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Abstract

Mammalian oocytes grow and undergo meiosis within ovarian follicles. Oocytes are arrested at the first meiotic prophase,
held in meiotic arrest by the surrounding follicle cells until a surge of LH from the pituitary stimulates the immature oocyte to
resume meiosis. Meiotic arrest depends on a high level of cAMP within the oocyte. This cCAMP is generated by the oocyte,
through the stimulation of the G, G-protein by the G-protein-coupled receptor, GPR3. Stimulation of meiotic maturation by
LH occurs via its action on the surrounding somatic cells rather than on the oocyte itself. LH induces the expression of epider-
mal growth factor-like proteins in the mural granulosa cells that act on the cumulus cells to trigger oocyte maturation. The sig-
naling pathway between the cumulus cells and the oocyte, however, remains unknown. This review focuses on recent studies
highlighting the importance of the oocyte in producing cAMP to maintain arrest, and discusses possible targets at the level of
the oocyte on which LH could act to stimulate meiotic resumption.
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Introduction

Meiosis is the process by which diploid germ cells —
oogonia or spermatogonia — reduce their number of
chromosomes in half in preparation for combining with a
haploid cell of the opposite sex to create a genetically
new, diploid individual. In female mammals, meiosis
occurs over a prolonged period of time; oogonia enter
meiosis but become arrested at the diplotene stage of the
first prophase (Eppig et al. 2004). Meiosis resumes in
response to a surge of luteinizing hormone (LH) from the
pituitary gland during the estrous or menstrual cycle,
shortly before ovulation. The process by which the oocyte
completes the first meiotic division and undergoes other
cytoplasmic changes, and progresses to metaphase Il is
called oocyte maturation. Because the mature, fertilizable
oocyte has a relatively short lifespan in the female repro-
ductive tract, the timing of oocyte meiotic arrest, as well
as maturation, must be tightly regulated. This review will
highlight recent studies examining how the oocyte main-
tains arrest, and will discuss potential mechanisms
whereby LH acts to stimulate meiotic resumption.
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The functional unit within the ovary is the follicle,
which is comprised of one or more layers of granulosa
cells surrounding the oocyte (Fig. 1) (Gougeon 1996,
Zeleznik 2004). Ovarian follicles form during embryonic
development (Gougeon 1996, Eppig et al. 2004). During
follicular growth, the somatic cells divide to form several
layers, the oocyte enlarges, and a fluid-filled antrum
begins to form. Some follicles at the early antral stage are
‘recruited’ to continue growing; this growth is dependent
on the pituitary gonadotropin, follicle-stimulating hor-
mone (FSH) (Gougeon 1996, Zeleznik 2004). During this
phase, the antrum divides the granulosa cells into two
separate compartments: mural granulosa cells form the
outer layers, while the cumulus cells surround the oocyte.
The oocyte grows to its full size (~75 wm diameter in the
mouse, ~100 um in the human), but remains arrested in
prophase 1. If an oocyte is removed from an antral follicle,
it spontaneously resumes meiosis and progresses to
second metaphase (Pincus & Enzmann 1935). This indi-
cates that the follicle cells hold the oocyte in prophase
arrest. Recent progress in clarifying the nature of this
arrest is discussed below.

DOI: 10.1530/rep.1.00793
Online version via www.reproduction-online.org



792 L M Mehlmann

meiotically
incompetent

meiotically
competent

o—© —( O

primary
preantral

early antral

Meiosis resumes in response to a preovulatory surge of
LH. LH receptors are located on the mural granulosa cells
but not on the cumulus cells or the oocyte (Peng et al.
1991, Eppig et al. 1997), so the mechanism(s) by which
LH stimulates oocyte maturation is indirect. Although
much is known about LH signaling in the mural granulosa
cells (Richards et al. 2002), how the LH signal is passed
on to the oocyte is incompletely understood. The mechan-
ism by which LH triggers oocyte maturation is currently
being studied, and hypotheses of how LH causes the
oocyte to resume meiosis are discussed below. Ultimately,
LH action on the mural granulosa cells translates to a
change in signaling molecules within the oocyte to initiate
meiotic resumption.

