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Pleomorphic Ensembles: Formation of Large Clusters Composed of
Weakly Interacting Multivalent Molecules
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ABSTRACT Molecular interactions of importance to cell biology are subject to sol-gel transitions: large clusters of weakly
interacting multivalent molecules (gel phase) are produced at a critical concentration of monomers. Examples include cell-
cell and cell-matrix adhesions, nucleoprotein bodies, and cell signaling platforms. We use the term pleomorphic ensembles
(PEs) to describe these clusters, because they have dynamic compositions and sizes and have rapid turnover of their molecular
constituents; this plasticity can be highly responsive to cellular signals. The classical polymer physical chemistry theory devel-
oped by Flory and Stockmayer provides a brilliant framework for treating multivalent interactions for simple idealized systems.
But the complexity and variability of PEs challenges existing modeling approaches. Here we describe and validate a computa-
tional algorithm that extends the Flory-Stockmayer formalism to overcome the limitations of analytic theories. We divide
the problem by deterministically calculating the fraction of bound sites for each type of binding site, followed by the stochastic
assignment of the bonds to a finite number of molecules. The method allows for high valency within many different kinds of
interacting molecules and site types, permits simulation of steady-state distributions, as well as assembly kinetics, and can
treat cooperative binding within one of the interacting molecules. We then apply our method to the analysis of interactions
in the nephrin-Nck-N-Wasp signaling system, demonstrating how multivalent layered scaffolds produce PEs at low monomer
concentrations despite weak binding interactions. We show how the experimental data for this system are most consistent
with synergistic cooperative interactions between Nck and N-Wasp.
INTRODUCTION
Multivalency may lead to the formation of large molecular
clusters or polymers even when the individual binding
affinities are weak. Several examples serve to illustrate the
diversity and ubiquity of such systems in cells: nephrin-
Nck-N-Wasp, believed to be essential for maintenance of
the filtration barrier in the kidney (1,2); P-granules, charac-
teristic of embryo development (3); mRNA granules, an
essential mechanism for delivering messages over large dis-
tances in neuronal cells (4); the assembly and dynamics of
focal adhesions during cell migration (5); postsynaptic
density regions in excitatory neuronal synapses (6); and
the aggregation of receptor signaling platforms (7). Such
interactions lead to the formation of molecular clusters
that increase local concentration of biomolecules, poten-
tially triggering signaling events. Because these complexes
are often plastic, with dynamic and variable composition,
they have been called pleomorphic ensembles (PEs), to
distinguish them from machines, assemblies of strongly
and specifically interacting molecules (8).

Analytical and numerical modeling of multimeric com-
plexes have a rich history, originating with the classical
theories of Paul Flory and Walter Stockmayer (7,9–16).
The Flory-Stockmayer (F-S) theory provides nonspatial
analytical expressions to predict the properties of polymers
arising from multivalent monomers. Given the valencies and
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binding-site affinities of the monomers, the F-S theory
predicts the concentration dependence of cluster-size distri-
bution and the composition of the clusters (9,17). The exis-
tence of a soluble (sol) phase and a macroscopic aggregate,
or gel phase is a common feature of these systems, and the
F-S theory can predict the critical concentration of mono-
mers for the sol-gel transition. This is possible via the
parameter pc, commonly referred to as the percolation
threshold, or the critical degree of reaction between individ-
ual binding sites that leads to the formation of an infinitely
large polymer (gel phase). In these studies, p corresponds to
the fraction of reacted sites, or probability of bond forma-
tion. Thus, the configuration of the system is characterized
by the valency of the monomers and the value p, regardless
of the history of the system. Therefore, if the forward and
reverse rate constants for site binding are known, the F-S
theory can predict the kinetics of cluster formation as
readily as the final steady state, as recently reviewed (18).
The key equations arising from the F-S theory are provided
in the Supporting Material for the convenience of the
reader, although full treatments can be found elsewhere
(9,10,13,17); we also provide a web-based tool (http://
vcell.org/SimGel/) for generating sol-gel transition dia-
grams based on the classical F-S theory.

Analytical models based on the original F-S theory are
restricted to simple cases (e.g., no more than two types of
binding sites)—a fundamental limitation (9,10,19,20). In
addition, a key simplifying assumption of the F-S theory
is that all sites are subject to equal reactivity. This states
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that the probability of bond formation for any binding site
is independent of the state of the molecule it belongs to
(whether it is a monomer or part of a PE). It is justified
for systems with both noncooperative binding-site interac-
tions and binding rates slower than the diffusion-limited
rate (where most collisions do not result in binding). In
particular, this does not allow for the possibility of increased
rates of formation of internal rings within clusters. As a
consequence, the equal-reactivity assumption makes small
rings highly unlikely in the sol phase, where the probability
of binding with sites outside a given cluster will be domi-
nant. However, a series of spatial numerical simulations
confirmed the validity of the F-S theory for 3D systems of
rigid monomers (21–23), demonstrating the applicability
of the equal-reactivity assumption for this scenario.

