

Review the INSTALLATION INFORMATION section within the README. This section
provides information on how many files are in the SMO, which modules are affected by the
SMO, and how long it should take to install the SMO.

Review the REFERENCE section within the README. This section provides information on
which schemas will need to be built, what objects are contained in the SMO, and any special
installation considerations. It will also list any documentation that the SMO will be
depositing.

Review the NEW FEATURES/ENHANCEMENTS section. This section will describe any
new features or enhancements contained with the SMO. This portion of the README
should be distributed to the persons responsible for the affected modules listed in the
INSTALLATION INFORMATION section.

Review the PROBLEMS/SOLUTIONS section. This section will describe any problems or
bugs that will be fixed by the SMO. This portion of the README should be distributed to the
persons responsible for the affected modules listed in the INSTALLATION INFORMATION
section.

Review the INSTALLATION INSTRUCTIONS section. This section contains the actual steps
that must be performed to install the SMO. Review the installation steps prior to starting the
installation.

SMOs and RCS 44 Implementation and Maintenance

9. Review the IMPLEMENTATION CONSIDERATIONS section. This section provides
additional information on setup requirements and instructions for new enhancements
distributed in the smo.

Prepare to Start the SMO Installation

The following lists the steps for starting the SMO installation:

1. Change the name of the SMO directory to mark the SMO as in progress (-ip).
% cd $CARSPATH/smo
% mv SMO# SMO#-ip

2. Review the README file again. Make sure you are prepared to modify CX as stated in the
README.
% cd $CARSPATH/smo/SMO#-ip
% print README

Note: You can also just view (read-only) the README on the screen by typing view
README at the prompt.

Pre-Deposit Steps

The following lists the steps for performing the README installation instructions:

1. Perform any pre-deposit steps outlined in the SMO README. Any steps in this section of
the README will be explicitly stated.

2. The pre-deposit steps may include the execution of the smoremove make target. This target
will read the Revtr.rm file as input and remove each file from the system. Review the
Revtr.rm file prior to executing the smoremove make target. The smoremove command will
create a Revtr.rmd which will contain a list of the files successfully removed. The Revtr.rm
and Revtr.rmd should be identical if the smoremove was successful. To verify the
smoremove, check the line counts for both files.

% cd $CARSPATH/smo/SMO#-ip
% make smoremove > $Remove.out
% wec -l Revtr.rm Revtr.rmd

3. The smomove target may also be performed in this section of the README. This target will
read the Revtr.mv file as input and move each file listed to its new location. Review the
Revtr.mv file prior to executing the smomove make target. The smomove command will
create a Revtr.mvd which will contain a list of the files successfully moved. The Revtr.mv
and Revtr.mvd should be identical if the smomove was successful. To verify the smomove,
check the line counts for both files.

% cd $CARSPATH/smo/SMO#-ip
% make smoremove > $Move.out
% wc -l Revtr.mv Revtr.mvd

Deposit Steps

The following describes the six steps for depositing a SMO:
Step 1

Deposit the new versions of the files contained in the SMO under the Dist directory. The
smodeposit make target reads the Revtr.dist file, locates the files to deposit under the Dist
directory and then copies them into CX. Therefore, this target only acts upon the files listed in
the Revtr.dist file.

Implementation and Maintenance 45 SMOs and RCS

% cd $SCARSPATH/smo/SMO#-ip
% make smodeposit >& Deposit.out

The smodeposit target will create up to five output files. These five files will be located in the
SMO directory and must be reviewed. Below is a description of each file and its contents, and
the actions required for each file.

Step 2

Deposit.out - This file contains the output from the smodeposit process. This file is
created when the output is redirected into it from the smodeposit. Review this file for
error messages.

Revtr.dpst - The dpst extension on this file stands for deposited. This file contains the
list of files, relative to SCARSPATH, that were successfully deposited. As the
smodeposit target reads the Revtr.dist file and copies the files from the Dist directory
into CX, it appends the filename to the Revtr.dpst file. If the deposit was successful,
the Revtr.dist and Revtr.dpst files should be identical except for files under the
$CARSPATH/src directory ending in .c. These files are deposited at the revision level
of the Revfile.c file in the same directory. However, the number of lines in both the
Revtr.dist and Revtr.dpst should be identical in a successful smodeposit.

Revtr.CO - The CO extension on this file stands for checked out. This file will only be
created if the smodeposit target finds a checked out file. The filenames, path, and
current owners of any checked out file, which this SMO was attempting to deposit, will
be listed in the Revtr.CO file. Each file listed in the Revtr.CO file must be checked in
so the file can be deposited. Files listed in the Revtr.CO will not appear in the
Revtr.dpst unless they are checked in (or unchecked out) and have been redeposited.
Revtr.LCL - The LCL extension on this file stands for local. This file will be only
created if locals are found. A local is defined as any file in CX in which the latest
revision has been modified at the client's site. The Revtr.LCL file contains filenames,
paths, and local branch numbers of the files on which the smodeposit found a local
version. Files listed in the Revtr.LCL will appear in the Revtr.dpst.

Revtr.LCL-mak - The LCL-mak extension on this file stands for local on Makefile. This
file will be created if a local change has been made to the previously deposited
Makefile (which is now saved as .makefile).

Examine the Deposit.out file for errors. If errors are found in the Deposit.out file, check the
Troubleshooting section of this guide to see if it provides a solution for your error. If you require
further assistance, call Jenzabar Support Services.

% print Deposit.out

Step 3

Resolve any files listed in the Revtr.CO file. Either check the file in or uncheckout the file, then
deposit the new version of the file contained in the SMO.
% print Revtr.CO

1. To check in afile listed in the Revtr.CO file, first change directories to the path listed in
the Revtr.CO file. This will preserve the changes made to the file plus it will create a
local revision on the file.

% cd $CARSPATH/ ...
% make ci F=<file>

2. To uncheckout the file, which will delete the changes made to it and restore it to its
previous version, change directories to the path listed in the Revtr.CO file and perform
the following:

% cd $CARSPATH/...
% make unco F=<file>

SMOs and RCS

46 Implementation and Maintenance

3. Redeposit the new version of the files and examine the newly created Deposit2.out file for
errors.

% cd $CARSPATH/smo/SMO#-ip
% make smodeposit>& Deposit2.out

If few files are involved, it may be easier to deposit the new versions individually. First,
recall the file version number and path from the Revtr.dist file. Then change directories
to where the file is located and perform the following:

% cd $CARSPATHI...
% make deposit F=filename:version# SMO=SMO#-ip
Either way of depositing the new versions will update the Revtr.dpst file.

4. Resolve all files contained in the Revtr.CO prior to resolving the files in the Revtr.LCL
because the Revir.LCL file can grow as you are resolving the Revir.CO files.

Step 4

Resolve any files listed in the Revtr.LCL file. This file will contain files which have had local
customizations made to them at the client's site. During and following implementation, screens,
forms, and perhaps even programs are customized to meet the needs of users on a client site.
These customizations must be evaluated when new versions of these files are released by
Jenzabar.

The process of deciding what to keep and what to discard is called resolving local customizations,
and is very important to updating the functionality of a system without losing the special features
built into it.
1. Review the Revtr.LCL file and note the names of the files, their locations, and current
revision numbers.

% print Revtr.LCL
The smodeposit target creates three files when it deposits a new version on top of a file
that contains local customizations. Each of the three files carries the same base
filename. The extension distinguishes one file from another.

o <file> - This is the newly deposited version of the file.

o <file>.Icl - This is the current local client version.

o <file>.log - This file contains the local revision log messages tracking the changes
made to the file.

2. Review the changes made to the file by using the rlog command. Identify and note the
numbers for the new version, the local branch version (this will typically be listed last in
the rlog output), and the last Jenzabar revision. The revision number, for a file with a
local revision, will have four parts and will be in the format n.nnnnnn.nnnn.nn. The first
number denotes the release, the second section denotes the Jenzabar version of the file,
the third section is the client number assigned by Jenzabar, and the fourth section is the
client version number. Example, 7.100003.5000.2 stands for release | and version
number 100003 for CX and version 2 for client number 5000. The 7.100003 is the trunk
version and the 5000.2 denotes the branch created by the client to this trunk.

% rlog <file> | more

Note: Review The Revision Control System in this section for more information on the
Revision Control System and interpreting the rlog output.
Identify the differences among the three versions of the file. The diff target compares the
last two revisions of a file. The output is automatically sent to an output file whose name
is <file>.out, where <file> is the base name.

% make diff F=<file>

Implementation and Maintenance 47 SMOs and RCS

To identify the differences between any two versions of a file, pass the two version
numbers to the diff target. This will still create a <file>.out file containing the differences.

% make diff F=<file> V=version#1:version#2
Run this command on the previous trunk version and the local version number (the
Current version number from the rlog command, this is also found in the Revtr.LCL file).
View what changes were made at the client's site to the previous Jenzabar version.
Then diff the two Jenzabar trunk versions to see what changes were made to the file by
Jenzabar. The <file>.out file contains the lines which are different among the two
versions of the file. The lines with < preceding them are from the first version listed on
the make diff command line, and those lines with > preceding them are from the second
version listed on the make diff command line.

It is also possible to visually examine both the <file> (the new version distributed with the
SMO) and the <file>.Icl (the current local version) to determine the differences between
the two.

% print <file> <file>.Icl
Once the changes have been examined, one of three choices must be made. These are
the choices:

¢ Retain the new CX version

¢ Retain only the current client version

¢ Merge the two versions
To retain the new Jenzabar version of the file, remove the <file>.Icl file and proceed with
the next file listed in the Revtr.LCL.

Note: The <file>.log file will be automatically removed when the smoinstall or
smoreinstall command is executed.

% cd $CARSPATH]...

% rm <file>.Icl
To retain the current local version of the file and discard the newly deposited version,
perform the following steps:

Keep in mind, this procedure will remove the changes Jenzabar made to the file.
Therefore, review what Jenzabar has modified first to determine if the new features or
enhancements are desired. Use the rlog command and the diff target to determine
exactly what Jenzabar has modified prior to performing the following steps:

% cd $CARSPATH]...
% make co F=<file>
% vi <file>
Move cursor to the end of the Header section and delete everything to the end-of-file.

dG <ESC>
Read in the local version of the file.

ir <file>.Icl
Delete the local version Header section and save the changes and exit.
'wq!
% make ci F=<file>
This series of steps will result in the body of the customized version being substituted for

the body of the new version, and the revision control information for the customizations
will be retained. When the file is checked in, a local branch number will be created.

6. To combine the two versions together, execute a merge upon the file. The merge will

retain the local customizations to the file plus retain the new changes made to the file by
Jenzabar. If the local and the new changes to the file have modified a common set of
lines, then a <file>.mrg file will be created. The common lines are called overlaps and

SMOs and RCS

48 Implementation and Maintenance

the overlaps will be contained in the <file>.mrg file. The overlaps are also marked within
the actual file with >>>> and <<<< marking the beginning and ending points of the
overlap, with ==== between the two versions. These overlaps must be dealt with
manually by editing the file and deciding which version you would like to retain.

Note: When merging program source under §CARSPATH/src never pass the make
processor a F= argument. This source is treated as a whole even though
several files are present within the directories. To use the merge target on
program source just issue the command make merge. The make merge
command checks out the file on which it acts. Therefore, all files listed in the
Revtr.LCL file must be checked in before continuing with the next step in the
README installation instructions. The ci, smoinstall, and smoreinstall targets
automatically remove files with the following extensions; .out .Icl .mrg .log.

% cd $CARSPATH
% make merge F=<file>
% vi <file>
Resolve any overlaps at this time and save any changes made to the file.

:wq!
% make ci F=<file>

Note: If the check in process fails for program source under $CARSPATH/src due to
“undefined symbols error,” this is either because the program is looking for field
changes that are unknown to the database at this point, or because a library
that was changed in the smo has not yet been installed. After the schemas
included in the smo are built, and all source code for libraries changed in the
smo has been installed, the database dictionary and the source code libraries
will be up to date and the program source may be checked in.

7. The smomerge target can be used if all the files listed in the Revtr.LCL file should be
merged. This target will read the Revtr.LCL and perform the merge. This target will
create a Revtr.co file which contains a list of all the files which it checked out. Typically,
the Revtr.LCL and Revtr.co files will contain the same list of files after the smomerge
target is executed.

Note: The smomerge target checks out the file on which it acts. Therefore, all files
listed in the Revtr.co file must be checked in before continuing with the next
step in the README installation instructions.

% cd $CARSPATH/smo/SMO#-ip
% make smomerge >& Merge.out

8. If the smomerge target was used to resolve the files contained in the Revtr.LCL file then
the smoci target can be used to check in the files listed in the Revtr.co file. Recall from
above, the Revtr.co file contains a list of files which the smomerge target left checked
out. After each file is reviewed and the overlaps are resolved, use the smoci target to
check in all the files listed in the Revtr.co file at once.

% cd $SCARSPATH/smo/SMO#-ip
% make smoci >& Checkin.out

Implementation and Maintenance 49 SMOs and RCS

Step 5

Review any files listed in the Revtr.LCL-mak file to determine whether these changes are still
needed.

% cd <directory name>

% diff Makefile Makefile.LCL

If there are no differences that seem critical (The addition of your own library to ADDLIBS),
remove the Makefile.LCL.

Step 6

After the Revtr.CO and Revtr.LCL files have been resolved, verify the deposit is complete.
Recall, the smodeposit target is copying all files within the Dist directory into CX and creating the
Revtr.dpst file as it works. The deposit can be checked two different ways. The two most
common ways are to check the number of lines in the Revtr.dist and the Revtr.dpst files.
1. To check the number of lines in both the Revtr.dist and Revtr.dpst files, use the wc (word
count) command. The -I parameter to wc will display the line counts in each file. Below
is an example of the command and an example of the output. Since both files contain 19
lines, this indicates the deposit was successful.

% wec -l Revtr.dist Revtr.dpst
19 Revtr.dist
19 Revtr.dpst
38 total
2. To verify the deposit, you can use the smochkdpst target. This target will use the
Revtr.dist file and verify the correct version of each file is resident in CX.

% cd $CARSPATH/smo/SMO#-ip
% make smochkdpst >& Chkdpst.out
% print Chkdpst.out

Review the Chkdpst.out file. An empty Chkdpst.out file indicates a successful deposit.
Note: This target will take some time to execute.

Pre-Installation Steps

The following lists the steps to follow prior to installing the SMO:

1. Perform any pre-install steps outlined in the SMO README. Any steps in this section of the
README will be explicitly stated.

Note: Two of the common steps found in this section of the README include schema
builds and the depositing of object files.

Note: If a schema is modified within a SMO, it will be listed in the REFERENCE
section of the README plus the installation steps will be explicitly stated in the
INSTALLATION INSTRUCTIONS section.

2. Prior to building a schema, use the buildn target to review the changes being made to the
schema. This target will create a file with a .sql extension and it will contain the changes
being made to the schema. If the merge target was used upon the schema when resolving
the Revtr.LCL file, this will verify that local fields were not lost.

% cd $CARSPATH/schemal...
% make buildn F=<file>
% print <file>.sql

3. After verifying that all changes are correct and that no local fields are being deleted, use the
buildy target to build the schema.
% cd $CARSPATH/schemal/...

SMOs and RCS 50 Implementation and Maintenance

% make buildy F=<file>

Note: You can review all of the associated schema make targets in the SMO Make
Targets section of this guide.

4. Run the smodoproc script. The smodoproc script is used to deposit any object files
contained in the SMO. The smodoproc script reads the Objectlist file, found in the
Procedures directory of the SMO, and performs the instructions in the file. The script will
locate the actual objects in the Objects directory of the SMO and copy them into CX. This
script can also perform two other activities; creating symbolic links, and performing specified
make activities. Below is an example of how to execute the smodoproc script:

Note: The README may state to execute the smodoproc script during the pre-
deposit steps. Execute the script as the README indicates.
% cd $CARSPATH/smo/SMO#-ip
% smodoproc |& tee Smodoproc.out

Note: The README may state to run this script as root or super user (su). If so, the
README will explicitly state this. Otherwise, run the script as yourself.

5. The smoremove target may also be performed in this section of the README. This target
will read the Revtr.rm file as input and remove each file listed from the system. The
smoremove command will create a Revtr.rmd file which will contain a list of the files
successfully removed. The Revtr.rm and Revtr.rmd should be identical if the smoremove
was successful. To verify the smoremove, check the line counts for both files.

% cd $CARSPATH/smo/SMO#-ip
% wec -l Revtr.rm Revtr.rmd

6. The smomove target may also be performed in this section of the README. This target will
read the Revtr.mv file as input and move each file listed to its new location. Review the
Revtr.mv file prior to executing the smomove make target. The smomove command will
create a Revtr.mvd which will contain a list of the files successfully moved. The Revtr.mv
and Revtr.mvd should be identical if the smomove was successful. To verify the smomove,
check the line counts for both files.

% cd $CARSPATH/smo/SMO#-ip
% wec -l Revtr.mv Revtr.mvd

Installing the SMO

The following lists the steps for installing a SMO:

1. Install the deposited files. This is accomplished with the smoreinstall or smoinstall target.
This target will use the Revtr.dpst file as input and install each file listed within it. If the
deposit was successful then the smoreinstall will install the entire SMO.