Because the entire follicle surrounding the oocyte must
remain intact in order to preserve its normal function, the
oocyte has been largely inaccessible to biochemical
studies of its function in a physiological environment. The
mechanisms that maintain meiotic arrest of the oocyte, as
well as the mechanisms by which LH triggers resumption
of meiosis, have therefore been technically difficult to
study. Many researchers have utilized oocytes or
cumulus—oocyte complexes that have been removed from
their follicles and maintained in meiotic arrest artificially.
While such experiments have been useful for identifying
some of the major components involved in the mainten-
ance of meiotic arrest, they are difficult to interpret in the
context of what happens in vivo, and in terms of elucidat-
ing the earliest steps in the process of oocyte maturation.
Recently, new methods for microinjecting the mammalian
oocyte within its follicle have provided a means to
directly test hypotheses pertaining to meiotic arrest and
resumption (Mehlmann et al. 2002, 2004, Kalinowski et al.
2004). This microinjection method has been used to clar-
ify the important role of the G5 G-protein, as well as the
necessity for the Gg-linked receptor, GPR3, in the main-
tenance of arrest in the mouse oocyte (see below).
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Figure 1 Development of the mammalian
ovarian follicle. Follicles, consisting of
somatic cells (blue) surrounding an oocyte
(yellow), grow within the ovary. Oocytes
within the smallest (primary and preantral)
follicles are meiotically incompetent and
will not mature spontaneously if removed
from their follicles. At the early antral stage,
the oocytes acquire meiotic competence
and are able to mature if isolated from their
follicles. At this stage, follicles are recruited
for further growth by FSH. The follicle
enlarges and develops LH receptors on the

ovulation Zeleznik (2004).

Maintenance of meiotic arrest

Prior to the midcycle surge of LH, the growing oocyte
acquires the ability to undergo oocyte maturation. The
acquisition of meiotic competence occurs around the time
of antrum formation (Erickson & Sorensen 1974, Sorensen
& Wassarman 1976, Mehlmann et al. 2004) and corre-
sponds to a point at which the oocyte achieves a threshold
level of maturation-promoting proteins, such as CDKI
(cyclin-dependant kinase) and cyclin (de Vantéry et al.
1996, 1997, Kanatsu-Shinohara et al. 2000). Despite the
ability of the fully grown oocyte to mature, it remains
arrested in prophase I until the LH surge. It is well estab-
lished that meiotic arrest is regulated by cAMP levels
within the oocyte (Conti et al. 2002, Eppig et al. 2004).
Spontaneous maturation of oocytes isolated from their fol-
licles can be prevented by including membrane permeant
cAMP analogs or cAMP phosphodiesterase inhibitors,
such as hypoxanthine or 3-isobutyl-1-methylxanthine
(IBMX), in the culture medium (Cho et al. 1974, Dekel &
Beers 1978, Conti et al. 2002). Moreover, cAMP levels
decrease in oocytes following removal from their follicles
(Tornell et al. 1990), as well as in isolated oocytes after
removal of IBMX (Schultz et al. 1983a, Vivarelli et al.
1983). The decrease in oocyte cAMP occurs within 2h
after washing out IBMX, a time during which the oocyte
becomes committed to resuming meiosis (Schultz et al.
1983a, Vivarelli et al. 1983).

