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ABSTRACT RNA granules are ensembles of specific RNA and protein molecules that mediate localized translation in eukary-
otic cells. The mechanisms for formation and selectivity of RNA granules are unknown. Here we present a model for assembly of
one type of RNA granule based on experimentally measured binding interactions among three core multivalent molecular com-
ponents necessary for such assembly: specific RNA molecules that contain a cis-acting sequence called the A2 response
element (A2RE), hnRNP A2 proteins that bind specifically (with high affinity) to A2RE sequences or nonspecifically (with lower
affinity) to other RNA sequences, and heptavalent protein cytoskeleton-associated protein 5 (CKAPS5, an alternative name for
TOG protein) that binds both hnRNP A2 molecules and RNA. Non-A2RE RNA molecules (RNA without the A2RE sequence)
that may be recruited to the granules through nonspecific interactions are also considered in the model. Modeling multivalent
molecular interactions in granules is challenging because of combinatorial complexity in the number of potential molecular com-
plexes among these core components and dynamic changes in granule composition and structure in response to changes in
local intracellular environment. We use a hybrid modeling approach (deterministic-stochastic-statistical) that is appropriate
when the overall compositions of multimolecular ensembles are of greater importance than the specific interactions among in-
dividual molecular components. Modeling studies titrating the concentrations of various granule components and varying effec-
tive site pair affinities and RNA valency demonstrate that interactions between multivalent components (TOG and RNA) are
modulated by a bivalent adaptor molecule (hnnRNP A2). Formation and disruption of granules, as well as RNA selectivity in
granule composition are regulated by distinct concentration regimes of A2. Our results suggest that granule assembly is tightly
controlled by multivalent molecular interactions among RNA molecules, adaptor proteins, and scaffold proteins.

INTRODUCTION

A major challenge in understanding and modeling cellular
biological systems is posed by the fact that interactions
among multivalent reactants can lead to formation of large,
dynamic molecular ensembles, which are known in some
cases to be associated with phase transitions. Examples
include Nephrin-Nck-NWasp complex formation during
maintenance of kidney filtration barrier (1,2), P granule as-
sembly during embryonic development (3), localized pro-
tein expression in RNA granules in neuronal cells (4),
postsynaptic density formation in the postsynaptic compart-
ment (5), assembly and dynamics of focal adhesions during
cell migration (6), structural integrity of cytoskeleton (7),
and transduction of extracellular input by transmembrane
receptor signaling platforms (8,9). Mayer et al. (10) intro-
duced the term “pleomorphic molecular ensembles” to
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distinguish multimolecular complexes with dynamic and
variable composition from “molecular machines”, which
are assemblies of strongly interacting molecules with
uniquely defined stoichiometry and shape (11). Here we
will refer to such structures as “molecular ensembles”.
Traditional biochemical approaches are insufficient to
provide a comprehensive understanding of molecular en-
sembles that arise through interactions between large
numbers of molecules to form extended networks. Theoret-
ical and computational modeling approaches provide
complementary tools to test hypotheses and guide interpre-
tation of experimental observations of biochemical interac-
tions. Analytical and numerical modeling of multimeric
complexes has a rich history, originating with the classical
theories of Flory and Stockmayer (12—15). These theories
make use of binding probabilities to provide insight into
ensemble organization at specific time points. However,
such analytical treatments are restricted to simple systems
consisting of one or two types of binding sites and
have fundamental limitations in handling intermolecular
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reactions among multiple different molecules, which can
undergo phase transitions. Many biological systems are
characterized by multivalency and high diversity of binding
sites, which introduce further combinatorial complexity into
the system.

Rule-based modeling, which was introduced to overcome
some of the combinatorial complexity of networks of in-
teracting molecules (16-18), relies on either building a
completely defined network (BioNetGen software (16))
that could become infinite, or agent-based versions (e.g.
NFSim software (19) and Kappa software (20)), that keep
track of the interaction topology at each time step and ac-
count for each individual binding and unbinding event,
incurring high computational cost for intermolecular inter-
actions of high frequency. Recently we extended the
Flory-Stockmayer formalism to develop a hybrid approach
(21) employing deterministic pre-computing of the proba-
bility of specific bond formation, stochastic assembly of
complexes at time points of interest, and statistical analysis
of ensemble organization. Our method and developed soft-
ware allow investigation of formation and overall composi-
tion of pleomorphic dynamic molecular ensembles, without
monitoring trajectories of individual molecular complexes
within such ensembles.

Here, we apply our methodology (21) to the study of
RNA granules, which are large (up to 0.5 um in diameter)
molecular ensembles containing multiple different molecu-
lar components including RNAs, RNA binding proteins, and
multivalent scaffold proteins (22-24). RNA granules were
first identified as fundamental intermediates in RNA traf-
ficking (25), which is a mechanism for targeting RNAs en-
coding specific proteins to particular subcellular locations.
Individual RNA granules are variable in size, composition,
and structure, which distinguishes them from ordered stoi-
chiometric macromolecular assemblies, such as ribosomes,
proteasomes, or nuclear pore complexes (10). Our model
handles differential binding properties of several interacting
components encountered in RNA granules: each RNA mole-
cule can potentially bind to hundreds of different multiva-
lent RNA binding proteins (Fig. 1). Furthermore, the
molecular composition and network of molecular interac-
tions in each granule may be variable and flexible, and
can undergo rapid remodeling. To our knowledge, the algo-
rithm described here represents the first attempt to model
granule composition and selectivity. “Composition” refers
to the number of different protein and RNA molecules
that are coassembled into each granule. “Selectivity” refers
to the mechanism whereby some types of RNA molecules
are segregated into different RNA granules.

