Compensation: An Instrumental Perspective

Why Digital? Visualization Issues Boston User's Group – September 10, 2003

> Joe Trotter Joe_Trotter@bd.com

> > **BD Biosciences**

Clontech Discovery Labware Immunocytometry Systems Pharmingen

Review: Instrument Sensitivity

- Measuring Sensitivity 2 definitions
 - Threshold Degree to which a flow cytometer can distinguish dimly stained from particle free background. Usually used to distinguish means/medians.
 - Resolution Degree to which a flow cytometer can distinguish unstained and dimly stained in a mixture. Can be very complicated in a polychromatic scenario.
- Good Sensitivity?
 - We have generally improved instrument sensitivity threshold definition (50 – 200 MESF FITC, for example).
 - Good threshold sensitivity does not necessarily guarantee good resolution.

Things that impact sensitivity

Fluorescence Sensitivity is a Function of Detection Efficiency - Q

Fluorescence sensitivity: a measure of the ability to resolve dimly stained cells from noise

Detection Efficiency (Q):

a measure of the ability of the instrument to excite and capture photons of interest

Sources of Background Light That Reduce Fluorescence Sensitivity - B

Fluorochromes emit in other channels

Spillover into other detectors increases background

PE Background Due to FITC Spillover

 Without compensation, the amount of PE MESF background contributed by bright CD45-FITC staining can be determined (8700 PE MESF).

Analog Data: CD45 FITC only

Dim CD4 PE double stained cells not visible

Effect of Spillover on Double Stained Cells

Compensated analog data: CD45 FITC makes dim CD4 difficult to measure due to FITC spillover into PE and resultant "spread"

Compensated analog data: CD45 PerCP allows same dim CD4 cells to be separated from bkg. – little spillover into PE

Analog Cytometers

- They have set the standard from the 1970s to now.
 - 2 stage linear display 0 10V:
 - 1. Preamp
 - 2. Amplifier/integrator
 - 3 stage logarithmic Display:
 - 1. Preamp (current to pulse)
 - 2. Differential amp(s) (compensation by pulse subtraction)
 - 3. Logarithmic amp
 - a. Response error ±0.5dB from true log
 - b. Linear error 6% to 10% over range
 - c. Largest errors are from offsets

Simple 4 detector analog example

Simple 4 detector digital example

Base Line Restore - Analog vs Digital

BD Biosciences

A Continuously Digitizing Cytometer

FACSAria 10 MHz ADC: 5.8 µsec pulse has ~ 58 observations

Sum 14 bit height measurements into area as IEEE 32 bit floating point Pulse area is a measurement of *total* fluorescence (18 bit resolution)

We live in an imperfect world

Fluorescence Compensation

- We correct for dye spillover to align stained populations in dye space without bias from spectral overlap.
 - Analog system essentially subtracts pulses
 - Digital systems correct using a compensation matrix (inverted spillover matrix) and matrix algebra.
- Compensated parameters exhibit spread.
 - Nonlinear error from photon counting statistics¹
 - Worse in red and far red (fewer photons)
 - Sampling error is function of SQRT(number of photons)
 - Analog systems dampen spread due to errors in compensation circuits and logamp nonlinearity

¹ Roederer M: Spectral Compensation for Flow Cytometry: Visualization Artifacts, Limitations, and Caveats. Cytometry 45:194–205 (2001).

Analog Compensation Errors

BD Biosciences Immunocytometry Systems

BD Biosciences

Quantitative Characteristics Over a 4 Decade Range¹

Decade	Log amp output	Log amp input	Cathode photons/ 10 μsec	CV (%)	MESF	% error 1.0 mV offset	ADC channel (10 bit)	ADC channel (18 bit)
	10.0 V	10.0 V	4430000	0.13	1000000	0.01	1023	262143
4	7.5 V	1.0 V	443000	0.4	100000	0.1	102	26214
3	5.0 V	100 mV	44300	1.3	10000	1.0	10	2621
2	2.5 V	10 mV	4430	4.0	1000	10	1	262
1	0.0 V	1 mV	443	12.9	100	100	0	26

¹ Shapiro H, Perlmutter N and Stein P: A Flow Cytometer Designed for Fluorescence Calibration, Cytometry 33:280-287, 1998.

Analog vs Digital Electronics

Digital Cytometer Numerical Range

- BLR zero is really brought to "0.0" numerically
 - An asymptotic logarithmic scale can never get there...
- Range is from 1% below 0 to maximum value
 - 18 bits: That means from -2621 to 262144 in uncompensated data, more negative values appear after compensation due to spread
 - Typical range is from -300 to 200000 before compensation
- BD digital 4 decade range plots from 26.0 262143.0
 - Raw values < 26.0 are visualized at 26.0
 - Statistics use the actual raw IEEE 32 bit FP values from less than zero up to 18 bit range of 262143.0

Uncompensated CD20 FITC on capture beads

CD20 FITC Capture Beads Compensated

Populations are aligned In dye space

 $PE_c = PE + FITC \times -0.25$ using matrix algebra

Not a subtraction, rather a correction because we use compensation coefficients instead of spillover coefficients.