The downstream pathway(s) by which high cAMP levels
prevent meiotic maturation is incompletely understood,
and a detailed discussion is beyond the scope of this
review (Fig. 2 and see Eppig et al. 2004). Ultimately, the
cAMP level within the oocyte affects the activity of the
CDK/cyclin B (CYB) protein complex, also known as
maturation, meiosis or mitosis promoting factor (MPF).
High cAMP levels within the oocyte result in the phos-
phorylation of CDK1 on Thr14 and Tyr15, rendering it
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Figure 2 Cell signaling leading to the maintenance of meiotic arrest.
GPR3, activated either constitutively or by an unknown ligand from
the follicle cells, activates G, which stimulates AC to cause an
elevation of cCAMP. cAMP activates protein kinase A (PKA), which
ultimately causes the cell cycle regulatory complex, CDK1/cyclin B
(CYB), to be phosphorylated (P) and thereby inactivated. This results
becaused PKA leads (directly or indirectly) to the phosphorylation of
the phosphatase CDC25b (CDC25b-P), which inactivates it. PKA
may also stimulate the activity of the WEET/MYTT1 kinase that phos-
phorylates CDK1 to keep it inactive and therefore prevent meiotic
resumption. The activity of the cAMP phosphodiesterase, PDE3A, is
thought to be kept low in the immature oocyte, thus preventing the
breakdown of cAMP and maintaining high levels of cAMP within the
oocyte.

inactive (Duckworth et al. 2002). A decrease in oocyte
cAMP early in oocyte maturation leads to the dephosphor-
ylation of CDK1 on Thr14 and Tyr15, and the MPF com-
plex becomes active such that the oocyte can re-enter
meiosis. The discrete set of steps through which cAMP
activates or inactivates MPF are still under investigation.
The major players are protein kinase A (PKA), which,
through an undetermined number of steps, regulates the
activities of the phosphatase CDC25 and the kinase
WEE1T/MYT1 (Eppig et al. 2004). CDC25 dephosphorylates
CDK1, while WEE1/MYT1 phosphorylates it. Oocytes
from mice lacking the Cdc25b gene are unable to activate
MPF and cannot undergo meiotic resumption, highlighting
the importance of this phosphatase (Lincoln et al. 2002).
Similar knockout studies have not yet been done to exam-
ine the importance of WEET or MYTT. Future studies are
needed to clarify the entire pathway by which cAMP
levels affect the activity of MPF.

cAMP could be produced either by the oocyte or by the
follicle cells that surround it. One long-standing hypoth-
esis is that cAMP is produced by follicle cells and diffuses
through gap junctions to the oocyte (Anderson & Albertini
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1976, Bornslaeger & Schultz 1985, Piontkewitz & Dekel
1993, Webb et al. 2002b). Gap junctions are present
between the cumulus cells and the oocyte (Albertini &
Anderson 1974, Anderson & Albertini 1976). However,
the lack of specific inhibitors against gap junctions in the
oocyte has complicated efforts to clarify their possible role
in the maintenance of meiotic arrest. For further discus-
sion, see Piontkewitz & Dekel (1993), Webb et al. (2002b)
and Eppig et al. (2004).

An alternative hypothesis for how high levels of cAMP
are maintained in competent, fully grown oocytes is that
the oocyte produces its own cAMP through a G-protein-
linked receptor in the oocyte plasma membrane that
stimulates G, and, subsequently, adenylyl cyclase (AC)
(Fig. 2). Several lines of evidence support this hypothesis.
(1) Mouse oocytes contain all of the components necess-
ary to produce cAMP, including the G G-protein (Mehl-
mann et al. 2002), a Gs-coupled G-protein receptor, GPR3
(see below) (Mehlmann et al. 2004), and AC (Horner et al.
2003). (2) Stimulation of oocyte AC with forskolin raises
cAMP levels in isolated rodent oocytes and delays the
onset of germinal vesicle breakdown (GVBD) (Olsiewski
& Beers 1983, Schultz et al. 1983a, Urner et al. 1983,
Bornslaeger & Schultz 1985). (3) Microinjection of the
non-hydrolyzable GTP analog, GTPyS, which activates G-
proteins including G, transiently and dose-dependently
maintains meijotic arrest in isolated mouse oocytes
(Downs et al. 1992). (4) cAMP levels increase in isolated
oocytes maintained in meiotic arrest with the phosphodi-
esterase inhibitors, IBMX or hypoxanthine (Bornslaeger &
Schultz 1985, Webb et al. 2002b). (5) Cholera toxin,
which irreversibly activates G, (De Haan & Hirst 2004),
has been shown to delay oocyte maturation in isolated
oocytes (Dekel & Beers 1978, Schultz et al. 1983b, Urner
et al. 1983, Vivarelli et al. 1983, Downs et al. 1992,
Grondahl et al. 2000a). The inability of cholera toxin to
completely prevent maturation may be a result of G,
degradation within the oocyte following its activation
(Levis & Bourne 1992, Fong & Milligan 1999, Moravcova
et al. 2004).