We model a well-characterized type of RNA granule, the
A2 granule (22,25-30), which contains multiple different
RNA molecules, including A2RE RNAs with characteristic
nucleotide sequences termed “A2 response elements”
(A2RE) that are recognized by a cognate RNA binding pro-
tein called “hnRNP A2”. In vitro experiments indicate that
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FIGURE 1 Multivalent interactions in RNA granules. (A) Schematics of
interactions among variable valency RNA (curved line), variable valency
A2RE RNA (shaded curved line), heptavalent scaffold protein TOG (semi-
circles), and bivalent protein A2 (oval shapes with distinct sites for binding
to TOG and A2RE RNA). Interactions among sites are shown with arrows
with respective dissociation constants. A single spherical site in each A2RE
RNA is the high specificity A2RE site for A2 protein. (B) An example of an
aggregate resulting from interactions among these four types of molecules.
To see this figure in color, go online.

high concentrations of purified RNA binding proteins (such
as hnRNP A2) and RNA molecules can undergo phase tran-
sitions from solution to liquid droplet under certain condi-
tions (31,32). In this study, we explore the parameters that
modulate this process and serve as determinants of granule
composition and selectivity. We find that key parameters are
concentration of multivalent RNA binding protein and
effective valency of RNA, i.e., the number of sites in each
RNA molecule that are not saturated by other proteins and
are thus available for binding to either a scaffold molecule
(such as the heptavalent TOG, introduced in the next sec-
tion) or RNA binding proteins (such as the hnRNP A2) (29).

We explore the impact of a single high affinity A2RE site
in A2RE RNA representing only a fraction (1-10%) of the
total RNA valency. Our modeling studies demonstrate that
high affinity binding between hnRNP A2 and scaffold



protein, and between hnRNP A2 and A2RE RNA, allows
hnRNP A2 to act as an adaptor and regulator in granule as-
sembly that can promote or inhibit interactions between the
other two multivalent components depending on its concen-
tration. Low affinity binding between scaffold molecule and
RNA molecules accurately recapitulates the composition
(33) of granules in live cells and inhibits aggregation of
RNA into very large complexes.

MATERIALS AND METHODS

Model components

A2RE RNAs contain characteristic 11-nucleotide cis-acting sequences
termed “A2 response elements” (A2RE). The A2RE sequence was first
identified (34) by deletion analysis of RNA encoding myelin basic protein
(MBP). Deletion of the A2RE sequence from MBP RNA prevented assem-
bly of MBP RNA into granules, and insertion of the A2RE sequence into
non-A2RE RNAs facilitated assembly of those RNAs into granules.
A2RE-containing RNA molecules encoding functionally related neuronal
proteins required for learning and memory (aCamKII, neurogranin,
ARC) are colocalized in the same granules in dendrites (24,35).

The A2RE sequence is recognized by a cognate RNA binding protein
called “hnRNP A2” (36). Specific binding of hnRNP A2 to A2RE se-
quences and nonspecific binding of hnRNPA2 to nonspecific sequences
has been characterized by affinity pull-down (36), surface plasmon reso-
nance (SPR), and fluorescence correlation spectroscopy (FCS) (29,35).

In addition to binding A2RE RNA, hnRNP A2 also binds to a multivalent
scaffold protein called “cytoskeleton-associated protein 5”7 (CKAPS; also
called TOG protein, standing for the protein encoded by the tumor overex-
pressed gene), as shown by yeast two-hybrid analysis (28). Binding of
hnRNP A2 to different domains of TOG has been experimentally character-
ized by SPR and FCS (J.H.C., V. Tatavarty, and G. Korza, unpublished
data). Granule assembly is prevented in TOG knock-out neurons and
rescued by full-length TOG but not by a mixture of individual TOG do-
mains (30), indicating that granules are formed through multivalent interac-
tions and heptavalent TOG molecules are required for granule formation
(Fig. 1).

Anti-sense knockdown of hnRNP A2 (26,35) or injection of function-
blocking isoform-specific antibodies (29.35) both result in reduced numbers
of A2RE RNA granules in processes of oligodendrocytes and diffuse RNA
distribution in the perikaryon. Originally this was interpreted to mean that
hnRNP A2 was necessary for transport of A2RE RNA granules from the
perikaryon to the processes. However, in light of the molecular interactions
between hnRNP A2 and TOG, an alternative explanation is that hnRNP A2
is necessary for A2RE RNA granule formation. Here, we use our model to
investigate potential roles of hnRNP A2 in granule formation via its bivalent
interaction with TOG and RNA.