% cd $CARSPATH/smo/SMO#-ip
% make smoreinstall >& Install.Out
% print Install.Out

2. The smoreinstall target will not create any special output files. The only file created during
this step is the Install.Out file which should be checked for errors.

Post-Install Steps

The following lists the steps to follow after installing the SMO.

1. Perform any post-install steps outlined in the SMO README. Any steps in this section of
the README will be explicitly stated.

Note: This section may contain instructions for any special reinstalls that may need to
take place after the SMO is installed. However, the Reinstall.tbi, which is
appended and sorted to the Revtr.tbi, automates most post-install steps.

Implementation and Maintenance 51 SMOs and RCS

2. The smoremove target may also be performed in this section of the README. This target
will read the Revtr.rm file as input and remove each file listed from the system. The
smoremove command will create a Revtr.rmd file which will contain a list of the files
successfully removed. The Revtr.rm and Revtr.rmd should be identical if the smoremove
was successful. To verify the smoremove, check the line counts for both files.

% cd $CARSPATH/smo/SMO#-ip
% wec -l Revtr.rm Revtr.rmd

3. The smomove target may also be performed in this section of the README. This target will
read the Revtr.mv file as input and move each file listed to its new location. Review the
Revtr.mv file prior to executing the smomove make target. The smomove command will
create a Revtr.mvd which will contain a list of the files successfully moved. The Revtr.mv
and Revtr.mvd should be identical if the smomove was successful. To verify the smomove,
check the line counts for both files.

% cd $CARSPATH/smo/SMO#-ip
% wec -l Revtr.mv Revtr.mvd

SMOs and RCS 52 Implementation and Maintenance

Verification Steps

Perform any verification steps outlined in the SMO README. Any steps in this section of the
README will be explicitly stated.

Marking the SMO as Installed

Mark the SMO as installed after the SMO has been completed. The -inst suffix on the SMO
directory name indicates the SMO has been installed.

% cd $CARSPATH/smo

% mv SMO#-ip SMO#-inst

Reviewing the Documents Directory

Each SMO that changes documentation, or creates new documentation, contains a Documents
directory with the associated new or updated documentation. When you open the Documents
directory, you will see four files:

pclfile

psfile

zipfile

README

The pclfile, psfile and zipfile contain the manuals that document the changes from this SMO in
three printable formats; UNIX pcl format, postscript format, and Word zipped files. Select the
print format that you want to use and download those documents. You can delete the other two
files.

The README contains information about the manuals that changed and a brief description of
those changes. It also contains printing instructions for each of the print formats.

Implementing the SMO Features

It is very important to educate the users during and after the SMO installation. The Jenzabar
system coordinator should supply the end user with the appropriate sections of the README
along with any new or updated documentation. Now that the SMO is installed, any new features
or enhancements can be set up and tested. Plus, any problems or bugs fixed in the SMO should
disappear.

Archiving SMOs

SMOs use a large portion of disk space; therefore, SMOs should be archived from the system
after they are installed and implemented. To archive SMOs use the copyout command. This
command will copy SMOs and their contents to tape. Once the tape has been loaded and the
drive is online, perform the following steps. Note, enclose the SMO numbers within double
quotes if more than one SMO is being archived.

% cd $CARSPATH/smo

% copyout -d "SMO#1 SMO#2 SMO#3"

Once the copyout command finishes successfully, the SMOs can be removed from the system.
% rm -rf SMO#1 SMO#2 SMO#3

Note: You may need to be root to successfully remove the SMOs.

Implementation and Maintenance 53 SMOs and RCS

SMO Make Targets

Introduction

This section provides information on the SMO make targets. SMO make targets use a Reuvtr file
as input and perform the base target upon each file listed in the Revtr file. The file used as input
for each target is listed below plus any output files created by the target. The SMO targets begin
with smo and they must be executed from the SMO directory as follows:

% cd $CARSPATH/smo/SMO#

% make <target>

For more information on the make processor and the base targets, see Using the Make
Processor in this document.

SMO Targets
The following lists and describes the MAKE targets for SMOs.

smodeposit
Base Target = deposit
Input File = Revtr.dist
Output File(s) = Revtr.dpst, Revtr.CO, Revtr.LCL
Description:
Checkouts the files listed in the Revtr.dist, copies the file found in the SMO Dist directory
into CX, and checks the file back in. The target deposits the new file at the version level
listed in the Revtr.dist.
o |[f the file is successfully deposited, it will list the file in the Revtr.dpst. The
Revitr.dist and Revtr.dpst files should be identical unless a Revtr.CO file is present.
¢ If afile is found in a checked out state, it will list the file in the Revtr.CO.
o [f a file contains local customizations, it will list the file in the Revtr.LCL.

smoinstall
Base Target = install
Input File = Revtr.dpst
Output File(s) = none
Description:
Installs all files listed in the Revtr.dpst file.

smomerge

Base Target = merge

Input Files = Revtr.LCL

Output File(s) = Revtr.co

Description:
Merges the local customization with the new version of the file deposited by the
smodeposit target. The target leaves all the files in a checked out state; therefore, each
file must be reviewed and checked in.

smomove

Base Target = move

Input File = Revtr.mv

Output File(s) = Revtr.mvd

Description:
Moves all the files listed in the Revtr.mv to the new location that is also listed in the
Revtr.mv file. This target lists each file moved successfully in the Revtr.mvd file. Both
the Revtr.mv and Revtr.mvd files should be identical if the smomove finished
successfully.

SMOs and RCS 54 Implementation and Maintenance

smoremove

Base Target = remove

Input File = Revtr.rm

Output File(s) = Revtr.rmd

Description:
Removes all the files listed in the Revtr.rm file from CX. This target lists each file
removed successfully in the Revtr.rmd file. Both the Revtr.rm and Revtr.rmd files should
be identical if the smoremove finished successfully.

smoci
Base Target = ci
Input File = Revtr.co
Output File(s) = none
Description:
Checks in all files listed in the Revtr.co file that is created by the smomerge target.

smounco

Base Target = unco

Input File = Revtr.LCL

Output File(s) = none

Description:
Unchecks out all files listed in the Revtr.LCL file. Typically, this target would only be used
after the smomerge target is executed. Keep in mind, the target restores the files back to
their state immediately following the smodeposit.

smotinstall
Base Target = tinstall
Input File = Revtr.dpst
Output File(s) = none
Description:
Temporarily installs all the files listed in the Revtr.dpst file.

smoreinstall
Base Target = reinstall
Input File = Revtr.dpst
Output File(s) = none
Description:
Reinstalls all the files listed in the Revir.dpst file.

smodelrev
Base Target = delrev
Input File = Revtr.dpst
Output File(s) = none
Description
Deletes the versions of the files deposited by the smodeposit. Only use this target in
extreme cases.

Implementation and Maintenance 55 SMOs and RCS

Dealing with Local SMOs

Overview

This section describes the current procedures required to incorporate updates made on a client
system into the standard CX. The procedures involve creating a local SMO on a client system
(containing the revisions to be maintained) and then incorporating that local SMO into a regular
SMO in the standard Jenzabar CX product.

The following procedures should be completed on the client system from which the revisions are
to come. A SMO local to that system will be created, with the revisions to be brought back
excluding any client customizations.

Steps for Incorporating Updates on Local Client Sites

The following process is required to create a local SMO:
Create a local SMO to capture changes

Check-in the revisions for the SMO

Close the local SMO

Put the SMO on tape to bring to Jenzabar

Integrate the local SMO into the CX

Extract the local SMO from the tape

Remove local customizations

® N o o0 kA~ w DN =

Build a new Revtr file

©

Resolve version number overlaps

10. Create or determine the regular Jenzabar CX SMO to use
11. Deposit the local SMO as part of the regular SMO

12. Check for any Makefile.Icl files

13. Address files not handled by smonewrev

14. Update the README file for the regular SMO

15. Move the local SMO to the ARCH directory

Create a Local SMO to Capture Changes

You can distinguish a local SMO from a regular SMO as follows:
¢ Its name begins with a capital "L"
o Its next three characters are a 3-digit client number
o lts last twi characters are a 2-digit serial number

Example: L02305 for the fifth local SMO on client 23's system

You can execute the newlclsmo command from any location to create a local SMO directory
under CARSPATH/smo:

SMOs and RCS 56 Implementation and Maintenance

% newlclsmo

>>Command: adddir

>L02305 - makeinit smo

Enter 1 line SMO Description:

Add 'db' alias for switching between databases
...thank you.

Updating '.makevar.mak'

]

This creates an L02305 SMO directory under CARSPATH/smo with an initial README file that
can be updated with special information about the SMO.

Check in Revisions for the SMO

You can put a revision into a local SMO in one of two ways. If it has been determined ahead of
time (before checking in the revision) that the changes should be put into a local SMO, the local
SMO identifier can be specified on the make ci command line. The normal checkin of the local
version will occur followed by execution of the 'Iclsmo' command which will add the new revision
to the Revtr.new file of the specified local SMO.

If other local customizations already exist on the branch, /Ic/smo will attempt to strip them out
create a new version on a separate branch (branch 1) to include in the SMO instead. This
procedure can only work properly if revisions to be brought back are not grouped together with
local client customizations in the same revision.

Example 1: Unmerge client customizations

% cd skel

% make ci F=cshrc.s SMO=L02305 L='Add db alias'

>>Command: checkin

>cshrc.s - translate - checkin.

>>Command: lclsmo

>cshrc.s - unmerge (6.9.2300.3 - 6.9.2300.2) - creating 6.9.1.1 -
updating Revtr.new.

Example 2: Overlaps during unmerge

% cd skel

% make ci F=cshrc.s SMO=L02305 L='Add db alias'

>>Command: checkin

>cshrc.s - translate - checkin.

>>Command: lclsmo

>cshrc.s - unmerge (6.9.2300.3 - 6.9.2300.2): 1 overlap. -
skipping unmerge

>cshrc.s 6.9.2300.3 - updating Revtr.new.

If the SMO was not specified on the make ci because it was forgotten or because more control
over the unmerging process is needed, the Ic/lsmo command can be done separately. The
following specifies that version 6.9.2300.3 is to be included in the local SMO with 6.9.2300.1
(instead of the default of 6.9.2300.2) being unmerged (or subtracted out). This might be
necessary if 6.9.2300.2 also contains changes to be brought back or if overlaps occurred during
the unmerge of 6.9.2300.3 and 6.9.2300.2 and it is determined that subtracting 6.9.2300.1 is
better than just taking 6.9.2300.3.

Example 3 Specify version to unmerge

% cd skel

% make lclsmo F=cshrc.s SMO=L02305 V=Recent:6.9.2300.1

>>Command: lclsmo

>cshrc.s - unmerge (6.9.2300.3 - 6.9.2300.1) - creating 6.9.1.1 -
updating Revtr.new.

Close the Local SMO

Once all revisions have been checked in and added to the Revtr.new file for the local SMO, it can
be closed to be brought back to Jenzabar. The procedure is the same as for closing a SMO at
Jenzabar. Use make smodist to produce in the Dist directory a "distribution" copy of each of the
files specified in the Revtr.new file.

Implementation and Maintenance 57 SMOs and RCS

% cd smo/L02305
% make smodist >& Dist.out
% more Dist.out (check for errors)

Once this is done, the README file should be updated with any information that will be helpful to
integrating the local SMO into the product at Jenzabar. This includes describing the
enhancements and fixes that the SMO includes as well as any special installation or porting
procedures.

% cd smo/L02305
% vi README (update it)

Put the SMO on Tape to Bring to CISC

Until uucp connections are working well to each client site, local SMOs must be brought back on
tape. The local SMO can be combined with other files being brought back on the same tape, but
the general method would be to use copyout as follows:

% cd smo
% copyout -d L02305 -v (-v lists each file)

Integrating the Local SMO into the Jenzabar CX product

These procedures are not automated and are typically performed by someone on the
programming staff. As with all SMO development, all work should be done in the CARSDEV
system.

Extract the Local SMO from tape

dev: cd smo
dev: copyin -v

Remove Local Customizations

Determine if any of the files brought back in the local SMO contain any local customizations that
shouldn't be put into the standard product and remove them.

dev: cd smo/L02305
dev: vi Dist/... (remove customizations)

Build a New Revtr File

The branch version numbers in the Revtr.dist file must be converted to trunk versions using the
'newver' script. This command converts each branch version number to the next higher trunk
version as long as that trunk version doesn't already exist.

dev: cd smo/L02305
dev: mv Revtr.dist Revtr.dist-o
dev: newver < Revtr.dist-o > Revtr.dist

Resolve Version Number Overlaps

If the new Reuvtr.dist file still contains some branch version numbers, those files should be taken
out of the Revtr.dist and incorporated into a SMO using the normal checkout/checkin method in a
later step.

dev: cd smo/L02305
dev: vi Revtr.dist (remove files with branches)

Create or Determine the Regular Jenzabar CX SMO to Use

Revisions from a local SMO must be incorporated into a regular Jenzabar CX SMO in order to
become a part of the standard Jenzabar CX product. Determine which existing open SMO into

SMOs and RCS 58 Implementation and Maintenance

whick the revisions should be incorporated, or create a new SMO. As an example, a new SMO
(10900) will be created.

dev: perform smo (add a new smo - note the SMO#)
dev: cd smo
dev: make adddir F=10900
>>Command: adddir
>10900 - makeinit smo
Enter 1 line SMO Description:
Add 'db' alias for switching between databases
...thank you.
Updating '.makevar.mak'
dev:

Deposit the Local SMO as Part of the Regular SMO

The revisions in the local SMO should be deposited as part of the regular SMO and then added to
its Revtr.new file. The SMO# in the log messages for the revisions should be changed from the
local SMO# (L02305) to the regular SMO# (10900) by editing the individual .log files before doing

the deposit.
dev: cd smo/L02305
dev: vi Dist/... (change SMO# in .log files)
dev: make smonewrev >& Newrev.out (deposit revisions)
dev: cat Revtr.dpst >> ../10900/Revtr.new

Check for Any Makefile.lcl Files

If any Makefile.Icl files are created by the smonewrev, be sure that the Makefile is correct for the
standard Jenzabar CX product and does not include unwanted customizations.

dev: cd smo/L02305

dev: grep Makefile Newrev.out (check for Makefile.lcl)
dev: cd ... (go to the source directory)
dev: diff Makefile Makefile.lcl (determine which to keep)

Address Files not Handled by Smonewrev

If errors occurred during the smonewrev, resolve those problems at this time. Also, any files that
were excluded from the Revtr.dist (and thus from the smonewrev) should be taken care of at this
time by checking out the individual files and putting the revisions in by hand.

dev: more Newrev.out (check for errors)

dev: diff Revtr.dist-o Revtr.dpst (files not deposited)

dev: cd ... (go to files that were not deposited)
dev: make co F=<file>

dev: vi <file> (put in desired revisions)

dev: make ci install F=<file> SMO=10900 L="<message>"

(include revision in the regular SMO)

Update the README File for the Regular SMO

As when adding any revisions to a SMO, the README file for the regular SMO should be
updated with any special instructions related to the revisions just added. The README file from
the local SMO may have some of these instructions in it.

dev: cd smo/L02305
dev: more README (check for special instructions)
dev: smoreadme 10900 (put changes into README)

Move the Local SMO to the ARCH Directory

When all of the revisions brought back in the local SMO have been incorporated into a regular
SMO, the local SMO should be moved to the ARCH directory to show that it is no longer needed.

Implementation and Maintenance 59 SMOs and RCS

dev: cd smo
dev: arch L02305

arch: L02305

Moving L02305 to ARCH.
dev:

SMOs and RCS 60 Implementation and Maintenance

Troubleshooting SMO Installations

Introduction

Jenzabar has attempted to provide answers for common problems that can occur during the
process to install a SMO. The problem situations and corresponding responses are organized in
the phases for installing a SMO, including:

e Deposit steps

e Pre-Installation steps

¢ Installation steps

Deposit Step Issues

The following contains the situations and responses for problems that can arise during the
deposit step of the SMO installation.

CAUTION: Do not perform processes as root (su) when some process is not working
correctly. The need to operate as root is indicative of difficulties with permissions,
which should be resolved instead of being forced. The README will tell you
when to become root or super user.

Situation:
The message appears: “makeinit Error code 1 - not remade because of errors is found in the
Deposit.out file”

Response:
This is not a problem, continue with SMO. The makeinit process issues this error because
no files are found in the newly created directory.

Situation:
The message appears: "Delta number too low, must be greater than XXX" is found in the
Deposit.out file.

Response:
This is most likely the result of a SMO being installed out of order. Perform the smoorder
command to verify the installation order. Determine the cause of the error before continuing.
Use the rlog command and diff target to deduce if the correct version of the file is present.

Situation:
Permission is denied due to .makelist error.

Response:
Reset the permissions on the .makelist to a mode of 660 and a group of carsctrl and perform
a make remake.

Situation:
The message, "updating .makelist, remake not remade because of errors" is found in the
Deposit.out file.

Response:
Change directories to where the error occurred, and perform a make remake on the
directory.

Situation:
You perform an rlog on a file and the recent version is not the same version as the current
version.

Implementation and Maintenance 61 SMOs and RCS

Response:
Check the file out (co target) and then uncheck it out (unco target).