Direct evidence for an essential role of G, in the main-
tenance of meiotic arrest has been obtained recently by
microinjecting either a function-blocking antibody or a
dominant negative form of the a subunit of Gy into
follicle-enclosed oocytes (Mehlmann et al. 2002, Kali-
nowski et al. 2004). This pathway is supported further by
the finding that oocytes from mice lacking the AC3 AC
isoform, which is present in the oocyte, spontaneously
undergo GVBD within ovarian follicles (Horner et al.
2003). Because G, activity requires stimulation by a G-
protein-coupled receptor, it has been postulated that such
a receptor exists in the mouse oocyte membrane. This
receptor could exhibit constitutive activity, and/or could
be stimulated by a ligand produced by the surrounding
follicle cells. Inhibiting G in isolated oocytes maintained
in meiotic arrest with hypoxanthine stimulates meiotic
resumption (Mehlmann et al. 2002, Kalinowski et al.
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2004), supporting the hypothesis that the receptor in the
oocyte has some constitutive activity.

Recently, the Gg-coupled receptor, GPR3, has been
identified as an essential regulator of meiotic arrest in the
mouse oocyte (Mehlmann et al. 2004). Gpr3 RNA is loca-
lized in oocytes, with ~14 times lower expression in the
follicle cells. Oocytes from mice lacking the Gpr3 gene
undergo spontaneous oocyte maturation within fully
grown, intact follicles, independent of an increase in LH.
Competence to undergo meiosis develops when an oocyte
reaches its full size and when the follicle begins to form
an antral space (Sorensen & Wassarman 1976, Mehlmann
et al. 2004). Correspondingly, ~40% of the oocytes
within smaller, early antral follicles from Gpr3 =/~ mice
also undergo spontaneous oocyte maturation. The ability
of oocytes from Gpr3 ~/~ mice to maintain meiotic arrest
can be rescued by microinjecting Gpr3 RNA into incom-
petent Gpr3 '~ oocytes within preantral follicles, fol-
lowed by a 4-day culture period during which an antrum
forms, indicating that the presence of Gpr3 is needed
specifically in the oocyte rather than in the follicle cells
(Mehlmann et al. 2004).

GPR3 is an orphan receptor that exhibits a high degree
of constitutive activity when overexpressed in numerous
tissue culture cell lines, resulting in a high level of cAMP
production (Eggerickx et al. 1995, Uhlenbrock et al.
2002). This indicates that it is coupled to Gq. It is currently
not known whether constitutive activity of GPR3 in the
oocyte is sufficient to produce the amount of cAMP
required to maintain meiotic arrest, or whether the follicle
cells surrounding the oocyte produce a ligand that
increases the activity of GPR3. Structurally, GPR3 is clo-
sely related to the lysophosphatidic acid receptors,
sphingosine-1-phosphate (edg) receptors, cannabinoid
receptors, and melanocortin receptors (Uhlenbrock et al.
2002, Ignatov et al. 2003, Kostenis 2004a, 2004b). With
the exception of the melanocortin receptors, these recep-
tor families are activated by lipids. It is therefore possible
that a lipid present in the regions of membrane contact
between cumulus cells and oocyte stimulates GPR3.
Another possibility for how the follicle cells might keep
the oocyte arrested in prophase | until the LH surge is that
they may inhibit oocyte phosphodiesterase(s) (Conti et al.
2002). Both of these possibilities need to be explored
further to determine how the follicle cells interact with the
oocyte to keep cAMP levels high prior to the LH surge.