RNA granules contain multiple RNA molecules and RNA binding pro-
teins that can potentially affect granule assembly through competing inter-
actions with A2RE RNA, hnRNP A2, or TOG protein. Nonspecific RNA
binding proteins in granules may occupy non-A2RE sites on individual
RNA molecules, thereby decreasing the effective valency of each RNA
molecule. The hnRNP A2 molecules can potentially interact with multiple
other binding partners, including telomeres (31), splicing factors (32), and
nuclear transport factors (37), which may compete with RNA or TOG pro-
tein, thereby decreasing the effective hnRNP A2 concentration available for
binding to TOG protein and RNA. TOG protein in the cell can also interact
with multiple other binding partners, including microtubules (38), microfil-
aments (39), and kinesin (40), which may reduce the effective concentration
of TOG scaffold available for binding to hnRNP A2 or RNA. The effects of
such competing interactions on granule assembly are represented in the
model by reducing the number of nonspecific binding sites available for
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binding on each RNA molecule, reducing the effective concentration of
hnRNP A2 or reducing the effective concentration of TOG protein.

Model parameters

In our model, we used pairwise molecular affinities between individual
granule components (A2RE and non-A2RE RNA, TOG, and hnRNP A2
molecules) measured in vitro, and adjusted these parameters to recapitulate
in vivo experimental observations. For simplicity, we refer to hnRNP A2 as
simply “A2” from now on.

Table 1 shows pairwise affinities between interacting sites, measured
in vitro by SPR analysis or FCS analysis. Data on specific binding of A2
to A2RE sequences and nonspecific RNA sequences has been reported in
Gao et al. (35). The values in Table 1 for A2 binding to A2RE and non-
A2RE sequences represent averages for multiple different A2RE sequences.
Data on binding of TOG domains to A2 and RNA molecules is yet unpub-
lished (J.H.C., V. Tatavarty, and G. Korza, unpublished data). The values
in Table 1 for TOG domain binding to A2 or RNA represent averages for
the different TOG domains. Importantly, the affinities of TOG domains for
A2 are greater than their affinities for RNA, and the affinity of A2
for A2RE sites is greater than its affinity for non-A2RE sites in RNA.

Model simulation

Here we model the system of RNA granule assembly (Fig. 1) with
competing multivalent RNA molecules containing a large number of iden-
tical (or equivalent) sites using the approach developed in Falkenberg et al.
(21). We consider a system with four types of molecules: 1) A2RE RNA
with one A2RE high affinity site for A2 protein and up to 100 low affinity
nonspecific sites for either A2 or TOG proteins; 2) non-A2RE RNA with up
to 100 low affinity nonspecific sites for A2 or TOG; 3) A2 protein with one
site that binds RNA (specifically or nonspecifically) and a second site that
binds TOG; and 4) TOG protein with seven equivalent TOG domains, each
of which can bind either RNA (nonspecifically) or A2 protein.

Our algorithm is based on the assumption that all interactions among
sites are independent of each other (i.e., the principle of equal reactivity).
Experimental evidence is not sufficient to suggest any plausible hypothesis
on cooperativity or allostery at this point. The algorithm begins by decon-
structing each multivalent molecule into a set of individual monovalent
binding sites. In Fig. 1, each A2 molecule (oval) is deconstructed into
two sites (one specific to TOG and one specific to A2RE sequence), each
with the same total concentration as A2. TOG molecule is deconstructed
into seven identical sites, which is the same as defining a single site with
total concentration sevenfold the concentration of TOG. Nonspecific
RNA is deconstructed into a single nonspecific site with concentration be-
ing equal to concentration of RNA times its valency. Specific RNA is de-
constructed into a set of two sites—one specific A2RE sequence with

TABLE 1 Dissociation Constant K, between Sites and
Corresponding References

A2 A2RE RNA Site

Nonspecific RNA Site

A2 (7 * 3) nM (35)"
TOG (25 + 9) nM“¢ 150 nM"¢

1300 nM (35)°
150 nM"*

4SD for affinity differences among A2RE sequences in different RNAs
(MBP, aCamKII, NG, ARC, PKMY).

®SD not available because only a single RNA sequence was analyzed (ARC
A2RE anti-sense).

€J.H.C., V. Tatavarty, and G. Korza, unpublished data; values obtained using
SPR, and consistent with FCS measurements. Specific and nonspecific
binding constants were resolved by fitting SPR data to a heterogeneous
two-ligand model.

9SD for affinity differences among individual TOG domains (D1-D7).
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concentration equal to A2RE RNA concentration, and a nonspecific site
with concentration being equal to the concentration of RNA times its
valency. All possible interactions for each individual site type are identified,
and the reactions between individual binding sites are evaluated determin-
istically as a function of time, using the binding and unbinding rate con-
stants and concentrations of individual sites. This deterministic step is
accomplished by solving the system of ordinary differential equations
(ODEs) described in the Supporting Material (nomenclature and parameters
in Tables S1 and S2), until steady state is reached (it is assumed that the
granules are present in the cell body long enough for the system to reach
steady state, before they are transported to the periphery). The system of
ODEs consists of equations for each type of binding site (six) and each
type of site-site interaction (seven). The initial conditions for the system
corresponds to the state when all molecules are unbound, so there are no
bonds. Solving the system of ODEs provides the fraction of bound sites
of each type. The bound and free states are then stochastically assigned
among all corresponding sites in the system, and the molecules correspond-
ing to each bond is identified. The aggregates are reconstructed by
identifying all molecules that are directly and indirectly connected. The
composition of each reconstructed aggregate in the simulation is then re-
corded. This stochastic procedure is repeated multiple times to generate dis-
tribution statistics for each molecular ensemble. Simulations are repeated
for each different set of parameters to determine how each parameter set
affects granule assembly.