Situation:
You cannot check a file out or in.

Response:
Check the permissions on the file and update them using fileperms.

Example: % fileperms -u <file>

Situation:
The message from a make makedep process appears: “Need to remake module list.”

Response:
Perform a make remake in the appropriate directory to recreate the file dependencies.

Situation:
The message appears: “Deposit Touch: cannot change times on RCS.”

Response:
Check the mode and ownership on the appropriate <file>.ci files in the RCS directory. The
permissions should be 660 and with a group of carsctrl.

Situation:
The error message appears: "RCS directory is not writeable".

Response:
Check the permissions and execute a fileperms -u upon the RCS directory.

Note: The permissions should be: drwxrwx---

Situation:
The error message appears: "RCS file is not writeable".

Response:
Check the permissions and verify the mode is 660 for RCS/<file>,v file.

Situation:
The message "Subscript out of range" occurs when depositing new program source.

Response:
Verify the Revfile.c has not already been deposited. If it has been deposited and the other
files within that source directory have not been, then delete the version of the Revfile.c and
redeposit.

Situation:
When checking in screen files following merging local customizations, you get the error
message: “field not found in database.®

Response:
Probably a new field has been added to a schema used by this screen, but has not yet been
checked in and rebuilt. Perform these actions on the schema and then check in the screen.

SMOs and RCS 62 Implementation and Maintenance

Pre-Installation Step Issues

The following contains the situations and responses for problems that can arise during the pre-
install steps of the SMO installation.

Situation:
When rebuilding a schema with NOMAKEDEF specified (e.g., exam, tprog, billing, charge,
and assessment), the system returns a message indicating this.

Response:
This is informational only. Examine the <file>.sch in the schema directory to verify that the
rebuild was successful.

Installation Step Issues

The following contains the situations and responses for problems that can arise during the install
step of the SMO installation:

Situation:
When installing program source, undefined structure member or type mismatch errors may
occur.

Response:
This is usually because a schema was not properly built or rebuilt. Verify the build or rebuild.
Execute a make makedef F=<schema> upon the schema if the build/rebuild was okay and
reinstall the program source.

Situation:
The message, "No installing for schemas" is found in the Install.out file.

Response:
This is an informational message only. Schemas do not get installed, continue.

Situation:
The message, "Don't know how to make def.c" is found in the Install.out file.

Response:
Perform a make cleanup in the source directory with the problem.

Situation:
The message, "m4:menudesc:7 can't open file" is found in a menudesc.err file.

Response:
Reinstall the menuopt file in question and then reinstall the menudesc file. Continue with the
SMO installation.

Situation:
You receive a warning message that the source files are empty.

Response:
You can usually ignore this message. This is the result of files in src containing only
comments for future development, or containing options that are selected with ifdef
statements that have been commented out in the appropriate include file. If there is a
question, call Jenzabar.

Implementation and Maintenance 63 SMOs and RCS

Situation:
You are reinstalling or installing src, and you receive the message "undefined symbols
error".

Response:
Verify the objects were deposited correctly. If the SMO contained an include file, verify it was
merged correctly, checked in and installed prior to the installation of the program source. If
libraries were modified by the SMO, reinstall the libraries and then reinstall the program
source.

Situation:
The message appears: "system error 13" or "system error 0".

Response:
These are both permissions errors. Investigate the mode and ownership on the appropriate
files or directories. Use the fileperms utility to correct any permission issues.

Situation:
You are loading a program and receive a 6005 error.

Response:
The program thinks that a field in a schema it uses no longer exists. The safe solution is to
perform a make makedef on the schema. Then reinstall the program in src. If the problem
persists, verify the schema matches the actual data file by executing a make build
F=<schema> and reviewing the <schema>.sch file.

SMOs and RCS 64 Implementation and Maintenance

The Revision Control System

Introduction

Jenzabar developed a specialized version of the Revision Control System (RCS) to provide you
complete control over changes to CX. With RCS, an institution has the ability to:

o Keep backup copies of all versions of a file

e Track all changes to a file, including changes from Jenzabar versus local changes

o Extract an earlier version of a file

Note: CX is heavily dependent upon the make processor which in turn is heavily dependent
upon RCS.

Backup Copies of Files

RCS saves a backup copy of each version of a file under $CARSPATH. These versions are
saved under the RCS directory. Consequently, each file in a working directory has a
corresponding file in the RCS directory with a ,v as a suffix.

Example: $CARSPATH/modules/regist/reports/faclist
$CARSPATH/modules/regist/reports/RCS/faclist,v

The <file>,v file contains all the versions that were checked into the file via the make processor.
The system creates this file when you use the make add F=<file> command to add a new file to
CX. The make processor updates the <file>,v file when the working file is checked in (ci target)
or checked out (co target).

Reviewing Changes to Files

Use the rlog command to review all the changes made to a file. This command displays:
e Each version of the file
o A description of the modification
¢ The user who checked in the modification.

Example: % rlog faclist
You can also use the log make target to display the same output as the rlog command.

Example: % make log F=faclist

Reviewing File Header Information

To review only the header information about a file, pass the -h parameter to the rlog command.
Example: % rlog -h faclist

Below is a sample output of the rlog -h command.

RCS file: RCS/faclist,v; Working file: faclist
head: 7.0

branch:

locks: ; strict

access list:

symbolic names: Recsave: 7.0; Active: 7.0; Current: 7.0;

Recent: 7.0;
comment leader:
total revisions: 3;

Implementation and Maintenance 65 SMOs and RCS

Note: The lines beginning with head, locks, and symbolic names provide critical information
about a file.

Note: The line beginning with head contains the head version number. This number is the
trunk version of the last Jenzabar release. The locks line lists the user who owns the
file if the file is in a checked out state. The symbolic names line contains four separate
versions numbers, which are labeled as Recsave, Active, Current, and Recent.

File Version Numbers

The following explains the four version numbers in the symbolic names line of the rlog -h output.

Recsave
The last version of the file that was deleted.

Active
The version last installed (not tinstalled).

Current
The version of the file in the working directory.

Recent
The version number that was last checked in.

Parts of a Version Number

The version number, for a file with a local revision, has four parts in the format:
n.nnnnnn.nnnn.nn.

The first number denotes the release

The second number denotes the CX version number of the file

The third number is the client number assigned by Jenzabar

The fourth number is the client version number

For example, the version number 8.100003.5000.2 stands for:

Trunk Version
8-- Release |
100003-- Version number 100003 for Jenzabar

Branch Version
5000-- Client code assigned by Jenzabar
2-- Version 2 for client

SMOs and RCS 66 Implementation and Maintenance

Displaying All Versions of a File

To display all the version numbers of a file, use the grlog command and pass the -qr parameter.
This will output all the version numbers stored for the specified file.

Example: % qrlog -gr faclist

The output will appears as follows:

.100003.5000.2
.100003.5000.1
.100003

.10000

.500

ESERSIRSIESIN

Extracting an Earlier Version of a File

To extract an earlier version of a file from RCS, use the co make target and pass a V= argument
to the target. This will check out the specified version and place it in the working directory.

Example: % make co F=faclist V=7.100003.5000.2

Extracting an earlier version of a file from RCS for viewing only can also be accomplished by
using the co command with a -p parameter. This command will extract the specified version and
output it to the terminal.

Note: Do not leave a space after the -p and before the version number.
Example: % co -p7.100003.5000.2 faclist

To extract the specified version and output it to a printer, pipe the above command to
a printer as in the following example:

Example: % co -p7.100003.5000.2 faclist|lpr

Implementation and Maintenance 67 SMOs and RCS

SECTION 6 - DATABASE MANAGEMENT

Overview

Introduction

This section provides information and procedures for maintaining the CX database and
information in the database. The following information is provided:

¢ Maintaining multiple databases

o Setting up an Audit Trail database

o Setting up Detail window select and sorting features

e Managing updates to addresses

System Management Menu

The System Management: Data Dictionary menu contains the following options to assist a
database administrator:

Database Administrator
Accesses the Database Administrator (dbadmin) program, which allows you to add, update,
or remove user logins and to audit database system files.

Note: For more information, see Common Programs in the CX System Reference
Technical Manual.

Informix Tables/Columns
Accesses the Systems Tables and Columns PERFORM screen on which you can view
systable and syscolumn information.

Database Files
Accesses the CX Database Dictionary Files PERFORM screen. You can query, add,
update, and remove files that describe the database dictionary.

Database Fields
Accesses the CX Database Dictionary Fields PERFORM screen. You can query, add,
update, and remove files that describe the database dictionary fields.

Fields By File Report
Accesses the Database Fields report (dbfield), which lists the fields in the database by table.
You can specify the beginning and ending of a alphabetical range of table names to be
included in the report.

Note: You can use wildcards to specify a range of table names. For example, to
specify all tables names from a to m, specify a* and m* in the parameter screen
for the report.

Files By Track Report
Accesses the Database Files report (dbefile), which lists the tables in the database by track.
You can specify the beginning and ending of a alphabetical range of track names to be
included in the report. The track values you can specify include:

A (Admissions)

C (Common)

D (Development and Donor Accounting)

F (Fiscal and Accounting)

M (Management)

S (Student)

Implementation and Maintenance 69 Database Management

Fields By Track Report
Accesses the Fields By Track report (dbetrack), which lists the tables and fields in the
database for the tracks that you specify. The track values you can specify include:

A (Admissions)

C (Common)

D (Development and Donor Accounting)

F (Fiscal and Accounting)

M (Management)

S (Student)

The remaining options on the menu are used with the mergeid program. See the section, Merge
ID Program in the CX System Reference Technical Manual for information about these options.

Database Management 70 Implementation and Maintenance

Maintaining Multiple Databases on One Computer

Introduction

These pages describe the current procedures to be used to maintain multiple CX databases and
multiple CX releases on one computer.

Multiple Complete Jenzabar CX Releases

CX consists of everything under SCARSPATH. A CX release can further be qualified as either a
Complete CX Release (includes source) or as an Operational CX Release (does not include
source). Multiple CX releases can exist on one computer by having multiple §CARSPATH
directory trees (e.g. /usr/carsf, /usr/carstrain,...).

Creating Another Release

Multiple releases are generally set up by creating a copy of an existing CX release under a
different SCARSPATH tree. Symbolic links can be used for the parts of the directory tree that are
to be shared with another CX release.

cpdir /usr/carsf /usr/carstrain(create CARSTRAIN)

cd /usr/carstrain

rm -f install/sys/lib/prtab(link to real prtab)

1ln -s /usr/carsf/install/sys/lib/prtab install/sys/lib/prtab

cd /usr/carstrain/spool

rm -rf lpr(remove lpr spool directory)

1n -s /usr/carsf/spool/lpr . (create link to lpr)

11 lpr(show the link)

lrwXrwx——-— 1 jim cis 20 Nov 3 08:09 lpr -> /usr/carsf/spool/lpr

Switching Between Releases

Use the sefdb command to change between CX releases. This command basically changes the
CARSYV environment variable to the name of the destination release (e.g., carstrain) and starts up
a new csh. Since the $CARSPATH environment variable gets defined in terms of CARSV and
other variables (like SMENUPATH, $BINPATH, $DBPATH, parts of PATH, cdpath, ...) get defined
in terms of $CARSPATH in the cshrc file, the environment for this new csh process will be set up
for the destination release.

Printenv Command

To display your environment variable settings, enter the printenv command. The following is an
example of the command’s output.

% printenv

HOME=/usr/cisids/alec
PATH=/usr/carsdevi/install/cis:/usr/ucb:/bin:/usr/bin:/usr/local/bin:/usr/carsdevi/install/utl:/u
sr/carsdevi/install/bin:/opt/informix/bin:/usr/local/cisc:/usr/games:.:/usr/cis/wp/education/File
Cabinet/schedules:.:/usr/local/cisc

LOGNAME=alec

TERM=vt100

SHELL=/usr/bin/csh

MAIL=/var/mail/alec

COLUMNS=80

LINES=24

USER=alec
MANPATH=/usr/share/man/%L:/usr/share/man:/usr/contrib/man/%L:/usr/contrib/man: /usr/local/man/%L:/
usr/local/man:/opt/upgrade/share/man/ja JP.eucJP:/opt/upgrade/share/man/ja JP.SJIS:/opt/upgrade/s
hare/man:/opt/audio/share/man:/opt/blinklink/share/man:/opt/ansic/share/man/%L:/opt/ansic/share/m
an:/opt/langtools/share/man/%L:/opt/langtools/share/man:/opt/CC/share/man:/opt/image/share/man:/o
pt/imake/man

Implementation and Maintenance 71 Database Management

TZ=ESTSEDT X
CARSV=carsdevi

CARSPATH=/usr/carsdevi
CARSCPATH=/usr/carsbetai
INFORMIXDIR=/opt/informix
TBCONFIG=tbconf.cars
CARSOBJ=/usr/carsdevi/objects
CARSWSD=/usr/carsdevi

CARSRCS=/usr/carsdevi
DBPATH=:/usr/carsdevi/schema/common: /usr/carsdevi/install/frm/common: . :/usr/carsf/schema/common:
WPPATH=/usr/carsdevi/wp
TXTPATH=/usr/carsdevi/text
MENUPATH=/usr/carsdevi/install/mnu
TERMINFO=/usr/carsdevi/install/sys/terminfo
TERMCAP=/usr/carsdevi/install/sys/etc/termcap
CARSIQPATH=/usr/carsdevi/iqg

IQDIR=/usr/iqg

PAGER=pg

SCROUTPUT=/usr/cisids/alec/scroutput
UserSource=true

CARSNAME= CARS College

CARSADDR= Sharonville, OH 45241
CARSPRINTER=hplpr

CARSPRINTERS=hplpr, hpdwrite, hp4fnaid, hp4dedadv, hpdmis, hp3mail, hp3admin, hplsys, lpt
CARSSITE=CARS

CVTPATH=/usr/cvtdir

CARSDB=devi

SACEISOL=DIRTY READ
TERMDIR=/quad/usr/qlib/files
MENUDIR=/quad/usr/glib/gimenus:/quad/usr/gqlib/help:.
QOSKILL=0

QTERM=wy75

CSERVHOST=saturn

CARSMNUSD=CARS Menu

ONCONFIG=onconf.hpdev
INFORMIXSERVER=carshpdev

CARSSYS=DEV

Establishing the Default Release

You initially define the default CX release for each user in the skel/cshrc file under the directory
where home directories are located (usually /usr/carsids). The value that CARSV is set to, if not
already set when a user logs in, is whatever CARSV was set to when the skel/cshrc file was last
installed. So the following would change the global default release to CARSTRAIN.

% setdb train

train: cd skel

/usr/carstrain/skel

train: make reinstall F=cshrc.s
>>Command: reinstall

>cshrc.s - retranslate - reinstall.
train:

The default release for a particular user can be changed by editing the .cshrc in their home
directory. The following at the top of a .cshrc file makes CARSTRAIN the default release. The
assignment of CARSV to carstrain is only made if CARSV is not already defined so that setdb
can be used to change its value.

Database Management 72 Implementation and Maintenance

#

.cshrc - Standard commands to be executed are in
#/usr/carsids/skel/cshrc

#

if (! $?CARSV) setenv CARSV carstrain

source ~/../skel/cshrc

Software Maintenance

To keep multiple complete CX releases up to date, all SMOs must be installed in each release.
Care should be taken when installing a SMO that affects directories outside of CARSPATH.

Multiple Jenzabar CX Databases

A CX database consists of the schema and data directories under the CARSPATH directory.
This includes the schemas, the database dictionary (cars.dbd), and all of the database files. The
currently active CX database is determined by which schema directory is in the DBPATH
environment variable. Setting up an Operational CX Release (as described later) is generally
more useful than another CX database because it includes other directories like CARSPATH/text
and CARSPATH/spool/forms that should be associated with the CX database in normal
operations.

Creating Another Database

Multiple CX databases are usually created by making a copy of the schema and data from an
existing CX database. The following creates a CX TRAIN database from the CARSF database.
mkdir /usr/carstrain

chgrp common /usr/carstrain

chmod 750 /usr/carstrain

cd /usr/carsf

cpdir schema /usr/carstrain/schema

cpdir data /usr/carstrain/data

HEHHHHE

Switching Between Databases

Switching to another CX database requires changing the DBPATH environment variable so that
the correct database dictionary can be located. This can be done using setenv or an alias can be
set up to make this easier if desired.

% setenv DBPATH :/usr/carstrain/schema/common

- OR --
% alias db setenv DBPATH :/usr/cars\\!*"/schema/common
% db train

After changing the DBPATH environment variable, all CX database accesses will go to the new
database until DBPATH is changed back. The section on Operational CX Releases describes a
more complete setup which allows setdb to be used to change databases.

Software Maintenance

To keep multiple CX databases up to date, all parts of a SMO that affect schema or data files
must be installed. This task is easier when using an operational CX release rather than just a CX
database.

Implementation and Maintenance 73 Database Management

Multiple Operational Jenzabar CX Releases

An Operational CX Release consists of everything under CARSPATH required for normal CX
operations, which basically excludes the source. Although technically not a part of the CX
database, there are a number of directories used by CX application programs that should be kept
separate with each CX database. These include audit, events, text, and vchpost under
CARSPATH and forms, Ips, and tape under CARSPATH/spool. Other directories are not as
dependent on the database and can be shared with another CX release through symbolic links.
These may include the install directory (or parts of it), the wp directory, and the spool directories
for the printers.