Compensation spread

The linear plot below shows the alignment of compensated CD20 FITC positive and negative capture beads in the PE dimension. The CD20+ standard deviation decreases from 192 to 33.4 after compensation – yet the CV^* goes to 1500% because the mean drops from 2010 all the way to 2.2.

*The Coefficient of Variation (CV) is inappropriate with compensated data. $CV = 100 \times Std/Mean$, so as the mean approaches 0, the CV approaches ∞

Generally accepted assumptions among the Asilomar 2002 flow community attendees¹

- Analog compensation error is responsible for the observed differences between analog- and digitallycompensated data
- Pure linear matrix compensation gives the best available estimates for the dye signals from each cell
- Statistical results should be computed on the matrix compensation output without further manipulations
- Logarithmic display of compensated data interferes with proper interpretation of samples with populations that include low and negative data values
- Data display transformations that are not simply linear or simply log would provide better and more interpretable visualizations

¹ October 2002 - Courtesy Dave Parks

Synthetic data example – log scale

8 modeled populations – 2 of which are double positive

Difficult with low autofluorescence and compensation because high cross-over (22%) of X into Y, low cross-over (3%) of Y into X causes "high background" of X into Y on single positive bright X population, which inflicts significant data spread around zero after compensation

Full Log Display – Visualization Artifacts

Standard Log Scale

Blended Scale 95% Log with zero shown

More Linearization minimizes bifurcation

Upper decades are log, becomes linear near zero. Biexponential transform where data zero is shown by the crosshairs in the plot

- This example shows the value of combining the blend with a mostly logarithmic scale on the upper such that the linear portion occupies a significant plot area over that in blend alone.
 - Compensated single pos are continuous
 - All populations are visible

Data dependant display capability

Input variables may be adjusted based on sampled population variance to optimize the display for any particular data set

Log Plot

BiExponential

PacBlu-CD4 FACSAria example

5 decade pulse area

Transformed plot

PacBlu-CD4 FACSAria with lymph gate

BD Biosciences

Summary: Current data display issues

- As pointed out by Mario Roederer, Dave Parks¹, Randy Hardy and others, what often looks like properly compensated analog data tends to be overcompensated, "leading to systematically biased dye level estimates".
- Compensated digital data does not systematically bias dye level estimates.
- Logarithmic display of flow cytometry immunofluorescence data can be misleading and often difficult to interpret.
- Digital immunofluorescence data, with its virtual zero and floating point database, is more vulnerable to log distortion than analog, and many events cannot be visualized on a log scale even before compensation.

¹R Hardy data - Cytometry email thread 2002, DR Parks - Asilomar Workshop 2002

Can Compensated B Cells Correctly Align at Different Dye Concentrations?¹

Analog Compensation Behavior

 "Y" reagent stained at high, medium, low and blank levels (CD19 Cy7-PE).

Half are stained with the "X" reagent (B220 Cy5-PE) and half with mock stain (B220 FITC 1/40) only.

• Recombine the corresponding pairs and analyze at various compensation settings.

• No compensation value satisfies all tubes of the same stain.

Digital & Analog: Software Compensation

Correct Population Alignment

Hyper-Log: Another Solution¹

Four Fluorescent Proteins: ECFP, EGFP, EYFP, DsRed

¹ Courtesy Bruce Bagwell - Verity Software House

Optimized BiExponential

Algorithm self-adjusts and is automatically scaled

CD20 FITC Capture Beads Revisited

BiExponential display reveals proper compensation visually

BD Biosciences

8-color antigen-specific immunophenotyping

Ab Conjugate	Laser λ	
CD28 PerCP-Cy5.5	488	
CD45RA PE-Cy7	488	
CD27 APC	633	Surface
CD8 APC-Cy7	633	staining
CD3 Pacific Blue	405	
CD4 AmCyan	405	
Anti-IFNγ FITC	488	Intracellular
Anti-IL-2 PE	488	staining

8 Color Compensation (LSR II)

Phenotype of CMV-responsive CD8 T cells

BD Biosciences

Reading: Compensation/Digital

- Bagwell CB, Adams EG. Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann NY Acad Sci 1993;677:167–184.
- Shapiro HM, Perlmutter NG, Stein PG: A Flow Cytometer Designed for Fluorescence Calibration. Cytometry 33:280–287 (1998).
- Roederer M: Spectral Compensation for Flow Cytometry: Visualization Artifacts, Limitations, and Caveats. Cytometry 45:194–205 (2001).
- Roederer M. Compensation. In: Robinson JP, Darzynkiewicz Z, Dean PN, Dressler LG, Rabinovitch PS, Stewart CC, Tanke HJ, Wheeless LL, editors. Current protocols in cytometry. New York: John Wiley & Sons, Inc.; 1999.

Acknowledgements

- Bob Hoffman
- Holden Maecker
- Laurel Nomura
- Ken Davis
- Barney Abrams
- Scott Gaumer
- Dave Parks
- Randy Hardy
- Wayne Moore

Diether Recktenwald Mike Lock Mario Roederer Howard Shapiro Bruce Bagwell Dwayne Yount