RESULTS

Dual functions of multivalent molecules:
increasing concentration may result in either
larger or smaller granules

The affinities and valencies for molecular interactions
among A2RE RNA, A2, and TOG have been measured
experimentally in vitro. However, the effective affinities
and valencies of these molecules in live cells may be quite
different. Each RNA molecule theoretically contains hun-
dreds of potential binding sites corresponding to overlap-
ping target sequences at each nucleotide position in the
RNA molecule. In the cell, many of these potential binding
sites may be occupied by RNA binding proteins or sterically
occluded by RNA secondary structure, which may reduce
the apparent affinity and valency for RNA binding to A2
or TOG in vivo. A2 is bivalent, with one RNA binding
site that can bind to either the A2RE sequence with high

affinity or to non-A2RE sequences with lower affinity, and
one TOG binding site. In the following simulations, we
have generally used experimentally determined affinities
and valencies as starting conditions (Table 1) and adjusted
the valencies to take into account potential competing inter-
actions in live cells.

We used our algorithm (2 1) to perform multiple simulation
runs for the model as described in the Materials and Methods,
using fixed concentrations of RNA and TOG (corresponding
to concentrations measured or estimated in live cells) and
varying concentrations of A2, for specific values of affinity
between RNA and TOG (Table 1). The mean number of
RNA molecules per granule (S) is defined as the total number
of all RNA molecules in granules divided by the total number
of granules (S) = (32V,i n;)/ (3N, n;), where n; is the num-
ber of complexes containing i RNA molecules. A granule is
defined as an ensemble containing at least two RNA mole-
cules. The value of (S) cannot exceed 200, which is the total
number of RNA molecules in our simulated system (corre-
sponding to 10 nM).

Our results (Fig. 2 A) demonstrate that for concentrations
of A2 below a certain threshold, all RNA molecules are
assembled into a single large granule. Note that 0.05 nM
corresponds to a simulation with a single A2 molecule,
i.e., A2 is virtually absent. Increasing A2 concentration
leads to a decrease in the number of RNA molecules per
granule. As both RNA and TOG become saturated with
A2, RNA and TOG can no longer interact directly with
each other. Further increasing A2 concentration makes it
less and less likely that the same A2 molecule simulta-
neously binds to RNA and TOG. This suggests that low
valency molecules such as A2 can function as modulators
of granule size, by inhibiting direct interaction between
high valency components such as TOG and RNA.

Varying TOG concentration has an opposite effect on
granule size relative to A2. As the concentration of
TOG increases above a certain threshold (100 nM)
(corresponding to the total concentration of TOG in cyto-
plasm), all RNA molecules are sequestered into a
single large granule (Fig. 2 B). Thus, assembly of small
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FIGURE 2 Effect of protein concentrations and RNA valency on the mean number of RNAs in a granule (S). The volume is defined so that 1 uM =2 X 10*
molecules. The amount of RNA is 0.01 uM (200 molecules, non-A2RE RNA only), thus (S) = 200 corresponds to all RNA sequestered. (A) For RNA with
valency = 100, A2 concentrations <5.9 uM results in 100% of the RNA molecules assembled into a single granule. However, increasing A2 concentration
disrupts granule formation. (B) All RNA is assembled into a single granule for TOG concentrations >0.1 uM. (C) Decreasing RNA valency results in smaller
granules. Results correspond to 100 simulations, with 0.01 uM RNA, 5.9 uM A2, and 0.1 uM TOG, unless otherwise noted. To see this figure in color, go online.
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granules is possible only for TOG concentrations below
this threshold. For TOG concentration equal to 10 nM,
the average granule size is significantly reduced (S) =
3.7 £ 0.5 RNA molecules), consistent with the ex-
perimental findings that TOG is essential for granule as-
sembly (30).

We investigated the effect of RNA valency on granule
size. For RNA valency >100, all RNA molecules are
assembled into a single granule (Fig. 2 C). Decreasing the
effective valency of RNA (due to occupancy by other
RNA binding proteins or occlusion by RNA secondary
structure, for example) reduces the mean size of the gran-
ules. RNA with large valency leads to assembly of all
RNAs into a single granule for all physiological concentra-
tions of A2 and TOG. If the effective valency of RNA is
reduced to 25, the average granule size decreases to 26 =+
12 RNA molecules per granule, which corresponds approx-
imately to the number of RNA molecules per granule
measured in cells (33).

In summary, for the affinities in Table 1, TOG promotes
formation of granules (number of RNA molecules per
granule increases with increasing TOG concentration),
while A2 disrupts formation of granules (number of RNA
molecules per granule decreases with increasing A2
concentration).

Affinity between TOG and multivalent RNA
modulates the assembly of RNA into granules in
absence of A2

Fig. 2 A suggests that interactions among RNA and TOG
alone, may drive assembly of all RNA molecules into a sin-
gle large granule, given the large granule size (S) when A2
concentration is negligible. In cells, RNA molecules are
distributed in multiple separate granules, each containing
a finite number of RNA molecules (22,23,25,26,29,33,35).
Here we investigate interaction between RNA and TOG
molecules, to identify parameter regimes that modulate
transition from systems with large numbers of granules con-
taining few RNA molecules per granule, to systems with few
granules containing large numbers of RNA molecules.

X
O
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<
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The Flory-Stockmayer theory (12,13,41) can be used to
investigate the likelihood of formation of persistent large
complexes containing a significant fraction of all molecules
in the system (gelation).