Creating an Operational Release

The following illustrates how the necessary directories can be set up to create an operational
release from an existing CX release.

(Create the operational directory structure)

mkdir /usr/carstrain

chgrp common /usr/carstrain

chmod 750 /usr/carstrain

cd /usr/carstrain

mkdir system

cp /usr/carsf/system/{Bootstrap,Config} system
cd /usr/carstrain/system

Bootstrap dirs

*** Config: hpux 2.1, Client=1, Machine=0, Database=0, Branch=Y,
SMO=N **x*

>>>Bootstrap - Creating necessary directories

e o T

(Setup the link (or make a copy) for the install directory)

cd /usr/carstrain
rm -rf install (remove directory created by Bootstrap)

1n -s /usr/carsf/install . (to share)
Jp— OR Jp—
cpdir /usr/carsf/install install(to keep separate)

(Setup the link (or make a copy) for the wp directory)

1n -s /usr/carsf/wp . (to share)
Jp— OR R
cpdir /usr/carsf/wp wp(to keep separate)

(Setup the links for the spooler directories)
(These should be links rather than copies for
proper sharing of the printers between the releases)

cd /usr/carstrain

rm -f install/sys/lib/prtab

In -s /usr/carsf/install/sys/lib/prtab install/sys/lib/prtab
cd /usr/carstrain/spool

In -s /usr/carsf/spool/<printer> . (do this for each <printer>)

R

(Create the database)

cd /usr/carstrain
cpdir /usr/carsf/schema schema
cpdir /usr/carsf/data data

Switching Between Releases

The same method used for switching between complete CX releases can be used to switch
between operational releases. The setdb command will work for an operational release because
it has an install directory (via a link) whereas a CX database by itself does not.

Database Management 74 Implementation and Maintenance

Software Maintenance

The procedures for software maintenance in operational releases depends upon which directories
are links and which are separate copies. If parts (or all) of the install directory are not linked into
a complete release, then those parts will need to be updated when a SMO is installed in the
complete release. Do this by doing a make reinstall of the affected files from the source directory
in the complete release while in a setdb to the operational release. If the whole install directory is
linked to the complete release, then the operational release will automatically have any changes
installed in the complete release.

As with multiple CX databases, any changes to schema or data in a SMO must be installed into
the operational release. This may involve making a copy of the Revtr.dist file that only contains
the schema files affected (e.g., Revtrsch.dist) and then doing a make smonewrev Revtr=Revtrsch
while in a setdb to the operational release. Any rebuilds or database loads would also have to be
done.

Implementation and Maintenance 75 Database Management

Setting Up an Audit Trail Database

Introduction

This section describes how to set up the audit trail database used to track changes to tables,
such as:

The date and time that the change occurred

The login name of the person who made the change

A flag to indicate the type of change

The specified database columns that capture the values of specific columns

Separate Database

To enable the audit trail feature, you must create a separate database using ISQL. The audit trail
database can operate under your current INFORMIX database server or under any other
INFORMIX server.

If your CX database has transaction logging enabled, your audit database must also have
transaction logging enabled. If you have a separate database server for the audit database, you
may be able to direct your transaction logging to /dev/null.

Default Database Name

You can determine the default name of the audit trail database by appending _audit onto the
value of the CARSDB variable. For example, if you set CARSDB to cars, the default name of the
audit trail database becomes cars_audit. You can override the default name for the audit trail
database by defining the CARSAUDITDB variable. For example, if you set CARSAUDITDB to
data_changes, the name of the audit trail database becomes data changes and is independent
of the value of CARSDB.

Audit Database Macro

You must add the following macro to the $CARSPATH/macros/custom/configure file:
CARS_DB_AUDIT

Set the macro to the new audit database name using the format: //dbservername/dbname or
dbname@dbservername

Example: m4_define (CARS_DB_AUDIT’, “cars_audit@carsinformix’)
Note: You must use a back quote (*) beginning the parameters and a regular quote at
the end.

Building Schemas

After you create the audit trail database, you must build schemas. Enter the following commands
to build the appropriate schemas; note that you must be logged in as root to execute the make
build command:

Note: The following uses carsi_audit for the audit database name.

% setenv CARSDB carsi_audit

% cd schema/common

% make build F=“syscolperm systabperm dbfile dbfield”
% setenv CARSDB carsi

Database Management 76 Implementation and Maintenance

Adding Audit Trails to Schemas

Do the following for those schemas that you want an audit trail.

1. Add the following to the end of the schema:
trigger
audit (*) grant select to (group)

2. Build the schema.

The system creates the schema in the audit database and creates three triggers for inserting,
updating, and deleting records with the following additional fields:

¢ audit_timestamp

¢ audit_username

o audit_event

Audit Table Creation

The system creates audit tables in the default dbspace of the audit database. When initially
building a schema that specifies an audit trigger, the system builds two tables with the same
name. The system builds:

e The data table in the database specified by CARSDB.

e The audit table in the audit trail database.

Note: If you want to maintain an audit trail on a different server than the database, you must
use the optional clause IN <audit-server-name>.

CAUTION: You must create the audit trail database and build the database’s system and
tables before you build schemas with audit triggers. If the specified audit trail
database does not exist, your build will continue with warnings that no audit trail
will be maintained. If you wish to maintain the specified audit trail, you must
create the audit trail database and rebuild the schema(s) that contains the audit
trigger(s).

Unnecessary Audit Trails

You can maintain two or more databases (e.g., a live database and a training database) with one
set of schemas. However, you can avoid wasting disk space with an unnecessary audit trail by
not creating audit trails for one of the databases.

For example, you use the same set of schemas to maintain a live database called cars and a
training database called train. To avoid maintaining an audit trail on the training database:
¢ Create an audit trail database called cars_audit for the live database.

¢ Do not create a corresponding audit trail database (e.g., train_audit) for the training
database.

Note: If you do not want an audit trail for certain tables within a database, before you build
the tables, you can use the CARSAUDITDB variable to point those tables to a non-
existent database.

Implementation and Maintenance 77 Database Management

Setting Up Office Permissions Checking in CX Applications

Introduction

These pages describe how to set up the office permissions checking feature in entry programs.
This feature applies to programs that use records containing the ofc_add_by column. Programs
can use this column to determine a user’s insert, update, and delete permissions, including for
holds, based on the user’s office. The ofc_add_by column links the program to the Office
Permissions table (ofcperm_table), which contains the office permission codes.

Note: For more information on the Office Permissions table, see Common Tables and
Records in the CX System Reference Technical Manual.

Procedure

Do the following to set a program to perform permissions checking on a record with an
ofc_add_by field.

1. Check out the program’s files.
% make co <program files>

2. Edit the def.c file.
% vi def.c

3. Inthe filename[] array, edit the entry that references the table for which you are adding
permissions checking.

Example: { “id_rec’, “ID’, NULL, ENT_LOCK},
To add permissions checking, add the flag ENT_VALUEPERM to the table’s entry.
Example: { “id_rec’, “ID”, NULL, ENT_LOCK|ENT_VALUEPERM},

4. In the addfld[] array, add an entry that fills in the ofc_add_by column with the ofc_add_by
parameter passed to the program.

Example: { “id_rec”, “ofc_add_by”, NULL, “ofc_added_by”’, PROG_BUFFER},
5. Exit from the file editor and save the def.c file (e.g., wq:).

6. Check in and install the program.
% make cii L=“Add permissions checking to id_rec.” <program files>

Database Management 78 Implementation and Maintenance

Setting Up Select And Sort Detail Window Features

Introduction

The Library Entry programs have a feature that allows users to define the select and sort
capabilities in an Entry Program detail window. A detail window with the sort feature contains the
Sort command. The system links the use of the select and sort capabilities to the Permission
table to deny access to table entries at user or group permission levels. CX includes the feature
in all Library Entry programs, which may be modified by the institution, based on their
requirements.

The system uses two functions to invoke this feature at the source code level: ENT_SCGET and
ENT_SCSTART. These functions are located in the $CARSPATH/src path for each entry
program. The Library Entry programs allow a user to selectively choose the type of data for
review in detail windows.

For example, Library Entry programs can review multiple tickler codes, providing access to a
combination of Contact records. This is done while maintaining the security of limiting the user to
adding a predefined tickler, based on a series of contacts.

The Setup Process

The following describes the overall process involved in setting up the select and sort detail
window features.

1. Set up the permissions macro in the file $CARSPATH/macros/user/common.
2. Set up the Permission table.

3. Set up the Entry Selection/Sort Criteria table.

Setting the Permissions Macro

To allow users to sort and select records in detail windows within entry programs, set up the
permissions macro in the $SCARSPATH/macros/user/common file. The value of this macro is
stored in the Permissions table (perm_table) in the perm_table.ctgry field.

Follow these steps to set up the macro.
1. Enter vi common and edit the Common file.
2. Find the ENTRY_PERM_CODE macro.
3. Set this macro to the value your institution desires. The default value is ENTPERM.

4. Reinstall the macro file, then reinstall the include and source files.

Permission Table

Set up the Permission table (perm_table) to allow the users you specify to access sort and
selection criteria that correspond to the ENTRY_PERM_CODE macro value.

Follow these steps to set up the Permission table.
1. Obtain a copy of the password file containing the UNIX User ID (UID) numbers of CX users.

2. Access the perm_table PERFORM screen from the Table Maintenance: Common (P-Z)
menu.

Implementation and Maintenance 79 Database Management

3. Enter a value in the Category field, equal to the ENTRY_PERM_CODE macro value, for
each UNIX group or UID number that should have permission to the sort and selection
categories that you specify.

4. Specify the names of the sort and selection groups by entering their names in the
Permission Code field. The names of these groups are arbitrary. The system uses the
names to identify groups in the Entry Selection and Sort Criteria tables.

5. Print a copy of the table for use in creating the Entry Selection and Sort Criteria tables.

Entry Selection/Sort Criteria Tables

The Entry Selection table (entsel_table) defines the name and the database record for the sort
selection. The indicated database record corresponds directly with any detail window that
accesses that database record.

The Sort Criteria table (entselcrit_table) establishes how the system selects and/or sorts data in a
detail window linked to the database record in the Table Name field of the entsel_table.

Define the selection and sorting criteria available for entry programs by entering data into the
Entry Selection and Sort Criteria tables. To set up these tables, do the following:

1. Access the Entry Selection/Sort Criteria table (entsel_table, entselcrit_table) PERFORM
screen from the Table Maintenance: Common (D-F) menu.

2. Complete the fields in both sections of the table.
Note: The Entry Selection table is the master table and the Sort Criteria table is the detail
table.

Entry Selection Table Fields

The following list describes the fields in the Entry Selection table.

Default
Indicates whether or not this table entry is considered the default information. Valid values
are Y and N. Enter only one Y per filename.

Note: Each entry requires one default of Y.

Description
The description of the name of the select or sort action.

Entry Selection Code
The name of the select or sort action, as determined by your institution.

Permission Code
The code (as defined in the perm_table) that a user must be a member of in the perm_table
to access and use this sort.

Program Name
The name of the entry program using this select or sort.

Note: A blank in this field provides this entry to all entry programs.

Table Name
The name of the table from which the select or sort occurs (it also corresponds to the detail
window as defined in the def.c file of the entry program).

Database Management 80 Implementation and Maintenance

Sort Criteria Table Fields

The following list describes the fields in the Sort Criteria table.

Boolean Condition
Indicates whether the select or sort is an AND or an OR condition. The system uses this
feature only if there is more than one sort criteria in the sort.

Note: The program assumes the parameters have an “and” condition.

Column Name
The name of the field in the Table Name record that the select or sort criteria acts upon.

Column Value
The value that the indicated field in Column Name contains for the select or sort.

Descending
Indicates whether or not the values in the Column Value field should be sorted in descending
order (Zto A). Enter Y for descending or N for ascending (A to Z).

Relational Operator
The logical condition (equal, greater than, less than, etc.) that the select or sort uses to
determine relationship between the name of the field and the value that it contains (as
specified in the Column Value field).

Sort Order
This indicates where this column should fall in precedence of the select or sort, if multiple
column names exist in this Entry Selection Code sort (0 is the greatest).

Fields Controlling the Select and Sort Criteria

The select criteria is controlled by these fields:
¢ Boolean Condition
e Column Name
e Common Value
¢ Relational Operator

The sort order is controlled by these fields:
¢ Descending
e Sort Order

Implementation and Maintenance 81 Database Management

Selecting and Sorting in Entry Programs

Introduction

This section provides a screen example and procedure to use when your institution sets up the
select and sort screen features in CX.

Note: The system sends no electronic mail as a result of any processing with these features.

Example Screens

The following is an example of a detail window, from which you can use the Sort command to
access the select and sort detail window features.

= Admissions Entry - Inquity Form [_ 2] x]
FEile Edit Command: Help
(1] (2 bErEEE
|
ID No 12345 SS No _J.J.J.—22—3345 Add Date 07/15/1992
Title MIss Friss Suffix 3 Status
Name Doe, Jane Status Date EFFFIEEE
Address 123 ABC Lane Program UNDG
Contacts
Record 1 of 26
Contact St Expected Complete Time Corresp Added Rt CGC
B Anoquiry received [§3 o o AAPENER 1 [4

’— =

1 E S . v
T E—) ———
B 7 E] o ENWEE [}

’_ *
1 fios0/59 | e | 4
|

|Emer contact resource code Use ﬂlfurtab\e lookup. ‘

Database Management 82 Implementation and Maintenance

The following example shows a pop-up window that appears when you select the Sort command.
You can select a particular selection and sorting method.

ADMFACTC ADM & Fy93+ Contacts ctc_rec admentry

ADM_CTCS Contact Records ctc_rec admentry
Contact Records ctc_rec hentry
Financial Aid Contacts ctc_rec ctcentry
Fin Aid & Regist Contact ctc_rec stuentry
Contact Records ctc_rec identry
Contact Records

Contact Records
Contacts

Contact Records
Contact Records

ctc_rec mtidentry
ctc_rec mtentry
ctc_rec schdentry

ctc_rec stuentry
ctc_rec vndentry

How to Use Selecting and Sorting in Entry Programs

The following example lists and describes the steps to use the select and sort features in the
Admissions Entry application.

1.

Access the CX menu system and select Recruiting/Admissions. The Recruiting/Admissions:
Main Menu appears.

Select Admissions Processing. The Recruiting/Admissions: Admissions Processing menu
appears.

3. Select Admissions Entry, then select Finish. The Admission Entry menu appears.

4. Select Application. The Application Entry screen appears in query mode.

© © N o

10.

Perform a query for a sample student. Do the following:
e Enter a student ID number.
e Select Finish.

The student's record appears on the screen.

Select Scroll. The Detail Windows window appears.

Select a Detail Window (e.g., contacts). The Contact detail window appears.
Select Sort. A table lookup pop-up window appears.

Select the desired method. The pop-up window disappears and the Contact detail window
appears with the information resulting from the selected method.

After viewing the information, select Finish. You return to the Application Entry screen.

Implementation and Maintenance 83

Database Management

Setting Up the Automatic Address Update Feature

Introduction

CX Entry Library applications enable you to automatically update addresses for every member of
a relationship when only one member's address changes. All CX entry programs (e.g., identry,
stuentry, admentry, etc.) allow access to this feature.

Example: If your institution maintains a relationship for a husband and a wife, and you
change the husband's address, CX Entry Library applications prompt you to
automatically update the wife's address.

Note: To update addresses using the ID Entry program, see Updating Addresses in
Relationship Records.

What Fields Do the Entry Library Applications Update?

The standard CX Entry Library applications automatically update the following fields in the ID
record for each member of a relationship linked with Relationship and Secondary Relationship
records:
o Street address lines 1 and 2
City
State
Zip Code
Country
Telephone number and extension

Note: To automatically update other fields in the ID record, contact your CX account
manager.

What Macros Require Setting Up?

You must set up two macros and modify the contents of CX tables and records to allow Library
Entry applications to automatically update addresses for individuals in relationships.

The two macros that you must set up (ENABLE_FEAT_PREV_PHONE and
AA_PREV_MAINT_CODE) accomplish the following:
o Assist Entry Library applications to create a previous Alternate Address record (aa_rec) for
an individual when you use the entry applications to change an individual's address.
¢ Indicate if the entry applications should create an Alternate Address record if you change
only an individual's telephone number (id_rec.phone) or telephone extension number
(id_rec.phone_ext).