Biological PE systems (8), such as interactions between
modular protein binding domains or between proteins and
nucleic acids, involve several different multivalent mono-
mers interacting through many more than just two types
of binding sites. Therefore, they cannot be treated with the
analytical F-S theory. Because systems of multimeric com-
plexes may lead to the formation of an infinite number of
species, it is necessary to solve such problems stochastically
with particle-based or network-free simulators, and a num-
ber of nonspatial software tools are available (24–26).
However, none of these solvers takes advantage of the
aforementioned simplifications inherent in the F-S theory.

In this article, we describe an efficient hybrid
(deterministicþ stochastic) nonspatial algorithm that makes
use of the principles used to derive the F-S theory to treat
PEs subject to sol-gel transitions. The algorithm extends
the theory to account for ring formation and can treat both
equal reactivity and cooperative binding. The deterministic
part of the algorithm identifies the probabilities of interac-
tions at a given time point, which serves as an input to the
stochastic part. The latter consists of the random establish-
ment of bonds, clustering, and statistics. We show that using
our approach we reach the same results as fully stochastic
solvers. We find that the percolation threshold (the transition
to the gel phase) can be robustly identified by the occurrence
of rings in the largest cluster, rather than the fraction of
molecules in the largest cluster. Because specific sequences
of binding sites may act as supramodules (6,27), we address
the impact of synergistic interactions on the sol-gel transi-
tion diagrams. Finally, we apply our algorithm to the multi-
domain interactions between nephrin, Nck, and N-Wasp.
MATERIALS AND METHODS

The deterministic solutions were obtained using Mathematica (Wolfram,

Champaign, IL), Matlab (The MathWorks, Natick, MA), or BioNetGen

(28). The algorithm for the stochastic part was written in Perl. The average

properties and plots were obtained using Mathematica. RuleMonkey 2.0.25

(26) and KaSim 2.01 (25) were used to compare to compare fully stochastic

simulations to our hybrid method (see Fig. 2). The corresponding input files

are presented in the Supporting Material.
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RESULTS

A multistep deterministic-stochastic algorithm
for modeling PEs

We developed a numerical algorithm, substantially extend-
ing the F-S theory, that allows for the efficient nonspatial
simulation of the kinetics of cluster formation from multiva-
lent monomers. The algorithm can accommodate multiple
monomer types and multiple binding-site types. The central
concept of the F-S theory is that the reactions between
individual binding sites can be treated independently (equal
reactivity). Therefore, in our algorithm, the multivalent
monomers are first broken into the appropriate concentra-
tions of binding sites. The reactions between sites are
evaluated deterministically at a series of time points as a
function of binding and unbinding-rate constants and the
concentration of sites. This results in a fraction of bound sites
for each type of binding site at each time point. We then
assign indices to a fixed number of monomers and randomly
assign these identifiers to the previously determined fraction
of bound sites. The sites are then reconnected into the corre-
sponding multivalent molecules and the clusters are identi-
fied. The procedure is repeated multiple times to generate
statistics. Molecules formed by sites subject to the equal-
reactivity assumption are broken into as many modules as
the valency. Molecules with all binding sites subject to coop-
erativity cannot be broken into smaller independentmodules,
and the algorithm is adapted for such a scenario. By cooper-
ativity we mean that the binding-rate constant for a given site
is a function (activating or inhibiting) of the current site
occupancy of the molecule it belongs to (29). With the aid
of Fig. 1, we now explain each of the four steps in detail:

Step 1

The objective of this step is to reduce the potentially infinite
system of equations (with one equation describing each
potential PE composition and connectivity) to a finite sys-
tem. For molecules subject to equal reactivity, this involves
calculating the fractions of occupied sites at each time point,
pi(t), where index i corresponds to one of the binding-site
types. For steady-state calculations (t ¼ N), this simply
requires solution of algebraic equations using the given
binding-site affinities. To model a kinetic time course, a
system of ordinary differential equations (ODEs) is inte-
grated, with one rate equation per site type. Conventional
units, such as concentrations in micromolar, can be used.
Conservation of mass provides the algebraic equations
relating number of occupied and free sites. This step of
the process is completely equivalent to treating all the
binding sites as monovalent molecules and is therefore
computationally trivial. The key output, pi(t), corresponds
to the probability of a site of type i being occupied; it is
simply calculated as the concentration of occupied i sites
divided by the total concentration of i sites. This step repre-
sents a reduction of the system from an infinite number of