How does LH trigger meiotic resumption?

The mechanism(s) by which LH, acting on the granulosa
cells, triggers the oocyte to resume meiosis is still
unknown. As mentioned previously, LH acts on the outer-
most, mural granulosa cells of the follicle; cumulus cells
and oocytes lack LH receptors (Peng et al. 1991, Eppig
et al. 1997). The LH signal must therefore be transmitted
from the mural granulosa cells to the oocyte. The action
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of LH could either remove an inhibitory, or maturation-
arresting, substance or it could provide a positive,
maturation-promoting substance to the oocyte (see Conti
et al. 2002, Eppig et al. 2004). This review focuses on
some of the current ideas in this field, taking into account
recent data elucidating the maintenance of meiotic arrest.

Recent work has shed some light on how the LH signal
transmits from the exterior to the interior of the follicle.
Mural granulosa cells express RNA encoding epidermal
growth factor (EGF)-like proteins within 1-3h after LH
receptor stimulation (Park et al. 2004, Ashkenazi et al.
2005), and these proteins, in particular amphiregulin and
epiregulin, cause follicle-enclosed as well as cumulus-
enclosed oocytes to mature as effectively as LH, though
with a faster time-course. They do not cause maturation of
isolated oocytes. Pharmacological inhibition of the EGF
receptor in cultured follicles completely inhibits LH-
induced oocyte maturation, further supporting a link
between these EGF-like proteins and LH (Park et al.
2004). These results are in agreement with previous
studies showing that EGF promotes meiotic maturation
of cumulus-enclosed oocytes (Das et al. 1991, De La
Fuente et al. 1999, Coticchio et al. 2004). The signaling
pathway between cumulus cells and oocytes remains
unknown however.

LH acting on follicle cells surrounding frog and fish
oocytes has long been known to stimulate the production
of steroid hormones that trigger oocyte maturation (Masui
& Clarke 1979, Nagahama et al. 1995, Maller 1998, Tho-
mas et al. 2002, Hammes 2004, Tsafriri et al. 2005).
However, steroids have little if any stimulatory effect on
mammalian oocyte maturation (Dekel & Beers 1978,
Schultz et al. 1983b, Andersen & Byskov 2002, Gill et al.
2004), and in some cases have a slight inhibitory effect
(Schultz et al. 1983b, Kaji et al. 1987). Moreover, com-
plete inhibition of steroidogenesis in cultured follicles
does not prevent oocyte maturation in response to LH
(Lieberman et al. 1976).

The sterol, follicular fluid—meiosis-activating sterol (4,4-
dimethyl-5a-cholesta-8,14,24-trien-3B-ol; FF-MAS), is a
candidate oocyte maturation-inducing substance. FF-MAS,
which was first isolated from human follicular fluid
(Byskov et al. 1995), is an intermediate in the cholesterol
biosynthetic pathway (Schroepfer 1982). In the mouse, FF-
MAS levels increase following injection of human chorio-
nic gonadotropin (hCG), which stimulates the LH receptor
(Baltsen 2001). Both purified and synthetic FF-MAS stimu-
late the resumption of meiosis in isolated oocytes of a var-
iety of mammalian species including mouse, rat, and
human (Byskov et al. 1995, Grondahl et al. 1998, 2000b,
Hegele-Hartung et al. 1999, 2001). However, it is not
clear whether FF-MAS becomes detectable in mouse ovar-
ies earlier than 3 h after hCG injection (Baltsen 2001).
Because GVBD is observed within 1.5 to 3 h after hCG
injection (Schultz et al. 1983a), FF-MAS levels should
increase earlier if it is an oocyte maturation inducer. In
addition, FF-MAS-induced GVBD in isolated oocytes
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maintained in hypoxanthine takes 6-20h (Hegele-
Hartung et al. 1999, Downs et al. 2001). FF-MAS is there-
fore not a likely candidate for the initiation of oocyte
maturation. However, there is evidence that it improves
the ability of oocytes to complete meiosis to metaphase I,
as well as the ability of fertilized oocytes to develop to the
two-cell and blastocyst stages (Hegele-Hartung et al.
1999, Cukurcam et al. 2003, Griffin et al. 2004, Marin
Bivens et al. 2004a, 2004b). For further discussion, see
Byskov et al. (2002) and Tsafriri et al. (2002, 2005).