The tables and records you must set up accomplish the following:
¢ Define the primary and secondary relationships
e Cause Entry Library applications to prompt you to automatically update addresses for
related ID numbers
¢ Indicate the relationships for which Entry Library applications automatically update
addresses when an individual's address changes

Database Management 84 Implementation and Maintenance

How to Set Up the Macros

The following lists the steps to set up the macros for the automatic address update feature.
1. Access the following CX directory: $CARSPATH/macros/custom
2. Enter vi common to edit the macro file. The contents of the common file appear.
3. Locate the ENABLE_FEAT_PREV_PHONE macro in the common file.
4

. Do you want Entry Library applications to create a previous aa_rec when only the
individual's telephone number or telephone extension number changes?
o If yes, define the macro as Y. You instruct CX to create a previous aa_rec whenever
an address, telephone number or telephone extension number changes.
¢ If no, define the macro as N. You instruct CX to create a previous aa_rec only when
an address changes

5. Do you want to use CX default Alternate Address Maintenance code, PREV?
o If yes, go to step 6.
¢ If no, do the following:

6. Locate the macro AA_PREV_MAINT_CODE.

7. Define the macro with any four-character value. You define the previous version of the
alternate address according to your institution's needs

8. Save and exit the file. You save the changes you have made.

9. Reinstall the file.

Installing Your Changes

After you define and reinstall the macros, you must reinstall all the files in the following
directories:

¢ $CARSPATH/include

e $CARSPATH/src

Implementation and Maintenance 85 Database Management

How to Save Previous Addresses in the Alternate Address Record

You can set up the Alternate Address table (aa_table) to cause the Entry Library applications to
create an Alternate Address record (aa_rec) for each individual in a relationship whose address
changes. This feature allows your institution to retain a previous version of each individual's
address in the Alternate Address record.

Note: The Maintenance field (aa_table.maint) in the Alternate Address table contains a Yes
(Y) or No (N) value that controls whether the Entry Library applications create an
Alternate Address record for an individual.

1. When you change an individual's ID record address using an Entry Library application, the
application looks at the Alternate Address code (id_rec.aa) in the individual's ID record.

2. If the corresponding Alternate Address code in the Alternate Address table contains a
Maintenance code of Y, the entry application creates an Alternate Address record that
contains the individual's previous address.

The Alternate Address code PERM is often the only code that should have its corresponding
Maintenance field set to Y. Consult with the appropriate personnel at your institution to
determine how you should define Alternate Address codes.

Notes:

[0 The Alternate Address code (aa_rec.aa) in previous Alternate address records
contains the value of the AA_PREV_MAINT_CODE macro.

[0 The setup of the relationship records and tables in the CX database determines
whether or not the Entry Library applications create previous Alternate Address records
for both primary and secondary individuals in a relationship.

[0 If an individual's address is changed twice in one day, the Entry Library applications
create only one previous Alternate Address record for that day, and it only stores the
last changed address.

Example of Creating an Alternate Address

Following is an example of how the Entry Library applications create an Alternate Address record.

Example: If the Maintenance field for the PERM Alternate Address code is set to Y in the
Alternate Address table, the Entry Library applications create a previous
Alternate Address record for an individual if the individual's address changes and
the individual's ID record contains the value PERM in the Alternate Address field
(id_rec.aa).

How to Set Up the Alternate Address Table

The following lists the steps to retain a previous version of an individual's address in the Alternate
Address record.

1. Access the Alternate Address table PERFORM screen, using the Table Maintenance menu
option on any of the major module menus.

2. Select Query to locate all the table entries. The first Alternate Address table entry appears.

3. Select Update. The command line changes to Update mode, and the cursor moves to the
first field on the screen.

4. Do you want to maintain a previous address for the code that appears in the table entry?
¢ If yes, enter Y in the Maintenance field.
¢ [f no, enter N in the Maintenance field.

5. Select <Esc> to change the information. The command line changes to enable you to
perform other tasks.

Database Management 86 Implementation and Maintenance

6. Select Next.

7. Does the message, "There are no more rows in the direction you are going" appear on the
comment line?
¢ If yes, go to step 8.
¢ If no, repeat steps 3-6 until you have updated all the table entries.

8. Do the following:
e Select Add.
¢ Add an entry in the Alternate Address table for the name of the code you defined in the
AA_PREV_MAINT_CODE macro.

Note:
[1 Enter only the code and the code description in the Alternate Address table PERFORM
screen, and leave the other fields blank.
[1 For more information about defining macros, refer to How to Set Up the Macros in this
section.

9. You update the Alternate Address table to include your institution's code for previous
addresses.

10. Select Exit. You return to the CX table maintenance menu from which you started.

Note: You can set up an alternate address for e-mail addresses. For more
information, see the Communications Management User Guide.

How to Set Up the Relationship Tables and Records

When you change address information for an individual, the Entry Library applications attempt to
change address information for any individuals who are linked to that individual by a relationship.

Example: If John and Jane Doe are linked by a husband/wife relationship, and you change
John's address, then the Entry Library applications attempt to change Jane's
address automatically.

The Entry Library applications automatically update addresses for more than one individual in a
relationship only if the relationship between the individuals is maintained. Whether a relationship
is maintained, is dependent upon how you set up the Relationship record (relation_rec), the
Secondary Relationship record (relsec_rec), and the Relationship table (rel_table).

The relation_rec, the relsec_rec, and the rel_table each contain an address maintenance field
called Maint. This field indicates whether or not the Entry Library applications should
automatically update addresses for individuals in the corresponding relationship. You must
define this field with a Yes (Y) or No (N) value in each record and table.

How to Complete the Relationship Tables and Records

The following describes how to complete the Relationship table, the Relationship Record, and the
Secondary Relationship record to maintain address information automatically for relationships.

Relationship Table

1. Access the Relationship Table PERFORM screen, using the Table Maintenance menu
option under any of the module areas on the CX menu. The Relationship Table PERFORM
screen is located in the Common Tables area.

2. EnterY in the Maintenance field for each type of relationship for which you want the Entry
Library applications to automatically update addresses (e.g., enter Y for the Husband/Wife
relationship, but enter N for the School/Counselor relationship).

Implementation and Maintenance 87 Database Management

Note: Addresses are automatically updated only if the Mnt field for both the Relationship
record and the Relationship table is setto Y. For example, if the Husband/Wife
relationship has a rel_table.maint value of Y, but the relation_rec.maint value of a
specific husband/wife relationship in the relation_rec is N, then the Entry Library

applications will not automatically update the wife's address if the husband's address
changes.

Relationship Record

1. Access the First Relationship detail window for each primary individual in a relationship.

2. EnterY in the Mnt field for each individual for whom you want the Entry Library applications

to automatically update address information (e.g., enter Y for the Relationship record that
links John Doe to his wife, Jane).

Note: The default value for the Mnt field is Y. Make sure that the Code field on the

Relationship record (e.g., HW for Husband/Wife) appears in the Relationship table with
a 'Y in the Maintenance field.

Secondary Relationship Record

1. Access the Secondary Relationship detail window for each primary individual in a secondary
relationship.

2. EnterY in the Mnt field for each individual for whom you want the Entry Library applications
to automatically update address information when the primary individual's address changes

(e.g., enter Y for the Husband/Wife relationship, but enter N for the School/Counselor
relationship).

Note: The default value for the Mnt field is Y.

Database Management 88 Implementation and Maintenance

Updating Addresses in Relationship Records

Introduction

After you set up the tables, records, and macros to automatically update addresses for
relationships, the Maintain Relationship window prompts you to authorize automatic address
updates for each individual in a maintained relationship.

How to Update Records Automatically

To automatically update each individual's address in a maintained relationship:

1. Access any CX entry program screen that contains address information. The entry program
screen appears in Query mode.

2. Perform a query to locate the ID number of the individual for whom you want to enter a
change of address. The individual's name and address information appears on the screen,
and the screen enters Update mode.

3. Do the following:
o Enter the updated address information.
e Select Finish.

The Maintain Relationship window appears.

4. Select one of the following responses to the prompt in the Maintain Relationship window:

o Discontinue (Changes the Mnt fields on the Secondary Relationship and Relationship
records to N, and suppresses the display of the Maintain Relationship window in the
future.)

¢ No (Changes the address for the selected ID, and does not change the address for the
related ID.)

¢ Yes (Changes the address for both the selected ID and the related ID.)

The entry screen appears in Query mode.
5. Repeat step 4 until you have completed each Maintain Relationship window.

6. Do you want to update more ID information?
o If yes, repeat steps 2-5.
¢ Ifno, then gotostep 7.

7. Select Cancel, then select Exit. The CX menu from which you accessed the entry program
appears.

Discontinued Relationships

When you select the Discontinue command from the Maintain Relationship window, the Entry
Library applications change Mnt field from Y to N. Later, if you select the ID for which the
relationship exists, and then change the address, the system will not display the Maintain
Relationship window, and it will not update the address for the related ID.

Reinstating a Discontinued Relationship

To reinstate the maintenance of a relationship that you have discontinued with the Discontinue
command in the Maintain Relationship window, access the First Relationship detail window or the
Secondary Relationship detail window for each primary ID, and then change each corresponding
Mnt field to Y.

Implementation and Maintenance 89 Database Management

Saving Multiple Names and Social Security Numbers

Introduction

You must set up three table values in the Configuration table to allow Library Entry programs to
save previous or alternate names and social security numbers when they are changed. CX
stores multiple names and social security numbers in the addressee record (addree_rec) and
uses this information when performing name lookup. For information about entering and viewing
alternate names and social security numbers, see the Other Name Detail Window in the screens
section of the Getting Started User Guide.

Setting Up the Configuration Table

Follow these steps to set up the table values in the Configuration table to control how previous
names and social security numbers are processed by Library Entry programs.

1. Access Common tables and select Configuration. You can do this using the System
Maintenance option or the Utilities option on the main menu.

2. Setthe ENT_ADDREE_INTERACTIVE value to Y or N indicating whether you want to
activate a prompt to the user asking whether a previous name or social number should be
saved in the addressee record. The default is Y which will display the prompt whenever a
name or social security number is changed. The response will apply only to that name or
social security number.

If you set this value to N, previous names and social security numbers will be saved or not
depending on the values in ENT_ADDREE_NAME and ENT_ADDREE_SSNO.

3. Setthe ENT_ADDREE_NAME value to Y or N indicating whether you want to save previous
names in the addressee record. The defaultis Y.

4. Setthe ENT_ADDREE_SSNO value to Y or N indicating whether you want to save previous
social security numbers in the addressee record. The defaultis Y.

Database Management 90 Implementation and Maintenance

Privacy Act Highlighting of Confidential Information

Introduction

The main entry screens of Entry Library programs, including Admissions Entry and Student Entry,
provide the ability to highlight groups of fields. Using the Privacy field, you can specify a code to
indicate a field or group of fields containing information that the student does not want released.
These fields are highlighted on the screen depending on the capabilities of the terminal or PC
displaying the screen.

You must modify three tables to set up the feature for highlighting confidential statuses in entry
program screens. You must also ensure that each user's terminal screen is properly set up to
display highlighted fields.

Privacy Table

The Privacy table (priv_table) contains a code and text description of the privacy style that you
mark as "private" on screens in entry programs. Since the names of these styles (e.g., ADDR for
Address information) is arbitrary, you can define them any way you prefer.

You can access the Privacy table from the Privacy Act menu option on any Table Maintenance
menu located under Common Tables.

Privacy Field Table

The Privacy Field table (privfld_table) contains the database records and fields that are located in
the groups from the Privacy table. Each group can contain as many records and fields as you
want, but only records and fields that are accessible in entry programs are highlighted.

For example, the privacy group named ADDR may contain the addr_line1, addr_line2, and city
fields from the ID record (id_rec). The system highlights these fields if any of the fields are on an
entry screen for a student whose Profile Record's Privacy Code field (profile_rec.priv_code) is
equal to ADDR.

Profile Record

The Privacy Code field (profile_rec.priv_code) in the Profile record (profile_rec) contains the
name of a group of database fields (as defined in the Privacy and Privacy Field tables).

For example, if the Privacy Code field for a student contains the ADDR code, then any fields that
are defined in this group in the Privacy Field table appear highlighted on the table. You can
access this Privacy Code field on selected forms that contain Profile record information (i.e., at
least the Privacy Code field). To turn off the field highlighting feature, you must blank out the
code in the Privacy Code field.

Privacy Act Report

The Privacy Act report is an ACE report that corresponds to the Privacy and Privacy Field tables.
The report is located on CX in two locations:

e Table Maintenance: Modules (A-L), Common (P-S) menu

¢ $CARSPATH/modules/common/reports/tpriv

Implementation and Maintenance 91 Database Management

Privacy Field

To highlight the confidential status fields for a student's records on an entry program screen, a
name representing the group of fields must exist in a Table lookup for the Privacy field. You can
only access the Privacy field in certain screens.

You can only assign one privacy code to a student. If you want to highlight more fields than the
existing privacy code(s) allows, your computer center must define another code that contains all
the fields that you want to highlight.

How to Highlight Confidential Statuses

The following example describes the steps to highlight confidential status fields for a student in
the Student Entry screen.

1. Access the CX menu and select Student Management. The Student Management: Main
Menu appears.

2. Select Registrar. The Student Management: Registrar Main Menu appears.

3. Select Data Entry, then select Finish. The Student Data Entry menu appears.

4. Select Students. The Student Data Entry screen appears in query mode.
Note: This screen contains the Privacy field.

Note: Other screens can contain highlighted fields, even if the Privacy field is not
present.

5. Perform a query for a student. Do the following:
e Enter a student ID number.
o Select Finish.

6. The student's record appears on the screen.
7. Move the cursor to the Privacy field.
8. Select the Table lookup command. A lookup window appears.

Note: The lookup window contains the names of the groups of fields that you can
highlight on entry program screens.

9. Do you want to highlight a group of fields listed in the lookup window?
o If yes, select a group by pressing the letter before the group name (e.g., a). You cause
the program to highlight the fields on the entry program screen.
¢ If no, select Cancel and press the Space Bar to leave the Privacy field blank. You do
not use the confidential status feature.

10. Select Finish. You save the student's record with the update to the Privacy field.

11. Do you want to see the highlighted fields on the entry program screen for the student?
o If yes, perform a second query on the student. The entry screen appears with the
student's information, and the selected fields are highlighted.
¢ If no, do one of the following:
— Query on another student to process. You are ready to perform other tasks in
Student Entry.

12. Select Cancel. You return to the Student Data Entry menu.

Database Management 92 Implementation and Maintenance

SECTION 7 - MAINTAINING SECURITY WITH PERMISSIONS

Overview

Introduction

Permissions are defined on several different levels in Jenzabar CX. When connecting to the CX
host system from a remote PC via a network connection, the Network permissions based on the
user’s network login and remote PC’s network IP address can control the access to the CX host
system. If permission has been granted to allow login to the CX machine, the next level of
permissions checking is the File permissions based on the end user's CX (UNIX) login. That will
define the user’s access to the directory structure and files on the CX host’s operating system.
Also associated with the end user’'s CX login is the Database Connectivity permission, which
defines the permission to connect and make changes to the Informix database structure, and the
Database Table/Field permissions, which control the user’s access to view, update, add or
remove records from the defined database tables. Commands executed when an end-user logs
in control Program level permissions from the end user’s base menu entry position that defines
what options the user can access from the menu. Finally, Data level permissions control access
to defined rows of data based on the user’s primary group and/or user UNIX ID (gid/uid) number.
At this level restrictions can be based on types of data in each row of a table.

Table of Permissions and Controls

The following table shows the various types of permission levels (from the largest network to the
smallest unit of data), the method by which permission is granted, and the type of control exerted
by the level.

Note that the login is a key component to establishing security on your campus. For more
information about creating and deleting logins, see Creating and Deleting User Accounts in the
System Administration section of this manual.

Implementation and Maintenance 93 Permissions

Level

Based on...

Permissions control...

Network Network login e Connectivity to CX host machine
* |P address restrictions from host/
network
c * Defined on host machine/remote
Q machine basis
g
‘Q, File CX (UNIX) login * Access to files/directories on UNIX
£ machine
g * Read/Write/Execute permissions
8— * Public (Common)/Group/User access
levels
* Defined on individual file/directory
basis
DB Connectivity CXlogin * Level of control of Informix database
* Connect/DBA levels
* Defined on individual database basis
o | DB Table/Field CX login * Level of access to Informix tables
§ + Select/Update/Delete/Insert
fo permissions
S e Public (Common)/Group/User access
levels
* Defined on per table/field basis
* Controlled through schema files
Program CXlogin * Access to programs based on entry
position in menu
e Menu options can also have
passwords (per option)
* Controlled by menu command
executed in .login file
@ * Defined per user
Q
§ Data CX login * Define access to different types of
§ data in same record
< * Used in C program (i.e., admentry,
budget access)
* Controlled by table entries in Informix
database
* Associated with group/user's UNIX ID
(gid/uid) number
Diagram

The following diagram shows how the various layers of interfaces and operating systems work

together to protect your data.

Permissions

94

Implementation and Maintenance

Data
Protection

Dictionary
Other applications CX applications Cognos, etc. HR, Doc_ument
Imaging
A
T
UNIX
programming
A
UNIX PC/Windows Client/Server

Network

Description of Diagram

The following components make up the infrastructure that protects the data maintained on your
CX database. Additional information about some of these components follows in this section. For
information about the other components (e.g., Windows, Network, or CX or other applications),
see the documentation that accompanies those components.

Network
On most campuses, this is the first access to the computer system. All network users have
login names and passwords that are validated before access to any program or computer is
allowed.

UNIX
The UNIX operating system maintains password files and user names to control access to
CX as well as other UNIX-based applications.

PC/Windows Client/Server
The Windows operating environment requires a password for access to programs and data.
In some installations, this step is bypassed because the network login provides adequate
security.

UNIX programming
The UNIX program fileperms sets permissions for all CX files. Users with read permission
can view data; users with write permission can add or update data; users with execute
permission can run programs which in turn may update or display data.
For more information about fileperms, see the appendix to this manual.