FIGURE 1 Method workflow. This illustrative example is for a system with trivalent molecules A (m ¼ 3) and bivalent molecules B (n ¼ 2). In Step1, all

molecules subject to equal reactivity are split into sites. If both molecule types, A and B, are subject to equal reactivity (Step1, upper), the probability of

bond formation, pA, is calculated. If A is subject to cooperativity (Step 1, lower), the fractions r0,.,rm of molecules with 0 to m occupied sites are deter-

mined. In Step 2, sites are randomly chosen to establish bonds between a fixed number of molecules, Ai and Bj. In the equal-reactivity case, the bonds are

established between pairs removed from the list of type A sites and the list of type B sites. In the cooperativity case, the vector of type A molecules (with a

single copy per molecule), is used instead. Bonds are organized into clusters at Step 3; the clustering algorithm is fully described in Fig. S1. To see this figure

in color, go online.
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species (monomers, dimers, trimers.) to a finite number of
binding-site types.

A finite system is also possible for binding sites subject to
cooperativity within a molecule, as long as their respective
binding partners are still subject to equal reactivity. The
number of required ODEs corresponds to the number of
states the cooperative molecules have plus the number of
types of equal-reactivity sites in the system. The output
for this case is rA,l(t), computed as the ratio between the
concentration of cooperative molecules A in state l divided
by the total concentration of A molecules.

Step 2

The stochastic part of the algorithm consists of translating
the results from the deterministic step, which characterize
the states of sites and molecules, into a discrete list of bonds
for each time point. In this step, we choose a specified
number of molecules, proportional to the respective concen-
tration of each type of monomer, with each molecule
assigned an individual index number; 1000 molecules
usually suffices to produce robust results (see below). Sites
displaying equal-reactivity interactions are stored in lists
that carry the name and index number of the molecule.
There is a list for each site type, and the valencies determine
the number of identical objects in the list. Bonds between
two sites that are subject to equal reactivity are randomly
assigned to generate a list of paired site indices until the
number of bonds relative to total sites satisfies the probabil-
ity pi(t). The remaining unbound sites are left in their own
lists, with a number corresponding to 1 � pi(t).

Cooperative molecules are stored in lists as complete
objects, containing molecule name and index number. The
bond assignments corresponding to each state l are per-
formed sequentially. For a given state l, one cooperative
molecule is randomly removed from its list and paired
with as many sites as determined by its state. For example,
let rA,2B represent the fraction of molecules A that have two
sites bound to sites of type B. For every object removed
from the list of molecules A, two objects are randomly
removed from the list of type B sites, and two bonds are
stored in the list of bonds. If rA,2B ¼ 0.3 in a system with
1000 molecules A, this procedure is repeated 300 times.

To summarize, the output of this step is a list of randomly
selected bonds between a population of molecules, repre-
senting one instantiation of the fractional binding-site occu-
pancies calculated in step 1 for time t.

Step 3

This step identifies the molecular clusters by searching
through the list of bonds for molecules linked by more
than one bond (i.e., a molecule’s index appears in several
bonds). The first element in the list is compared to the last
element of the list to see if they have any molecules in com-
mon. If they do, the first element is removed and the last
element now has the two bonds connecting the three mole-
cules and represents a cluster. We move on to the new first
element and compare it to the last element of the list. If
false, we compare the first element to the second element
from the end and so on until the test is true (and the first
element is again removed and added to the cluster contain-
ing at least one of its molecules); if the first element is
reached without finding any molecules in common with
any of the other elements in the list, this element corre-
sponds to a simple dimer and is kept in the list. The process
then continues by moving to the second element, and the
iterations are repeated until the last two elements of the
Biophysical Journal 105(11) 2451–2460
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list are compared. This step is represented in Fig. S1 in the
Supporting Material. The output of this step is thus a list of
all the clusters, with explicit account of their sizes, compo-
sition and bond connectivity.

Step 4

The average properties of the system are obtained by
repeating Steps 2 and 3. Among the average properties
that we compute are the size of the largest cluster, molecular
composition of clusters, number of bonds of each type,
number of rings (one plus the difference between the total
number of bonds and the total number of molecules in the
cluster (10)), etc.