We aim to identify system parameter regimes that simu-
late the type of granule formation observed in live cells.
While TOG is heptavalent, the effective valency of RNA
is not known. It can potentially interact with multiple
different RNA binding proteins and assume complicated
secondary structures, either of which could reduce its effec-
tive valency for binding to TOG protein. The effective
in vivo affinity between TOG and RNA is also unknown
because TOG can also bind to microtubules and microfila-
ments in cells. Accordingly, for this analysis, the concentra-
tions for TOG and RNA were adjusted from at least onefold
below to onefold above their estimated in vivo concentra-
tions of 0.1 and 0.01 uM, respectively. The site pair affinity
between TOG and RNA was adjusted over three orders of
magnitude, and the RNA valency was adjusted from 5 to
100. Fig. 3 demonstrates that tight binding between TOG
and RNA leads to formation of large molecular ensembles
containing many RNAs. Decreasing affinity shifts the sys-
tem from large ensembles to smaller complexes with fewer
RNA molecules per complex even if the effective RNA
valency is larger. Specifically, site pair affinity between
TOG and RNA, using the experimentally measured value
of Kp = 150 nM, would result in formation of large ensem-
bles for effective RNA valencies as low as five, in the
absence of A2 and for rather low concentrations of TOG
and RNA. Decreasing affinities between RNA and TOG
allows formation of smaller ensembles with fewer RNA
molecules per complex when the effective valency of
RNA is increased (Fig. 3 B and C). In the cell, the effective
affinity between TOG and RNA may be reduced because
both TOG and RNA have alternate potential molecular part-
ners that may compete for binding.

These simulation results lead us to further explore the sys-
tem under the assumption that the effective interactions be-
tween TOG and RNA in the cell may be of relatively low
affinity (high K)). Otherwise, in the absence of A2, it seems
that a significant fraction of RNA molecules could be

FIGURE 3 The effect of site pair affinity (disso-
ciation constant Kp) between RNA and TOG sites
and RNA valency v on gelation in the absence of
A2. Each line represents the Flory-Stockmayer
gelation curve for RNA valencies 5 (fop curve),
10 (middle curve), 25 (bottom curve) in (A) and
(B); and 60 (top curve), 80 (middle curve), and
100 (bottom curve) in (C). Concentration pairs
located above each curve would result in gela-
tion-sequestering of almost all RNAs into few large
complexes. (A) For Kp = 0.15 uM, the measured
concentrations of 0.1 uM of TOG and 0.01 uM

of RNA (shown with dashed lines) would result in gelation for RNA effective valency as low as 5 (top curve). (B) For Kp = 1 uM, an effective RNA
valency <10 prevents gelation for measured concentrations. (C) Further increasing of K, up to 50 uM enables formation of small complexes for valencies

as high as 100 (bottom curve). To see this figure in color, go online.
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sequestered in a single large complex. We hypothesize that
this is unlikely because it could potentially interfere with
dispersion of RNA granules to distal dendritic sites via
transport through narrow dendritic processes.

A2 may facilitate or disrupt formation of RNA
granules

Next, we analyzed the role of the adaptor molecule A2,
RNA valency, and affinity between RNA and TOG on
granule size (S). To perform this study for A2RE granules,
we ran simulations with an equal mix of non-A2RE and
A2RE RNA (0.01 uM of each) of effective valency of 10
(Fig. 4 A, where A2RE RNA has one A2RE sequence and
nine nonspecific sites) or 100 (Fig. 4 B, where A2RE
RNA has one A2RE sequence and 99 nonspecific sites). In
both simulations, we assume a concentration of 0.1 uM
for TOG and varying concentrations of A2. We varied the
dissociation constant (Kp) between TOG and RNA from
0.15 to 50 uM.

For RNA of valency 10 and A2 concentrations smaller
than 1 uM, the average granule size (S) is larger for higher
effective affinities (lower Kp) between TOG and RNA
(Fig. 4 A).

We then analyzed the effect of A2 on (S). Consistent with
the results in the previous section, high affinity between
TOG and RNA (Kp = 0.15 uM, solid triangles in Fig. 4) re-
sults in large aggregates when A2 concentration is negli-
gible. For RNA of either low valency 10 (Fig. 4 A) or
high valency 100 (Fig. 4 B), increasing A2 concentration
disrupts formation of granules (highlighted by short arrow).

For low affinity between TOG and RNA (Kp = 50 uM,
solid squares in Fig. 4), A2 has dual functions: it may act
to facilitate formation of granules (the transition from small
to large granules as A2 increases is shown by large arrows)
or to disrupt formation of granules (the transition from large
to small granules as A2 increases is shown by small arrows).
This effect is the same for both low valency of RNA
(Fig.4 A) and high valency of RNA (Fig. 4 B), but the width
of the sensitivity of (S) to A2 is different: 0.1-1 uM for low
valency and 0.1-10 uM for high valency RNA.