Other applications

Implementation and Maintenance 95 Permissions

Other applications in this context refer to UNIX programs that interface with CX (e.g.,
Schedule 25). These programs rely on the same passwords and user names that provide
access to CX applications.

CX applications
CX applications include all the CX programs and libraries. They are dependent on UNIX
passwords and user names to control access to programs. In addition, many of the CX
applications also have their own permission tables (e.g., glperms and regperms) that tailor
the access of specific data to specific users. For more information about setting up office
permissions checking and general use of the Permission table, see Setting Up Office
Permissions Checking in CX Applications and Setting Up Select And Sort Detail Window
Features in this manual.

Cognos, etc.
Cognos, as a third-party supplier of PC and internet software for use with CX, uses the UNIX
passwords for validation purposes.

HR, Document Imaging
Human Resources and Document Imaging are two PC-based CX software applications.
Because they are part of the CX suite of products, they use the same passwords and user
names as other CX applications. An additional layer of security exists for these programs in
that they must be loaded onto the individual PC before an authorized user can access them
and add or view data.

Dictionary
The final line of defense in the protection of your data is the data dictionary. Created by the
Informix make build process, the dictionary includes groups’ and users’ permissions to data
at the schema level. Stored procedures, also a feature of Informix, can control data access
as well. Regardless of the path taken from the network to the data, all users must satisfy the
criteria of the data dictionary in order to access the database.

Permissions 96 Implementation and Maintenance

UNIX Groups and Permissions

Introduction

CXlogin groups provide the three levels of necessary permissions. A person in one group must
be in all the previous groups to really have all the capabilities he needs. Other groups (i.e., staff,
sys, bin, etc.) coexist as well, but the following groups are to be utilized within CX directory trees.

Home Directory Permissions

Ideally, user home directories permissions should be 700 drwx to provide the greatest security to
a personal area. However, since many programs run as carsu and need to send output to the
home directory, the user carsu also needs access to the user’'s home directory. Therefore, set up
the home directories with 770 and a group in which carsu is a member. You can then safely
remove the privileges for others on the home directories.

Common Jenzabar CX Groups

The following are the common CX user groups.

Note: Jenzabar personnel on client sites will be in all three groups: common, carsctrl, and
carsprog. Computer center personnel should be put into carsctrl. No one else (except
maybe the coordinator and limited staff) should be in the carsprog group.

common
All users of CX must be in the common group. The common group allows the execution of
the menu processor, the running of reports and programs. You add all valid users to the
common group because the group on the $CARSPATH directory is common and allows no
permissions for others. The common group prevents non-CX users from accessing the
$CARSPATH portion of the disk.

carsctrl
The carsctrl group consists of users that need access to portions of §CARSPATH/modules,
such as reports, screens, etc. Use this group for computer center personnel that may not be
fully involved with support of CX, but would create reports and screens occasionally.

carsprog
The carsprog group consists of trusted CX users. This group allows almost unlimited access
and update capability to all aspects of CX, including program source, database structure and
content, etc. The Jenzabar system coordinator (and possibly their staff) should be the only
on-campus personnel in this group.

Using the Common Jenzabar CX Groups

The following permission structure utilizes the above groups. This information was extracted from
the fileperms table.

Mode Name Permission Owner Group
$CARSPATH 750 carsu common
install 755 carsu carsctrl
arc, frm,... 775 carsu carsctrl
files 644 carsu carsctrl

Implementation and Maintenance 97 Permissions

Mode Name Permission Owner Group
bin 775 carsu carsprog
files 2755 carsu carsprog
utl 775 root staff
files 755 root staff
menu{src,opt} 770 carsu carsctrl
directory 770 owner carsctrl
files 640 owner carsctrl
macros 770 carsu carsctrl (M4 macros)
user,util,... 770 carsu carsctrl
files 640 carsu carsctrl
schema 750 database carsprog
track 770 database carsprog
cars.dbd 660 database carsprog
files 640 owner carsprog
data 750 database carsprog
track 770 database carsprog
files 660 database carsprog
text 770 carsu carsprog
directory 770 owner carsprog
files 660 owner carsprog
audit 775 carsu carsprog
directory 770 carsu group
files 660 owner group
wp 775 carsu carsctrl
filecabinet 770 owner group
drawer 770 owner group
files 660 owner group
modules 770 carsu carsctrl
function 770 carsu carsctrl
files 640 owner carsctrl
src 770 root carsprog
module 770 owner carsprog
progdir 770 owner carsprog
files 640 owner carsprog

Permissions 98 Implementation and Maintenance

Mode Name Permission Owner Group
{util,utillib} 770 root staff
progdir 770 owner staff
files 640 owner staff
include 770 root carsprog
directory 770 carsu carsprog
files 660 owner carsprog

Interpreting Permissions

The permissions in the above table are interpreted as follows:

Typically, three digits specify the types of permissions on any file. The first of the three pertains to
the owner of the file, the second to the group to which the owner belongs, and the third to all
others. The digits themselves are computed based on what permissions should be given to each
of these categories of users, and are based on the following criteria:

Read privileges 4
Write privileges 2
Execute privileges 1

By adding the digits, unique codes for any level of permission can be created.

Examples of Permissions

A 6 in the first position (the digit pertaining to the owner) means the individual can read or write to
the file, but cannot execute it.

A 4 in the third position (the digit pertaining to the public) means that anyone can view the file.
A 7 in the first position means the owner can read, write, or execute the file.

A 0 in the second position (the digit pertaining to the group to which the owner belongs) means
the group cannot read, write, or execute the file.

The Purpose of a Fourth Permissions Digit

Occasionally, a fourth digit will be used to set permissions on a file. When this occurs, it is the first
digit of the four-character permissions code that is added. The fourth digit causes the system to
interpret the owner as carsu or carsprog so the owner can have temporary permissions for a
specific process that exceed his/her typical permissions. For example, in the Human Resources
application, this type of permission is used to give the HR user the ability to post payroll, when
ordinarily the HR user does not have access to general ledger records and processes.

The fourth digit is one of the following:

Pertains to owner only

4 Pertains to group only

Pertains to both owner and group

Other Common Groups

Other typical common groups include the following:

Implementation and Maintenance 99 Permissions

system, root
System manager

daemon,bin
Used by some UNIX processes

staff
System support staff. Generally computer center employees that are considered trusted
users of the CX administrative system, these users are sometimes programmers for the CX
administrative system.

operator
System operators. Some backup procedures will write messages to the usernames in this
group.

shutdown
System shutdown username. Only the shutdown username should be in the shutdown
group.

cis
Jenzabar employees are the only usernames that should be in this group.

Application User Groups

The CX application user groups include the following:

General Track Groups:
admissions, development, financial, student

Specific Application Groups:
acad_dean, acad_records, accts_pay, accts_recv, alumni, auditors, cashier, display_reg,
donor_acct, fin_aid, maintenance, notes_pay, notes_recv, payroll, personnel, placement,
publicity, purchasing, recruiting, registrar, research, stu_serv, stubill

Instructional System Groups

The student instructional system groups include the following: pupil, faculty, basic, cobol,
fortran, pascal, clang, csmajor, instr_guest, instr_staff .

Permissions 100 Implementation and Maintenance

UNIX Programming Permissions

Introduction

Programming permissions within the UNIX environment include specific ways to control which
users can perform specific tasks. Essential to permissions in the CX system is the fileperms
process, which sets all the file permissions. Institutions that add processes to their CX
installations must run fileperms to establish the accessibility of those processes.

CX utilizes all permission features of the UNIX operating system and of the INFORMIX relational
database system. A shell user has access to actual UNIX files, including home directory, the CX
tree (i.e., /usri/carsi), UNIX programs, etc. In addition, Jenzabar has incorporated into INFORMIX
schema file permissions, groups and usernames. INFORMIX schema file permissions provide the
system manager the confidence that only the authorized application user has permission to
access that particular data.

Application users do not have open access to the data. Except where desired, these users cannot
randomly produce adhoc updates of the database. The types of operations performed are
through programs or pre-written command files. This eliminates the possibility of users changing
data at will (e.g., change a General Ledger account balance without supporting detail).

Three levels of permissions are used, as shown on the chart and diagram at the beginning of this
section.

1. Operating System — these permissions are defined in /usr/group and determine which UNIX
files a user can access. Use this for home directories, programs, etc. Operating system
permissions are not used for determining which tables a user can access within the
database.

2. Database — these permissions are defined by the schemas and make processor. The
database stores the information in the system tables (systabauth) and refers to those at run
time.

3. Applications — Since most data entry and maintenance is performed by application
programs, these programs are typically run with carsu, a database superuser. These
programs control which data goes into various columns of the database tables. Not only do
the programs often give a user more access than the database engine would allow, they can
also restrict users based on perm tables (perm_table, glperm_table, etc.). These are used to
ensure users have access to the appropriate groups of accounts, and financial and
academic programs. This information is found in several perm tables.

Some overlaps exist between these levels (dbmake uses /etc/group to determine who has access
to a particular table), but generally, they are maintained separately.

Access to files from outside third-party software is based on the level that a user is accessing the
server. A word processor will look at files and have permissions based on the operating system;
whereas, MS Access (using an ODBC) might have access to the database, but is limited to the
permissions allowed by the database engine.

Additional Suggestions

Jenzabar recommends the following:
o If possible, eliminate phone-line access totally
¢ Limit outside calls to a local calling area as a means of pinpointing local intruders
¢ Keep modem telephone numbers unlisted
o Keep modem telephone numbers on a different three-digit exchange from that of the
school's other numbers
¢ Change the modem telephone number from time to time

Implementation and Maintenance 101 Permissions

¢ Be certain that the system logs-off the user after completing a telephone call

Troubleshooting

For information about how to resolve permissions problems, see Troubleshooting Tips for System
Administrators in this manual.

Permissions 102 Implementation and Maintenance

Users Permissions to Schemas in the Data Dictionary

Introduction

CX uses the UNIX permissions within each schema. These include both table and column
permissions for user, group and public categories. In these permission declarations within each
schema, the text user name or group name is included. When the dbbuild program updates the
dictionary information, those names are actually stored as uid or gid (user identification numbers
or group identification numbers) from the /etc/passwd and /etc/group files, as appropriate.

Changing Schema and Reassigning Permissions

Changing each schema and rebuilding those files is extremely time consuming when you use the
specific application user name instead of the standard CX user names. In addition, a change in
personnel results in the whole process having to be repeated. Since INFORMIX stores the
identification number internally, you only need to create the new application user entry in the
passwd file with the same user identification number as the standard name.

By having the new entry precede the existing standard CX entry, searches on the user
identification number (to find the user name) result in locating the new user name. Therefore,
when you build each schema and search the passwd file by user name, you will find a number
that is the same number as the application user name. For example, the standard CX user name,
coord, might have a user identification number of 340. If you want the user name of jane as the
coordinator, all that is necessary is to include the jane entry before the coord entry in the passwd
file (both have a user identification number equal to 340).

Implementation and Maintenance 103 Permissions

SECTION 8 — SYSTEM ADMINISTRATION

Overview

Introduction

This section provides information and procedures for maintaining the CX software and files.
System administration issues discussed in this section include the following:

File and directory maintenance
¢ Using the make processor
¢ Locating, setting, and installing macros
o Setting up file transfer capability

User, permissions, and security issues
¢ Maintaining user accounts, groups, and permissions
o CX security tips
e Setting up slave printers for users

System/device testing issues
¢ Monitoring system performance
o Testing spooler devices

System data issues
o Data conversion
¢ Performing backups
e Transferring data from full disks
o Extracting data to tape

Implementation and Maintenance 105 Administration

Maintaining Directories and Files Using the Make Processor

Introduction

CX implemented the make processor as an integral part of CX to simplify and maintain changes
in the software.
o Used with the Revision Control System (RCS), make maintains a history of software
modifications and allows for previous versions to be retrieved.
o Used with macros, make simplifies the editing of source files, and then expands the macros
before translating the source.

Make also ensures that the translated versions of source are properly installed.

GNU Make Processor

CX distributes the GNU make processor to have a consistent version of make used across the
platforms used by client institutions. The GNU make processor provides the following added
benefits:

e Better variable manipulation

o Pattern rules and rule chaining

¢ Conditionals (ifeq, else, endif)

To access the documentation feature of GNU make, you enter info -f make when using GNU
make.

Maintaining a History Of Changes

Make maintains a complete history of changes made to each source file in an RCS subdirectory.
You should never need to access the contents of this directory outside of the make and RCS
procedures. The history of changes for a file begins when you check in the file. Checking in a
file:
o Records a copy of the file and assigns a version number to it. The name for the file that
was last checked is the Recent version.
o Removes write permissions on the source file to avoid changes while the file is checked in.

When you want to change a file, you first check the file out; this produces a working file and locks
it so only you can make the changes. You can make changes and tests to the working file.
Then, you check the file in to create a new version of the file; this records the changes and the
reasons for the changes. The system assigns a new version number to the changed file, and
removes write permissions.

This feature of recording the revision history of source provides the ability to retrieve previous
versions of files. The feature also keeps a record of client changes versus CX changes and
merges new distributions of the source with client versions.

Expanding, Translating, and Installing Source Files

Expand refers to the process that expands all macros that are used in the source file before it is
translated.

Translate refers to the process of producing an object file from a source file. It is this object file
that the make processor installs.

Install refers to the process within the make processor that makes a file or program available for
use from within the CX menu. Any translation or compilation needed on the file or program is
also performed during installation.

Administration 106 Implementation and Maintenance

Using make to translate the source file reduces the number of steps required for creating,
modifying, and/or translating reports, screens, or documentation. When make translates a source
file, it first expands all macros referenced in the file to their full definitions and then finishes the
translation using the appropriate programs. Error files are saved; error messages are made
available to the user.

You can use macros in any file that is translated by make. Using macros shortens the time you
need to develop and customize source files. See Jenzabar CX Macros in the CX System
Reference Technical Manua for further information on macros.

The versions of reports and programs that are executed when you install source files are located
in the $CARSPATH/install directory. You can edit and test modifications to a file within the
source directory without affecting the version being executed by a user. Once a version of a file
is thoroughly tested and checked in to the RCS directory, it is installed and made available to
users.

Separate Installed Source

The $CARSPATH/install directory contains the versions of reports, programs, etc. that the system
executes. Having separate installed versions of files provides you capability to edit and test
modifications to a file within the source directory without affecting the version being executed by a
user.

Object Directories

The make processor places program make files into object directories. This feature makes it
possible to make multiple CX releases that share the same source files.
e The variable defining access to the object directory is CARSOBJ=$CARSPATH/objects.
e The variable defining the object directory is Objdir=8CARSOBJ/$Subpath/$(Objver).
¢ The variable defining the object version is Objver=$(Cxxver)$(Dbgver)$(Infver).

Directory Structure Maintained by Make

Make maintains the CX directory structure. The directories under $§CARSPATH/modules contain
the various module directories, such as Accounting and Financial Aid. You must be familiar with
the CX directory structure in order to understand how make maintains it. The following directories
are maintained by make:

e $CARSPATH/include

e $CARSPATH/macros

e $CARSPATH/menuopt
¢ $CARSPATH/menusrc
e $CARSPATH/modules
e $CARSPATH/schema

¢ $CARSPATH/skel

e $CARSPATH/src

e $CARSPATH/<product>

RCS Directories

Although make maintains each directory level starting at SCARSPATH/modules, most make
targets affect the files contained in the lowest directory level under the current directory, such as
$CARSPATH/modules/regist/screens. These lowest level directories contain an RCS directory,
used by make to keep a complete revision history of each file and additional information about the
current status of each file.

Implementation and Maintenance 107 Administration

When you execute make at a higher directory level, make passes the targets and variables down
to the subdirectories where they are finally executed. This processing occurs in the
$CARSPATH/modules, $CARSPATH/menuopt, and $CARSPATH/schema directories.

Administration 108 Implementation and Maintenance

Make Directory Types

For each directory under make control, you must define the types of files or subdirectories make
maintains. Use the directory type abbreviations listed in the following table when you initialize the
directory for use by make; these abbreviations also serve as the extensions of the translated and
installed filenames.

For example, the $CARSPATH/modules/common/reports directory uses the arc make type. A file
in an arc type directory has an object file named <filename>.arc installed as
${CARSPATHY}/install/arc/common/<filename>.arc.

The following list describes the type abbreviations and the CX directories used for the type.