A meiosis-inducing factor could affect targets down-
stream of cAMP, perhaps by interacting with cell cycle-
regulatory proteins. However, because cAMP levels fall
early in oocyte maturation (Schultz et al. 1983a, Tornell
et al. 1990, Conti et al. 2002), it seems more likely that
the targets for such a meiosis-inducing substance are
upstream of cAMP. There are several possible targets on
which a meiosis-inducing factor could act within the
oocyte (see Fig. 3).

(1)  GPR3. Constitutive activity of G-protein-coupled
receptors can be reduced by inverse agonists (Milli-
gan 2003). Such an inverse agonist turning off GPR3
would lower cAMP in the oocyte. Alternatively, LH
stimulation could affect the activity of a ligand that
in the unstimulated follicle would activate GPR3,
either by inactivating the ligand or by decreasing its
synthesis, to ultimately lower the activity of GPR3.
GPR3 could also be inactivated by other mechan-
isms, such as phosphorylation by G-protein receptor
kinases (GRKs), which would result in its downregu-

» 'y
WEE1/MYTH1 CDC25b
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)
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Figure 3 Potential targets through which LH could act to stimulate
meiotic resumption. Each target is indicated with a green number.
See corresponding numbers in the text for details.
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lation (Penn et al. 2000, Lefkowitz 2004). Indeed,
analysis of the GPR3 protein sequence shows sev-
eral serine and threonine residues in the carboxyl
terminus, as well as in the intracellular loops, that
could be targets of GRKs or other kinases, which
could cause receptor desensitization (Saeki et al.
1993, Eggerickx et al. 1995).

G,. G-proteins can be inactivated by GTPase-activat-
ing proteins, or ‘GAPs’, also known as regulators of
G-protein signaling (RGS) proteins (Kehrl & Sinnara-
jah 2002, Cabrera-Vera et al. 2003). These proteins
accelerate the exchange of GTP for GDP on the
G-protein o subunit, thereby turning off the
G-protein. Although nothing is known about RGS
proteins in oocytes, it is interesting to note that
RGS2 can inhibit Gg-mediated cAMP production
(Sinnarajah et al. 2001, Kehrl & Sinnarajah 2002,
Roy et al. 2003). Thus, an RGS protein could poten-
tially inhibit cAMP production in the oocyte follow-
ing LH stimulation.

Gi. A well-characterized pathway for inactivating
ACs is by stimulating the G; G-protein subunit, which
lowers cAMP (Simonds 1999, Hanoune & Defer
2001). Indeed, the three AC isoforms that have been
found to be expressed in mouse and rat oocytes,
ACT, AC3, and AC9 (Horner et al. 2003), are all inac-
tivated by G; (Hanoune & Defer 2001), and a G;
pathway is known to be responsible for triggering
oocyte maturation in echinoderm oocytes (Shilling
et al. 1989, Chiba et al. 1992, Tadenuma et al. 1992,
Jaffe et al. 1993, Kalinowski et al. 2003). In mam-
mals, a role for G; has not been examined with
regard to LH signaling to cause oocyte maturation. It
is possible that activation of G; within mammalian
oocytes, in response to LH, stimulates meiotic matu-
ration. This hypothesis could be tested by examining
the effects of specifically inhibiting G; within follicle-
enclosed oocytes, using pertussis toxin or antibodies,
on LH-induced maturation.