While the A2 concentration regime for facilitating forma-
tion of granules seems to be dependent on both RNA va-
lency and the affinity between TOG and RNA, the
concentration regime for disrupting formation of granules
seems to be dependent on RNA valency alone. First, we
look at facilitation of granule formation for fixed valency
10 (Fig. 4 A) and analyze the effect of affinity, as follows:
for Kp = 1 uM (dots), the maximum average granule size
(S) =8 £ 2isreached when A2 concentrations are between
0.05 and 0.1 puM, while for K, = 50 uM (squares) the
maximum average granule size (S) = 3.4 * 0.4 is reached
when A2 concentration is 0.8 uM. The effect of valency be-
comes explicit by looking at Kp = 50 uM (squares) for RNA
valency 10 (Fig. 4 A) and 100 (Fig. 4 B): higher valency
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FIGURE 4 The mean number of RNA molecules per granule (S) as a
function of A2 concentration. (A) Mix of 0.005 uM of non-A2RE and
A2RE RNA (100 molecules each) of effective valency of 10, and 0.1 uM
TOG (2000 molecules). For dissociation constant between TOG sites and
RNA sites Kp = 0.15 uM (solid triangles), increasing A2 concentrations
at >1 uM leads to formation of small granules. For lower K, (1 uM, solid
circles; 50 uM, solid squares) small granules are always more prevalent
than large aggregates, but there is an A2 concentration that maximizes
(S) for (0.1 and 0.8 uM, respectively). (B) Simulations for RNA
valency = 100. For K, = 0.15 uM (solid triangles) and Kp = 1 uM (solid
circles), A2 concentration has to be above a certain threshold to enable for-
mation of small granules only. For K, = 50 uM (solid squares), the average
granule size increases with A2 concentration on the order of 0.1 uM, reach-
ing sequestration of all RNA into a single aggregate for A2 concentrations
on the order of 1 uM. Further increase of A2 concentration on the order of
10 uM leads to disruption of the large aggregate into smaller granules.
Variations are shown for averages of 100 simulations. (Large arrows)
Beginning of the A2 range facilitating formation of granules (for Kp =
50 uM); (short arrows) beginning of the A2 range disrupting formation
of granules (for Kp between 0.15uM and 50 uM). To see this figure in color,
go online.

makes the system more sensitive to A2, with noticeable
disruption of granule formation at lower concentrations.
The threshold concentration of A2 for disruption of
granule formation is on the order of 1 uM for all affinities
when RNA valency is 10 (Fig. 4 A) and on the order of
10 uM for all affinities when RNA valency is 100 (Fig. 4 B).



To analyze the impact of RNA valency on the average
granule size (S), we fixed the affinity between TOG and
RNA to Kp = 50 uM and performed simulations for RNA
valencies 10, 20, 50, and 100 (Fig. S1 in Supporting Mate-
rial). Higher valencies are more sensitive to A2 for facilita-
tion of granule formation (noted at lower A2 concentrations)
and least sensitive for disruption of granule formation
(larger concentrations of A2 are required).

In summary, A2 may disrupt formation of granules when
in excess, saturating the RNA and TOG molecules and pre-
venting their interaction. However, when affinities between
RNA and TOG are insufficient for granule formation, A2
may function as an adaptor, enhancing the chances of
assembling TOG and RNA molecules into the same com-
plex. The simulation results showing that A2 is required
for granule formation are also consistent with experimental
observations that reducing A2 expression or interfering with
A2 function disrupts granule formation in cells (26,29,35).

A2 as a regulator of granule selectivity

In the previous section, we examined the effect of A2 con-
centration on the average number of RNA molecules per
granule, and discovered that in some systems, two distinct
A2 concentrations can result in the same mean number of
RNA molecules per granule (S). Here we examine the effect
of A2 concentration on granule selectivity (whether specific
A2RE RNA molecules are more effectively assembled into
granules compared to non-A2RE RNA molecules).

For each A2 concentration, 100 simulations were per-
formed with 0.005 uM of A2RE RNA (100 molecules),
0.005 uM non-A2RE RNA (100 molecules), 0.1 uM TOG
(2000 molecules), RNA valency = 100, and K = 50 uM be-
tween the sites of RNA and TOG. We use simulations with
A2 concentration = 0.01 uM to illustrate how selectivity
was computed (Fig. 5). Each circle in Fig. 5 A represents a
molecular ensemble containing specific numbers of A2RE
RNA and non-A2RE RNA molecules as indicated by their
position in the gridded mesh. The different locations within
a square in the mesh correspond to different simulations. The
number of occurrences of each composition in the same
simulation is represented by the color intensity of the circle.
In this set of simulations, the maximum occurrence per
simulation for granules of any specific composition was 13.

To analyze selectivity in granules that are formed during
different simulation runs, we define the average granule
composition for visible granules in each simulation as an
average of specific and nonspecific RNAs among visible
granules (Fig. 5 B, circles). Here we assume that the majority
of granules that are visible by fluorescent microscopy contain
at least six RNA molecules per granule. Such criterion is
dependent on the experimental setup and resolution (fluores-
cence intensity or single molecule imaging), and different
criteria will be discussed at the end of this section. Granules
that have larger numbers of A2RE RNA molecules than non-

RNA Granule Formation and Selectivity

A2RE RNA molecules appear above the diagonal y = x, and
are considered selective. For reference, the dashed line indi-
cates the location of granules with twice as many A2RE RNA
molecules compared to non-A2RE RNA molecules. We
define the “average composition” (asterisk) as an average
over multiple simulations. Next, we determine the angle 6
between the line from the origin to the average composition
(asterisk) and the diagonal y = x (Fig. 5 C). We define
the selectivity score as tan 6, where 6 is defined by the
equation tan( + 7/4) = (A2RE RNA/non-A2RE RNA).
The selectivity score varies from —1 to 1, with maximum
selectivity = positive 1 for granules containing only A2RE
RNA molecules, selectivity = negative 1 for gran-
ules containing only non-A2RE RNA molecules, and
selectivity = O for granules with equal numbers of non-
A2RE RNA and A2RE RNA molecules. If the average
granule composition coincides with y = 2 x (meaning that
the granules have on average twice as many A2RE RNA mol-
ecules as non-A2RE RNA molecules), then the selectivity
score = 0.333.