Note: When multiple source directories are listed for a directory type, the second directory
lists the directories used by new products developed for CX.

aplib
Application libraries
Source directory:$CARSPATH/src/Lib/
Install directory:$CARSPATH/install/lib/

aps
Application Servers (C++ programs that use Libdata.a)
Source directory:$CARSPATH/src/<module>/<service>_aps
Install directories:$CARSPATH/install/aps/<module>/<service>_aps
$CARS_ODBCPATH/$CARSV/modules (updated by thee install of the aps service)

arc
ACE reports
Source directories:3CARSPATH/modules/<module>/reports/
$CARSPATH/<product>/Reports/
Install directory:$CARSPATH/install/arc/<module>/

cgi
Web Server Scripts (m4 translation: file -> file.cgi)
Source directory:$CARSPATH/modules/<module>/cgil....
Install directories:$(Webpath)/cgi-bin/$(subpath)
$(Webtemppath)/cgi-bin/

Note: When you want to reinstall all subdirectories under this make directory type,
you can use the Dotree function. You enter: make reinstall F=ALL Dotree=Y

cmd
Command scripts commands
Source directory:$CARSPATH/modules/util/lcommands/
Install directory:$CARSPATH/install/utl/
dir
All directories for SCARSPATH/ down to the type-specific directory. There are no associated
install directories.

doc
Documentation files
Source directory:$CARSPATH/modules/<module>/documents/
Install directory:3CARSPATH/install/doc/<module>/

Implementation and Maintenance 109 Administration

fps
Form Production System (FPS) forms
Source directory:$CARSPATH/modules/<module>/forms/
Install directory:$CARSPATH/install/fps/<module>/

frm
PERFORM screens
Source directory:$CARSPATH/modules/<module>/screens/
Install directory:$CARSPATH/install/frm/<module>/

htm
HTML files (m4 translation: file -> file.htm)
Source directory:$CARSPATH/<product>/Html/
Install directories:$(Webpath)/htdocs/
$(Webtemppath)/htdocs/

Note: When you want to reinstall all subdirectories under this make directory type,
you can use the Dotree function. You enter: make reinstall F=ALL Dotree=Y

inc

Program include files

Source directory:$CARSPATH/include/

Install directory:$CARSPATH/install/inc/
inf

SQL scripts (formerly called informers)

Source directory:$CARSPATH/modules/<module>/informers/

Install directory:$CARSPATH/install/inf/<module>/
lib

C source libraries

Source directory:$CARSPATH/src/Lib/
Install directory:$CARSPATH/install/lib/

Itr
WPVI letters
Source directory:$CARSPATH/modules/<module>/letters/
Install directory:$CARSPATH/install/ltr/common/

m4
M4 macro files
Source directory:$CARSPATH/macros/
Install directory:$CARSPATH/install/m4/

mnu
Menu description files
Source directory:$CARSPATH/menusrc/
Install directory:$CARSPATH/install/mnu/<track>/

mod
Module directories
Source directory:$CARSPATH/modules/

opt
Menu option files
Source directory:$CARSPATH/menuopt/
Install directory:$CARSPATH/install/opt/<module>/

Administration 110 Implementation and Maintenance

oth
Modules, others, runtime macro expansion
Source directory:$CARSPATH/modules/<module>/others/
Install directory:$CARSPATH/install/oth/<module>/

prog
C programs
Source directory:$CARSPATH/src/
Install directory:$CARSPATH/install/bin/

sch
Schema files
Source directory:$CARSPATH/schema/<track>/

scp
Shell (CSH) scripts
Source directories:3CARSPATH/modules/<module>/scripts/
$CARSPATH/<Product>/Scripts/
Install directory:$CARSPATH/install/scp/<module>/

scr
Application program screens
Source directory:$CARSPATH/modules/<module>/progscr
Install directory:$CARSPATH/install/scr/<module>/

single
Single C programs
Source directory:$CARSPATH/src/common/single
Install directory:$CARSPATH/install/utl/

skl
Skeleton files
Source directory:3CARSPATH/skel/

smo
System Modification Order (SMO)
Source directory:$CARSPATH/smo/<smo#>/
Install directory:$CARSPATH/install/smo/

spl
Stored procedures
Source directory:$CARSPATH/procedures/<track>/

sys
System files
Source directory:$CARSPATH/system/
Install directory:$CARSPATH/install/sys/

util
Utilities
Source directory:$CARSPATH/src/util/
Install directory:$CARSPATH/install/utl/

Implementation and Maintenance 111 Administration

Initializing a Directory: the Makeinit Command

To initialize a new directory for use by the make processor, use the makeinit command. The
abbreviation for the type of file being maintained is passed to makeinit. For example, the
following command line will set up the current directory for maintaining PERFORM screens
(usually, such a directory would be named screens):

% makeinit frm

You should not need to initialize schema and module directories in the $SCARSPATH directory.
However, schema and module directories are available with makeinit if they are needed in
another database area.

The make processor maintains a list of the files that are to be maintained by make in a .makelist
file. This list of files is created during makeinit.

Note: All flenames beginning with an underscore (_), pound sign (#), period (.), dash (-), or
plus sign (+) anywhere in the name are excluded from the .makelist file. However,
these characters can exist in filenames that are to be kept in the directory, but not
maintained by make. In addition, files with execute permissions are also excluded
from being maintained by make. A capital letter as the first letter of a filename is
permitted and will be used with files created by an institution.

File Names Maintained

The make processor uses the .makelist file to track the files to be maintained in a directory. The
makeinit command creates the .makelist file. File names must follow certain restrictions to be
maintained by make. For example, make will maintain initially capitalized file names (capital
letters as the first letter). Make excludes the following files:

¢ File names beginning with an underscore (_) or pound sign (#)

¢ File names that contain a period (.), dash (-), or plus sign (+) anywhere in the name

o Files with execute permissions are also excluded from being maintained by make.

Note: Because of the above exclusions, you can keep files which you don’t want make to

maintain in a make-maintained directory by using these characters in the names of the
file.

Administration 112 Implementation and Maintenance

Using the Make Processor

Introduction

The make processor places a Makefile file in each directory the make maintains. The Makefile
file provides make with the following information:

e The type of files to be maintained in that directory

¢ How to maintain the files

You control the actions performed by make by specifying targets and variables on the make
command line. The general form of a make command is as follows:

Example: % make [target] ... [variable=value] ...

Note: Do not specify files (by using the F= variable) in any program of make directories,
called prog.

Make Command Line Structure

The make processor command line has four parts to it: command, target, variable, and value. To
illustrate the parts of the make command line, the following example shows what you would enter

to check out a file:
’—> make/co F=fi|>e<me 4—‘

command value
target variable

This command line reads as follows: "Use the make processor to check out a file called
filename."

Standard Make Targets

A make target is a command for make to perform an action on some or all of the files maintained
in the current directory. See Make Targets in this section for a list of valid targets.

Target Naming Conventions: Prefixes

The following lists prefixes, and their meanings, that you can add to some targets.

smo
Process the files in a SMO (e.g., smodeposit)

Temporarily perform object (e.g., tinstall)

Target Naming Conventions: Suffixes

The following lists suffixes, and their meanings, that you can add to some targets.

n
Provide an answer of no to the prompt (e.g., rebuildn). Shows changes that would occur.
Does not actually create a file or change permissions.

y
Provide an answer of yes to the prompt (e.g., rebuildy)

f

Implementation and Maintenance 113 Administration

Forces a rebuild of the table. Mainly used to change dbspace for the location of the table.

Note: If you use build F, you must remake the synonyms with isql.

Make Variables and Values

Make variables allow you to specify additional information regarding the action performed by a
target. If you do not specify a variable on the command line, the system either supplies a default
value, or prompts you for the information. If the value you assign to a variable contains spaces,
you must surround the value by single (') or double (") quotes to keep it together as one value.

The following are common make variables:
o (for files)
¢ (for a log message to be assigned to a revision)
o (for a target)
¢ (for a version of a file)

When you use the F variable, you must specify the file affected by make. To specify multiple
files, list each file within quotes, with a space separating each filename. To include all the files in
a directory, you can type ALL instead of listing each file.

Make Targets

The following lists each target you use with make in order to perform a task, at least one example
command line to show the format to use with each target, and a description of each target.

Note: The directories in which you are working must be initialized for make before the make
command lines are valid.

Note: If you do not specify a target on a command line, the system assigns a default target of
/translate/.

add

adddir

addmod
The add target creates a new a skeleton file containing the revision log message header and
the basic structure of the type of file you plan to create, and informs make that the new file is
to be included in the list of files that it maintains.

Note: If you are adding a subdirectory, use the adddir target, followed by the S
variable and the subdirectory name.

Example:
% make add F=filename
% make adddir S=subdirectoryname
% make addmod M=modulename

analyze
The analyze target provides database constraint analysis. You normally run this target if an
error occurs on the build target.

build
The build target creates a new database file or changes permissions on an existing
database file. You must specify a value for the F variable when you use the build target. A
trace of the execution is placed in a file with a .sql extension.

Note: The file must be in a checked in state (using the ci target) before you can use
the build target.

Example: % make build F=schemaname

Administration 114 Implementation and Maintenance

ci
The ci target checks in a file. You must check in the new revision of a file before you install
the file. This process updates the revision history for the file and unlocks it, making the file
available for another individual to check out. In addition, make removes the write
permissions for the file so that the next individual is reminded to check out the file (using the
co target) before editing it. Each time you check in a file, you are required to provide a log
message explaining the reason you revised the file.

Example: % make ci F=myfile L="log message’

cii
The cii target checks in and installs a file, combining two steps into one. See the
descriptions for the ci and install targets for detailed information.
Example: % make cii F=/filenamel
cleanup
The cleanup target removes all of the object files (files with a .0 extension) in a source
directory. The cleanup target forces make to recompile each individual .c source file.
However, the cleanup target does not remove the installed versions of files. The cleanup
target is useful for reducing the amount of disk space needed in the source directory, or for
ensuring that a new object file will be created the next time the source is translated. The
cleanup target must be used under the $CARSPATH/src directory.
Example: % make cleanup
co
The co target checks out a file so that you can modify an existing file. Checking out the file
gives you exclusive write permission to the file and locks the file so that no other individual
can check it out.
Example: % make co F=filename
delrev
The delrev target deletes the most recent version of a file that has been checked in by error;
however, delrev does not replace the working file. If the version of the file you are deleting is
not the most recent version, you can use the V variable to specify the version number you
want to delete.
Note: Do not specify files when you are executing the delrev target within directory type of
prog.
Example:
% make delrev F=filename
% make delrev V=version
% make delrev F=filename N\=version
% make delrev F=filename:version
diff

You can use the diff target to compare two different versions of a source file. Use the V
variable to specify the two versions you want to compare, and separate the two versions by
a colon (:). If you do not specify the two versions on the command line, the system prompts
you to supply the versions. The output is placed in the working directory in a file with a .out
extension. Do not specify files when you are executing the diff target within a prog directory
type.

Example:
% make diff
% make diff F=filename
% make diff V=version
% make diff F=filename V\=version

Implementation and Maintenance 115 Administration

% make diff F=filename V\=version:version

drop
The drop target deletes a database file. The schema file must have already been checked
out (using the co target). A trace of the execution is placed in a file with a .sql extension.
The drop target must be used in a schema directory type.
¢ Use the drop target, followed by the remove target, to remove a file permanently
from the system.
o Use the dropn target to erase the file with an n (for No) response to the prompt that
follows. The file is not checked in, and the results are saved in the .sql file.
o Use the dropy target to erase the file with a y (for Yes) response to the prompt that
follows. The file is checked in, and the results are saved in the .sql file.

Example:
% make drop F=schema L='log message'
% make dropn F=schema
% make dropy F=schema L="log message'
exec
execdir
execmod
The exec target executes a shell command in a directory maintained by make. This is useful
when you are passing a shell command from a higher directory level to several directories in
which the command needs to be executed. Use the X variable with the exec target to define
the shell command you want to execute. You can also use the execdir and execmod targets
to execute a shell command within directory- and module-type make directories.

Example:
% make exec X=executable
% make exec X=command
% make execdir X=command
% make execmod X=command

expand (non-program types)
The expand target examines a file after any macros the file contains are expanded, but
before any further translation is performed, such as SACEPREP or SFORMBLD. Use the
expand target if errors occur during the testing phase of a file; the expand target expands all
macro references and saves the result in a file in the working directory with a .exp extension.

Example:
% make expand F=filename
% make expand F=ALL

expand (program types)
The expand target for program types) passes the specified files (or all source files if none
are specified) through the C pre-processor to expand all #include, #define, etc. lines. The
output for each files goes onto $(objdir)/<fileroot>.i.

Example:
% make expand F=filename
% make expand F=ALL

Administration 116 Implementation and Maintenance

expobj
The expand object, similar to expand for program types, passes the specified files (or all
source files if none are specified) through the C pre-processor to expand all #include,
#define, etc. lines. The target also attempts to compile the $(Objdir)/<rootfile>.i intermediate
files to produce error messages with line numbers corresponding to the $ (Objdir)/<fileroot>.i
files to help debug compiling errors.

Example:
% make expobj F=filename
% make expobj F=ALL

getprev
The getprev target retrieves a previous copy of an installed object file with an extension of
.pv1, if the file was recorded by make. The getprev target makes the previous copy the
active version and decreases the numbers of any other versions of the same type.

Example: % make getprev F=filename

getsave
The getsave target retrieves a previously saved copy (which was created using the save
target) of an installed object file with an extension of .sv1, if the file was recorded by make.
The getsave target makes the previous copy the active version of the file, and decreases the
numbers of any other versions of the same type.

Example: % make getsave F=filename

gettemp
The gettemp target retrieves a previous copy of a temporarily installed object file (which was
created using the tinstall target) with an extension of .tm1, if the file was recorded by make.
The gettemp target makes the previous copy the active version of the file, and decreases the
numbers of any other versions of the same type.

Example: % make gettemp F=filename

help
The help target provides online help for a specific target. If you enter make help, a list of
targets appears. If you enter make help T=<target>, a help topic about a specific target
appears.

Example: % make help T=expand

history
The history target lists log messages for revisions made to files within a particular period of
time. Use the D variable to indicate the range of dates to be included in the revision history
list. Specify dates (and times) in the following formats. Separate multiple date ranges with a
semicolon (;).

d1<d2 (for all revisions created between dates d1 and d2, inclusive)

<d (for all revisions dated d1 or earlier)

>d (for all revisions dated d1 or later)

d1 (for the single most recent revision dated d1 or earlier)

Example:
% make history
% make history F=filename
% make history F=filename D= 'date range’

histweek
The histweek target lists the revision history for only the past week.

Example: % make histweek F=filename

Implementation and Maintenance 117 Administration

install
The install target installs the object file for general use in the CX, in the appropriate directory
under $CARSPATH/install, after a file is checked in. For example,
$CARSPATH/modules/common/ screens/file would be installed as
$CARSPATH/install/frm/common/file.frm. You must specify the filename(s), or ALL, with the
F variable.

Example:
% make install F=filename
% make install F=ALL

makedef
The makedef target creates the definition files for a table and places them in the appropriate

$INCPATH if they have changed. You must be in a schema directory in order to use the
makedef target.

Example:
% makedef F=schema
% makedef F=ALL

makedep
The makedep target creates or updates the dependency list for the make processor. You
must use the makedep target only in the $CARSPATH/src directory path.

Example: % make makedep

merge

mergeci
The merge target makes the same changes that are made in new distributions of source files
from CX to the local version at an institution. Once the new source file is checked in, the
local version is merged with the distribution from CX, using the merge target, to produce a
new local version. The V variable specifies the versions to be merged. The merge target
also translates the source file after the versions are merged together.

CAUTION: View and test the source file carefully before you check in the new
combined version. If the two versions being merged are compatible and
will merge without errors, you can use the mergeci target to automatically
check in the new version after merging. Do not specify files when you are
using the merge target within the $CARSPATH/src directory.

Example:
% make merge
% make merge F=filename
% make merge F=filename V'=version
% make mergeci F=filename L="log message’

move
The move target relocates a working file and its associated RCS to a new directory. If the
move is successful, the file is reinstalled. Do not use the move target within the
$CARSPATH/src directory.

Example:
% make move F=filename S=path
% make move F=filename:path

Administration 118 Implementation and Maintenance

packrev
The packrev target consolidates all revisions from previous releases into the base trunk
revision of the current release.

Example: % move packrev F=filename V=release

reci
The reci target re-checks in a file. Use the reci target for instance, if you discover that further
changes need to be made to a version of a file after the file has been checked in
prematurely. If the file is not yet installed, you can check out, change, and re-check in the
file (using the reci target). If the file is already installed, the current (incorrect) version might
be in use. The reci target is most commonly used for a file that was checked in with the
changes that caused new problems. The reci target is not needed if proper testing is
performed on source files before they are checked in.

Example:
% make reci
% make reci F=filename

reco
The reco target re-checks out a file if a file has been checked out (using the co target) but
destroyed in some way, and the file must be restored to its initial checked out state. The
reco target replaces the current working file with the last checked in version.

Example:
% make reco
% make reco F=filename
reinstall
REINSTALL
The reinstall target installs a new copy of an object file, if it must be installed after it has
already been installed. For example, use the reinstall target if you need to reinstall a file
because a macro file has changed or if the installed version of a file somehow becomes
corrupted.

CAUTION: If you use the reinstall target in the $CARSPATH/src directory path, everything is
reinstalled except for the screens. When you are in §CARSPATH/src, use the
REINSTALL target (in capital letters) instead, which allows you to reinstall a
program and the associated screens, if the screens in a subdirectory called SCR.

Example:
% make reinstall F=filename
% make REINSTALL F=filename
remake
remakeall
The remake target re-creates the list of files that make maintains if, for instance, the files in
the list are different from the files make should be maintaining. For example, use the
remake target if a file is removed using the UNIX remove command (e.g., % rm filename)
instead of the remove target, thus causing the list of files to be incorrect. You can also use
the remakeall target, which uses the remake target in the current directory and then passes
the remakeall target down to any subdirectories.