Calcium. All three of the AC isoforms found in
rodent oocytes (Horner et al. 2003) can be inacti-
vated by Ca’* (Defer et al. 2000, Hanoune & Defer
2001, Wang & Storm 2003). In mouse oocytes,
forskolin-stimulated cAMP production is prevented
by raising intracellular Ca’" (Horner et al.
2003). This effect is reversed by an inhibitor of
Ca”*/calmodulin-dependent kinase I, suggesting
that mouse oocyte AC is inhibited by Ca®". It is
possible that Ca®* rises in the oocyte following LH
stimulation such that it could inactivate ACs. Under
some experimental conditions, Ca’* release can be
induced in cumulus cells, resulting in a subsequent
increase in Ca®* in oocytes as long as functional
gap junctions exist between the oocyte and the
cumulus cells (Mattioli et al. 1998, Webb et al.
2002a). Measurements of Ca®" within follicle-
enclosed oocytes following LH stimulation should
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be able to clarify whether Ca®* has a role in trigger-
ing oocyte maturation, perhaps at the level of turn-
ing off AC.

(50 cAMP phosphodiesterase (PDE). An attractive
hypothesis is that LH stimulation leads to the acti-
vation of oocyte PDE, which hydrolyzes cAMP
(Conti et al. 2002). The PDE3A isoform is a preva-
lent PDE in the mouse oocyte (Tsafriri et al. 1996,
Shitsukawa et al. 2001). PDE3A activity in cumulus-
enclosed mouse oocytes has been shown to increase
following LH receptor stimulation (Richard et al.
2001); however, PDE3A activity has not been exam-
ined in isolated oocytes following stimulation of the
LH receptor. Microinjection of active PDE into
isolated mouse oocytes arrested with the PDE inhibi-
tor IBMX causes GVBD (Bornslaeger et al. 1986). A
critical role for PDE3A in mouse oocyte maturation
has recently been demonstrated by generating
PDE3A-deficient mice by homologous recombina-
tion (Masciarelli et al. 2004). The oocytes of female
Pde3A ™~ mice are unable to undergo meiotic
resumption, remaining arrested at prophase | despite
normal follicular growth and ovulation. Likewise,
oocytes from Pde3A ~'~ mice do not spontaneously
mature when released from the ovary into culture
medium. The ability of these oocytes to resume
meiosis is restored, however, by inhibiting PKA or
by microinjecting RNA encoding the phosphatase
CDC25 (Masciarelli et al. 2004). Although these
studies highlight the importance of PDE for meiotic
resumption, experiments in which PDE activity is
measured specifically in oocytes within intact fol-
licles before and after LH treatment would provide
stronger evidence that PDE is a major target of regu-
lation by LH.

Concluding remarks

The mechanisms of mammalian meiotic arrest and
resumption have been technically challenging to study
because the oocyte is embedded in multiple layers of cells
and is therefore difficult to manipulate and observe. The
follicle must remain intact in order to preserve its normal
function. In addition, there is limited material available
for biochemical studies of mammalian oocytes. However,
new methods for studying oocyte maturation have recently
provided useful information about the mechanisms of
meiotic arrest. Recent methods have utilized genetically
altered mice, as well as directly inhibiting oocyte-specific
proteins by microinjecting follicle-enclosed oocytes. With
these methods, the pathway leading to high cAMP levels
in meiotically arrested oocytes has been clarified, and the
receptor GPR3 has been implicated as a major regulator
of cAMP production by the oocyte. The ability to manip-
ulate follicle-enclosed oocytes should also pave the way
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for elucidating the mechanisms whereby LH stimulates
mammalian oocyte maturation.
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