Averages of individual runs and average compositions
(100 simulations) for several concentrations of A2 are
shown in Fig. 6. Selectivity scores are reported in Fig. 7 A.

Based on multiple numeric simulations, our model iden-
tifies five qualitatively different regimes of granule compo-
sition and selectivity as a function of A2 concentration
(Figs. 6 and 7), as follows:

1) For very low concentrations of A2 and TOG, RNAs
rarely interact and visible granules rarely form (Fig. 6 A
and Fig. 7 A, region I).

2) As concentration of A2 increases, interaction between
A2RE RNA and TOG increases and visible selective
granules are formed (Fig. 7 A, region II). Note in
Fig. 6 B that, for most simulations, the average visible
granule is small and selective.

3) When there are sufficient A2 molecules to promote
significant aggregation of both A2RE RNA and nonspe-
cific RNA into the largest granule, selectivity is lost
(Fig. 6 D and Fig. 7 A, region III). Fig. 7 B shows that
loss of selectivity is due to assembly of all RNA mole-
cules into a single large complex.

4) When there are too many A2 molecules, the likelihood that
the same A2 molecule binds both RNA and TOG starts to
decrease, and the granule size decreases (Fig. 6, E and F,
and Fig. 7 A, region IV). Selective A2RE RNA molecules
may be excluded from granules and negative selectivity
may occur. However, the negative selectivity is not robust
for lower valencies (Figs. S2 and S3).

5) Finally, when A2 concentration is too high, all RNA
and TOG molecules become saturated with A2, and
the likelihood that the same A2 molecule is bound
to both RNA and TOG becomes negligible (Fig. 7 A,
region V). Consequently, high concentrations of A2
abrogate formation of visible granules.
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13
11
9
FIGURE 5 Identification of composition and
7 definition of selectivity of RNA granules. (A) All

RNA ensembles formed during 100 simulations.
The position of each circle indicates the granule
composition (as labeled on the axes) and simula-
tion number (each mesh unit has 10 x 10 locations,
5 totaling 100 simulations). The color intensity of
each circle indicates the number of occurrences
in the same simulation. (B) (Open circle) Average
composition of visible granules (at least six RNAs)
3 in each simulation. (Asterisk) Average composition
of visible granules in all simulations. (C) The angle
0 between the line that connects the origin to the
asterisk and the diagonal (y = x) can be used as a
1 measure for selectivity, tanf. (Diagonal) Equiva-
7 lent numbers of specific and nonspecific RNAs
(selectivity 0); (dashed line) ratio of 1 nonspecific
to 2 specific RNAs (selectivity 0.33). All simula-
tions were performed for RNA of valency 100
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Selectivity in granule assembly has been analyzed exper-
imentally by measuring colocalization of different RNAs in
individual granules in neurons using image correlation anal-
ysis (35). Pairwise combinations of A2RE RNAs exhibit
cross-correlation coefficients >0.6, indicating a high level
of coassembly of A2RE RNAs into the same granules,
whereas pairwise combinations of non-A2RE and A2RE
RNAs exhibit reduced cross-correlation coefficients ~0.2,
indicating a lower level of coassembly of A2RE RNA and
non-A2RE RNAs into the same granules. These results
reveal moderate selectivity in granule formation in vivo,
consistent with the moderate selectivity in granule forma-
tion observed in our model. The analysis reported in
Fig. 7 A was repeated using different resolution for visible
granules (minimum number of RNA molecules 2, 3, and
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and Kp = 50 uM between TOG sites and RNA
sites, concentrations 0.005 uM of non-A2RE and
A2RE RNA each, 0.1 uM TOG. To see this figure
in color, go online.

4 6 8
nonA2RE RNA

4, in comparison to 6), with consistent results: selective
granules are expected for A2 concentration regimes when
A2 functions as a facilitator of granule formation, while
mild negative selectivity may occur when A2 functions as
a disruptor of granule formation (Fig. S4).

DISCUSSION

One of the best-characterized types of RNA granules is the
A2 granule, where multivalent A2RE RNA molecules
bind to the cognate bivalent RNA binding protein A2 and
are linked by the heptavalent scaffold protein TOG
(4,22,26,28-30,33,34). High resolution in situ hybridization
studies of Drosophila embryos indicate that most RNAs in
the Drosophila exome have characteristic localization
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patterns (42), suggesting that there are many different types
of RNA granules, each containing a different combination
of RNA molecules, RNA binding proteins, and scaffold pro-
teins. Thus, the computational modeling approach described
here may be applicable to many different types of RNA
granules if the RNA specificity, cognate RNA binding pro-
teins, and cognate scaffold proteins are known.