Example:
% make remake
% make remakeall

Implementation and Maintenance 119 Administration

remove

removedir

removemod

fremovedir

fremovemod
The remove target removes a file that is no longer useful and adds a ,0 extension to the
RCS version of the file. The RCS files with the ,0 extension are automatically removed from
the system weekly by the carsweekly script, as defined in /modules/Util/scripts. However, if
you decide to keep the removed file before the specified number of days has expired, you
can restore the file using the restore target.

e You can remove an empty directory from a directory make directory type by using
the removedir target. Use the fremovedir target to remove a directory with contents
init.

¢ You can remove an empty module from a module make directory type by using the
removemod target. Use the fremovemod target to remove a module with contents
init.

¢ Do not use the remove target within a prog directory type.

Example:

% make remove F=filename
% make removedir

% make removemod

% make fremovedir

% make fremovemod

rename
The rename target changes the name of a file, while preserving all previous revision history
for the file. Use the F variable to specify both the old name and the new name, and separate
the two names with a colon (:). Using the rename target prevents you from having to
execute the add target, copy the file, and then remove the old file. Do not use the rename
target within a prog directory type.

Example:
% make rename F=filename
% make rename F=filename:filename

restore
The restore target retrieves a file that has recently been removed using the remove target.
The restore target moves an RCS/filename,o file back to an RCS/filename,v file within the
RCS subdirectory and re-creates the working directory. Because only the RCS file is
restored, the file must be checked out to be used again.

Note: There is no restore target for directory- and module-type make files.
Example: % make restore F=filename

save
The save target saves a file, for instance, if you need to save the currently installed (active)
version of a file for possible retrieval in the future. The save target makes a copy of the
installed version with a .sv1 extension. The number in the extension of any previously-saved
versions is incremented, up to the maximum number of saved versions allowed. The save
target provides a method of keeping old copies of installed files, in addition to the copies
kept by the install and tinstall targets. Do not use the save target within a prog directory
type.

Example: % make save F=filename

Administration 120 Implementation and Maintenance

subs
The subs target translates the menudesc source file in a directory and its subdirectories into
a complete menu object file called menudesc.mnu. In addition, you can set the T variable to
the target to be executed (if other than the default target, translate). The target is executed
in each subdirectory starting with the current directory and continuing to the lowest level.
The default file for the menu source make targets is menudesc, so the F variable and
filenames are not required with any of the make targets in the $CARSPATH/menusrc
directories. You must use the subs target in the SCARSPATH/menusrc directory path.

Example: % make subs T=target

tinstall
The tinstall target installs the object file for general use in the CX, in the appropriate directory
under $CARSPATH/install. The tinstall target is used primarily on files that are checked out,
although it will work on checked in files. In addition to installing the new object file in the
$CARSPATH/install path, a copy of the previous object file is kept in the install directory and
given a new extension of .tm1. Subsequent uses of the tinstall target on the file will not
destroy the .tm1 file, thus keeping a copy of the object file from the previous time the file was
installed.

For example, $CARSPATH/modules/common/screens/file would be installed as
$CARSPATH/install/frm/common/file.frm and the previously existing copy of the file.frm
would be renamed to file.tm1.

Example:
% make tinstall F=filename
% make tinstall F=ALL

translate
The translate target translates the working file into an object file for testing. The object file is
the file that is installed and then accessed during the normal use of CX. For example, the
filename extension of an object file for a PERFORM screen is .frm. The translate target is
the default target used when no target is explicitly specified. If you do not specify an F
variable, the system prompts you for specific filenames. If you want to translate all files, you
can specify F=ALL on the command line. The translate target only translates those files that
need to be translated, such as when a working file has been changed since the object file
was created in that directory, or when the object file does not exist.

Example:
% make translate F=filename
% make F=filename

unco
The unco target unchecks out a file after it has been checked out (using the co target). This
target puts the file back into the condition it was in when first checked out, and sets all of the
revision numbers back to the original settings.

Example:
% make unco
% make unco F=filename

Implementation and Maintenance 121 Administration

Make Processor Command Quick Reference

Creating a File

You create a make-maintained file by entering the following:
% make add F=<filename>
o If the file does not already exist, the command creates the skeleton file of a type determined
by the Makefile (e.g. ACE report, screen, or form).
o [f the file exists, the command puts it under control of the make processor and adds a
header, if not already present.

Checking Out a File

Before you can modify a file, you must check out the file by entering the following:
% make checkout F= <filename>

Note: The following is an abbreviation of the command: make co F= <filename>

The check out command does the following:
o Creates a working version of the source file to edit.
e Changes the ownership of the file to your login.
¢ Gives you, the owner, exclusive read and write permissions.

Note: You can use the breaklock script in modules/util/scripts to change ownership of a
checked out file.

Translating Files

To translate your source file to an installed object file, enter the following:
% make F=<filename>

Note: You can also enter the following version of the command: make translate
F=<filename>

The translate command does the following:
¢ Translates or compiles source files into object files.
e Translates only those source files that have been modified since the last translation.

Checking In a File

To make a file available to users, enter the following:
% make ci F=<filename> L=<log message>

Note: You can also enter the following version of the command: make checkin
F=<filename> L=<log message>

The check in command does the following:
e Checks in a file which has been modified.
e Changes the permissions to read only for both owner and group.
¢ Automatically updates the RCS.

Note: If you enter the log on the command line, the log will be a one line version; if
not, the system will prompt you, and you can enter a multi-line version or the
place the log message in a <filename>.log file.

Administration 122 Implementation and Maintenance

Installing Object Files

To install files for use in CX, enter the following:
% make install F=<filename>

The install command does the following:
e Moves new obiject files into their appropriate directories for use in CX.
o Current version is given the extension .pv1; other former versions are renumbered
consecutively, until the maximum is reached, and those are then deleted from the system.

Note: Use install only the first time a file is put into place. Use reinstall thereafter.

Checking In and Installing Files

To combine the steps to check in and install a file, enter the following:
% make cii F=<filename>

The cii command combines the check in and install commands.

Command Sequence

The following lists the sequence in which you use the make commands for different file states.

A new file

% make add F=<filename> (creates a skeleton for the file)
% vi to create or edit the file

% make F=<filename>

Test the translated file

% make ci F=<filename>

% make install F=<filename>

SOk wWN =

An existing file (not previously maintained by make)
% make add F=<filename>

% vi to edit the file

% make F=<filename>

Test the translated file

% make ci F=<filename>

% make install F=<filename>

IZECE RN

An existing file governed by make

1. % make co F=<filename>

2. % vi to edit the file

3. % make F=<filename>

4. Test the translated file
5. % make ci F=<filename> L=<log message>
% make install F=<filename>

o ¢

An installed file version from menu (for testing)
1. % make add F=<filename>
% vi to edit the file
% make F=<filename>
% make tinstall F=<filename>
Test the file from menu
Edit the file, make, tinstall, test until there are no errors
% make ci F=<filename>
% make install F=<filename>

PN AWN

Implementation and Maintenance 123 Administration

Locating Macros Within an Application

Introduction

Jenzabar has developed a tool called applocate that an institution can use to obtain a listing of
macro definitions associated with an application.

When an institution is ready to set up and modify macros in an application, the institution can run
the applocate script to obtain a listing of potential macro definitions to modify. The listing
generated by applocate always reflects the current state of the system, as opposed to a hard
copy listing provided by CX that would not necessarily reflect the current state of an institution's
system due to macro file changes made by CX.

How to Locate Macros within an Application

There are two parameters associated with applocate script. The first parameter is the name of
the application (e.g., crsent). The second parameter is a specific macro file that applocate
searches (e.g., $CARSPATH/macros/custom/student). If an institution does not specify a macro
file, applocate searches all of the macro files in the $CARSPATH/macros/custom and the
$CARSPATH/macros/user directory paths.

The following lists the steps to follow for locating macros within an application.

1. Do you want to search for a macro in a specific macro file?
o |f yes, go to step 2.
¢ If no, go to step 3.

2. Do the following:

¢ Enter the following command at the prompt:applocate APPLICATIONNAME
macrofilename > filename(e.g., applocate CRSENT student > crs.student)

¢ Go to step 4.In this example, the applocate script searches the
$CARSPATH/macros/custom/student directory path and locates all of the macros that
are applicable to the Catalog and Schedule application.The system redirects the output
to a filename called crs.student. The output consists of a listing of all the macro
definitions in the student macro file that CX has identified as applicable to the Catalog
and Schedule application. The output also contains comments and a brief description
of the other files (e.g., menu options, reports, screens, programs) that an institution
must reinstall to reflect the change(s) made in the macro definition(s).

3. Enter the following command at the prompt: applocate APPLICATIONNAME > filename
Example: applocate CRSENT > crsent.all

In this example, the applocate script searches all of the macro files in the
$CARSPATH/macros/custom and $CARSPATH/macros/user directory paths,
and locates all of the macros that are applicable to the Catalog and Schedule
application.

The system redirects the output to a filename called "crsent.all." The output
consists of a listing of all the macro definitions in the custom and user macro files
that CX has identified as applicable to the Catalog and Schedule application.
The output also contains comments and a brief description of the other files (e.g.,
menu options, reports, screens, programs) that an institution must reinstall to
reflect the change(s) made in the macro definition(s).

4. Do you want to know where the macros listed by the applocate script are used throughout
CX?
¢ |f yes, use the Maclocate command.

Administration 124 Implementation and Maintenance

Note: For information on how to use the Maclocate command, see Locating All Files
That Contain a Macro in this section.
e If no, stop. You have completed this procedure.

Implementation and Maintenance 125 Administration

Locating All Files That Contain a Macro

Introduction

Before modifying macros on CX, you might want to perform either of the following procedures:
¢ Locate all of the files that contain a macro name
¢ Locate all of the files that contain a specific macro name

Perform these procedures to ensure that the macro you are changing does not affect processing
other than what you intend to be affected.

CAUTION: To locate all the files that contain a macro or a specific macro, the system
searches every file on the system. Since this search can take several hours,
make sure that you perform either of the following two procedures at night or over
the weekend.

How to Locate All Files that Contain Macros

To locate all the files that contain macros, enter the following command at the prompt:
$SCPPATH/util/maclocate.scp outfile.

Maclocate.scp is a Jenzabar-created UNIX command that searches the system for every file in
which a macro is located.

"Qutfile" is the filename of the Maclocate Report, which lists each macro and where that macro is
used in the system.

CAUTION: A macro that appears by itself in the Maclocate Report is not currently used in the
system. However, the macro might be used within the definition of another
macro(s). Check the macro files before you remove a macro.

How to Locate All Files that Contain a Specific Macro

The following lists the steps to follow for locating all files that contain a specific macro.
1. Enter vi macfile at the prompt to create a new file called macfile.
2. Type the name of each macro that you want CX to locate.
Example: COMMENT _ID
CAT_DEF

3. Do the following:
e Press <Esc>.
e Enter :wq to exit and save the file.

4. Enter the following command line:

$SCPPATH/util/maclocate.scp -f macfile outfile
o The "-f macfile" variable tells the system to search for only the macros that you
specified in the macfile file.
o "QOultfile" is the filename of the Maclocate Report, which lists the name of each file
containing the macro that you specified in the macfile file.

CAUTION: A macro that appears by itself in the Maclocate Report is not currently used in the
system. However, the macro can be used exclusively within the definition of
another macro(s). Check the macro files before you remove a macro.

Administration 126 Implementation and Maintenance

Setting Up Macros

Introduction

Use the following process and procedure for all macros except for ENABLE macros. You make
changes to enable macros using the Configuration table. For more information, see
Configuration Table in Common Tables and Records in this manual.

The Process

The following shows the phases in the overall process of setting up and modifying macros.
1. Access the macro files located in the following directory path: $CARSPATH/macros.

Check out a macro file using the make processor.

Modify the macro(s) in the file using your institution's text processor (e.g., vi editor).

Check in the macro file using the make processor.

Install the macro file using the make processor.

N O

Reinstall all of the files (reports, screens, programs) that use the macro(s) you modified.

How to Set Up Macros

The following lists the steps to follow to set up a macro.
1. Enter echo $CARSDB to find out what database you are currently working in.

2. If you are not in the appropriate database, enter the following command line: setdb
database name.

3. Enter cd $CARSPATH/macros to access the directory containing the four macro
subdirectories.

4. Enter cd custom or cd user to access the macro files you want to set up.

5. Enter make co F=filename to check out the specific file containing the macros to be set up.
(e.g., make co F=student)

6. Enter vi filename to view the file containing the macros (e.g., vi student).

7. Use the text processor keys to move through the file and define every macro you want to
enable and/or make changes to the macro definition as necessary.

Note: To enable a macro, type a "Y" or enter a value for the macro definition.
Example: m4_define(ENABLE_FEAT_FPS', "Y")
m4_define("CAT_DEF', "UG9X')
8. Press <Esc>.
9. Enter :wq to exit and save the file.
10. Enter make cii F=filename to check in and install the file (e.g., make cii F=.......)

11. Use the maclocate command to identify all of the files (e.g., reports, screens, programs) that
use the macro(s) you have modified.

Note: For information on how to use the maclocate command, see Locating All Files
That Contain a Macro in this section.

12. Reinstall all of the files (reports, screens, programs) that use the macro(s) you modified.

Implementation and Maintenance 127 Administration

Note: For more information on the reinstall process, see How to Reinstall Files That
Reference a Modified Macro.

Administration 128 Implementation and Maintenance

Reinstalling Files That Reference a Modified Macro

Introduction

After you check out, modify, and check in all of the macro files that need customizing for an
institution, you must reinstall all of the files in order for CX to recognize all of the changes you
have made and for it to work properly.

When to Reinstall Files

Reinstall files that reference a macro that has been modified only after all required changes have
been made to files. After you run the maclocate script, review the output generated by the
maclocate script to determine which files you need to reinstall.

Which Files to Reinstall

After you modify a macro file, you must reinstall all other files that reference the macro you
modified. Reinstalling files ensures that any files affected by the macro modifications will work
properly. The following are the subdirectories in the $SCARSPATH directory path that contain
macros: include, macros, menuopt, menusrc, modules, src, skel

How to Reinstall Files

The following lists the steps for reinstalling files that reference a macro you have modified.

CAUTION: This procedure could take several hours. You should reinstall macro files during
off-business hours to avoid disrupting normal processing using the CX.

—_

Enter cd $CARSPATH to access the directory containing the macro files.

N

Is a file you need to reinstall located in the $CARSPATH/install directory path?
¢ If yes, enter cd include/subdirectory to access the subdirectory containing the install
file. Go to step 3.
¢ If no, go to step 6.

3. Enter make reinstall F=filename to reinstall the include file that contains a macro you
modified.

Note: If more than one include file references the macro you modified, you can enter
make reinstall F=ALL to reinstall all of those include files at once.

4. Enter cd ../src to access the directory containing source files.
5. Enter make reinstall to reinstall the source files that reference the macro you modified.

6. Enter cd subdirectory/module/directorytype to access the subdirectory containing the file
that references the macro you modified (e.g., cd menuopt/regist/screens).

7. Enter make reinstall F=filename to reinstall the file that references the macro you modified.

Note: If more than one file references the macro you modified, you can enter make
reinstall F=ALL to reinstall all of those files at once.

8. Repeat steps 6-7 for every file you want to reinstall.

Implementation and Maintenance 129 Administration

Creating and Deleting User Accounts

Introduction

CX provides tools for adding and deleting user accounts on the host system. Jenzabar has
developed two commands to add and delete users, addlogin and dellogin. These commands
prompt you for all necessary information to add or delete the user access, then update the files
necessary for adding or deleting users, including:

e Passwd file

o Group file

o Secuirity files, if they exist

Jenzabar has also developed standard user names to assist you in specifying a user account’s
access permissions. For example, you specify the admit login name for an Admissions office
user. This standard user name contains the proper menu path access and permissions to use
Admissions programs.

The password file (/etc/password) defines the primary group ID. This ID is required and is the
same as the ID used for the standard user name associated with each user. The group file
(/etc/group) controls any secondary groups the user is in. A user can be in as many secondary
groups as you choose to assign. You use groups to control database access and UNIX file
access for a user. The process that verifies whether an individual can access a file checks the
ownership of the file and the permissions that are granted to all the groups.

Groups are also used in the database to control table access. The schema definitions define the
permissions to tables allowed for each group. Therefore, if you want to know which groups
provide update/view access to specific screens, you can look at the schema definition. However,
keep in mind that most screens access more than one table and a user requires access entries
for each table.

Note: A few tables exist that allow further restrictions to access permissions, especially in the
registrar and financial modules.

Note: You can use the ‘groups’ command to view the groups an individual is in.

To complete the process to add or delete a user, you must use the dbadmin program to instruct
the database to add or delete a user’s permission to access the tables and data.

Note: For more information on the dbadmin program, see Database Administration Program
in the CX System Reference Technical Manual.

Note: For further references, see the following sections in the UNIX manuals: passwd(1),
passwd(5), and group(5).

User Account Requirements

CX requires that every user that accesses the system must have a user account. A complete
user account includes the following on the system:
¢ A /etc/password file entry
o A /etc/group file entry in common group. A user can have more than one entry in the group
file.
¢ A home directory with dot (.) files (e.g., .login,