We used modeling and simulations to predict and analyze
granule composition for large ranges of multiple parameters.
Our model identified parameter ranges that lead to formation
of excessively large or excessively small granules. It has
been observed that decreased A2 expression resulted in a
reduced number of granules in the cell processes while
RNA remained diffuse in the perikaryon (26,27,29,35).
This has been interpreted to mean that A2 is required for
transport of RNA granules in dendrites (26). However, our
results suggest two alternative hypotheses: 1) if TOG and
RNA have high affinity (apparent K, in the cell on the order
of hundreds of nanoMolar), the reduced concentration of A2
leads to the formation of a gel-like large aggregate that may
sequester most RNA molecules, and the granule size may
prevent transport through narrow processes; or 2) if TOG
and RNA have low effective affinity (K, on the order of
50 uM), A2 may act to facilitate granule formation at low
concentrations (see Figs. 4 and S1 for range as a function
of RNA valency). For the latter hypothesis, our results also
identify two distinct A2 concentration regimes that may
determine granule selectivity (shown as /I and IV in Fig. 7).
In the first regime (lower A2 concentration, I7), A2 facilitates
formation of selective granules. In the second regime (higher
A2 concentration, V), the granules may have moderately
negative selectivity. The model observations correspond to
hypotheses yet to be tested experimentally.
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FIGURE 6 RNA granule composition as a func-
tion of A2 concentration. (Open circle) Average
composition of visible granules in each simulation.
(Asterisk) Average composition for 100 simula-
tions. (A) Negligible A2 concentrations seldom
result in visible granules. (B) Low concentrations
promote formation of selective granules. (C) Selec-
tivity is reduced as more A2 molecules are added
and larger granules occur. (D) Concentrations on
the order of 1 uM result in sequestration of all
RNA molecules in a large molecular complex, re-
sulting in no selectivity. (E and F). As more A2
molecules become available, the RNA sites
become saturated and are excluded from granules.
Due to the A2RE binding site, A2RE RNAs are
excluded more often than non-A2RE RNA, result-
ing in a negative selectivity score. All simulations
were performed for the system with equal con-
centrations of specific and nonspecific RNAs
(100 molecules each, RNA valency 100 and K =
‘ 50 uM between the sites of RNA and TOG; con-
centrations 0.005 uM of non-A2RE and A2RE
RNA each, 0.1 uM TOG). To see this figure in
color, go online.

A2 = 40uM

1

2
nonA2RE RNA

Because A2 is involved in several cell processes, experi-
mentally induced changes in its concentration may impact
other aspects of the live cell physiology, representing a chal-
lenge for model validation. Mathematical and numerical
models always require assumptions and simplifications in
representing the real biological system. Our analysis is
based on populations of granules that would be visible under
fluorescent microscopy (here, we assumed that at least six
RNA molecules would be necessary). Nevertheless, smaller
granules may also be functional. We showed that regardless
of the experimental setup for resolving individual granules,
positive selectivity is expected in the A2 concentration
regime where it acts as a facilitator of granule formation,
and mild negative selectivity may occur in the A2 concen-
tration regime where it acts as a disruptor of granule forma-
tion (Fig. S4).

Our model considers three key molecular components of
granules, each of which is necessary for A2 granule forma-
tion. In the cell, these molecules may also interact with other
molecular components. Here we account for such effects by
considering variable valencies and affinities. Another limi-
tation of our approach is applying a principle of equal reac-
tivity, where individual binding sites of the same type have
the same affinity for interactions. In reality, formation of
some bonds may affect affinity for further interactions.
However, relevant experimental data is currently unavai-
lable and therefore corresponding assumptions are yet to
be formulated.

Our model can be easily extended to treat larger systems
and new experimental scenarios as data becomes available.
Constant concentration of molecules was assumed, repre-
senting a steady state. Due to the limited number of
RNA molecules in the cell, the effect of stochasticity
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FIGURE 7 Impact of A2 concentration on selectivity and assembly.
(A) Five different regimes of A2 effect of selectivity, with illustrative car-
toons. Regime (V) includes A2 concentrations beyond the plot (represented
by the arrow). (B) Fraction of total RNA that is sequestered by the largest
granule. Granule components as in Fig. 1: RNA (curved line), A2RE RNA
(shaded curved line), A2 (oval), and TOG (semicircle). Average of 100 sim-
ulations, RNA valency 100 and Kp = 50 uM between the sites of RNA and
TOG; concentrations 0.005 uM of non-A2RE and A2RE RNA each,
0.1 uM TOG. To see this figure in color, go online.

may be significant as revealed by the large number of
different simulations. When the output of interest is the
average granule size, similar results and deviations are ob-
tained for 10 or 100 simulations. However, a large number
of repetitions becomes relevant when performing more
detailed analysis of the simulation results. For example,
Fig. 5 A illustrates a situation where granules with at least
six RNAs are not formed in every simulation, while gran-
ules with at least two RNA molecules are formed in every
simulation. From this observation, it follows that the reso-
lution criteria used when computing selectivity affects the
number of simulations required for computing the statisti-
cal result when interested in selectivity, as illustrated in
Fig. 5 A.

Finally, the results presented here reveal, to our knowl-
edge, a novel and potentially generalizable concept that
low valency molecules (in this case, bivalent hnRNP A2)
can function as adapters between multivalent molecules
(in this case, A2RE RNA and TOG) to tune the size and
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specificity of multimolecular aggregates (in this case,
RNA granules).

SUPPORTING MATERIAL

Materials and Methods, four figures, and two tables are available at http://
www.biophysj.org/biophysj/supplemental/S0006-3495(17)30159-5.
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