The following sections illustrate the multiple types of
data we can produce. The algorithm is validated against
both analytical theory and existing fully stochastic numeri-
cal algorithms. Although it is easier to conceptualize in
terms of two monomer species, each with identical binding
sites, the method is fully general for multiple monomeric
species, each with multiple binding domain types and
multiple valencies. Indeed, below, we treat the interaction
between trivalent nephrin and a single binding site on Nck
(SH2 domain), together with the interaction of three SH3
domains on Nck with pentavalent N-Wasp proline-rich
motifs. Furthermore, we show how outputs of our numerical
approach can be used to extend the predictive power of the
F-S theory to more complex systems that cannot be treated
analytically.
Demonstration and validation: kinetics of PE
formation in a cooperative system

We first illustrate our method with the trivalent-ligand-
bivalent-receptor system, where a trivalent soluble ligand
L binds to one of two sites on a membrane-associated
receptor R and can then cross-link on the membrane by
binding to other receptors. This is a convenient numerical
example, since its rings-forbidden version has been exten-
sively studied both analytically (7) and numerically
(24,26,30,31), and its properties are discussed in the litera-
ture in great detail. Here we focus on validating our method.
Biophysical Journal 105(11) 2451–2460
Of course, the ability to form internal rings will be depen-
dent on the flexibility of the monomers within the cluster
(32). To show that our algorithm can reproduce time-depen-
dent responses, we treat this system under the condition that
ring formation is allowed.

The trivalent-ligand-bivalent-receptor system is solved
using two independent binding-rate constants. The first,
k1þ, concerns the binding of a free ligand and a free site
on a membrane-bound receptor. The second, k2þ, concerns
the binding of a ligand that is already linked to the mem-
brane via any receptor site. All bonds dissociate at the fixed
rate constant k�. Although there may not be cooperativity at
the molecular level, the biological context forces coopera-
tive behavior: the targeting of the ligand to the membrane
results in a modified binding rate for the binding to the
next two receptors. Specifically, this behavior results in
different affinities for the first versus the second and third
L binding sites, thus defining L as a cooperative molecule.

In Step1, the receptor sites sR can be treated as subject
to the equal-reactivity assumption. The ligand L must be
treated as a cooperative molecule: the binding rate depends
on the state of the ligand (whether it is free or with at least
one bond). The ODEs for this system are presented in the
Supporting Material. The deterministic solution for this
small system of equations as a function of time (Fig. 2 A)
is used as an input for the stochastic part of the algorithm.
We generate clusters using the values of rL,l for specific
time points and compare the results with the numerical
solutions from two fully stochastic solvers (RuleMonkey
and KaSim (25,26)) that compute binding and unbinding
reactions for all necessary time steps up to the time point
of interest. The mean PE size, <S>, is a common output
of interest for this system. It is defined as the average num-
ber of receptors in clusters with at least two receptors (30).
Fig. 2 B shows that the three solvers result in equivalent
numerical solutions.

This result shows that the method described can be used
to properly model cluster formation for systems with coop-
erativity in a time-dependent fashion. The impact is that
numerical computation of systems with binding-rate con-
stants slower than the diffusion limit can benefit from 1)
FIGURE 2 Comparison between simulations us-

ing our method and fully stochastic methods. Sim-

ulations were performed with 300 receptors, 5000

ligands, k1þ ¼ 1.8 � 10�6 (molecules s)�1, k2þ ¼
5.6 � 10�4 (molecules s)�1, and k- ¼ 0.01 s�1.

(A) The percentages of ligands with one to three

bonds are calculated deterministically, as described

in Step1. (B) Steps 2 and 3 are repeated 40 times and

the average value for <S> (mean PE size) is re-

ported, using the results from A at the time points

indicated by the blue dots in B. The results are

equivalent to fully stochastic simulations using

RuleMonkey (red open circles) and KaSim (green

triangles) (means over 40 independent simula-

tions). To see this figure in color, go online.



PEs of Weakly Interacting Molecules 2455
reducing the number of equations needed (a potentially
infinite number of ODEs is replaced by a small system of
ODEs); and 2) avoiding computation of individual stochas-
tic reaction events.
The occurrence of rings in the largest cluster
robustly identifies the sol-gel transition

A great contribution from analytical F-S theory is the
prediction of the percolation threshold, or critical degree
of reaction, pc, for the sol-gel transition. In particular, the
F-S theory allows calculation of the fraction of monomers
that belong to the gel phase, Wg, a parameter that is null
for p % pc and increases steeply at p > pc (9) (Fig. 3).
However, the analytical expressions are limited to simple
systems with up to only two site types. The identification
of numerical outputs that are the most robust correlates of
the theory would enable the prediction of the sol-gel transi-
tion when modeling systems are too complex to be handled
analytically. Here, to establish such numerical outputs, we
compare the fraction of molecules in the largest cluster,
WLC, and the occurrence of rings in the largest cluster
with the analytical F-S theory predictions.

Consider a system with two molecule types, A and B,
with concentrations cA ¼ cB. Each molecule has m binding
sites. In such symmetric systems, pA ¼ pB and the F-S
theory predicts the existence of a gel phase for values of
pA larger than pA,c ¼ 1/(m � 1). As seen in Fig. 3, Wg

increases abruptly as soon as pA > pA,c, offering an experi-
mentally accessible observable for the analysis of sol-gel
systems. However, Wg can only be calculated from the
analytical expressions derived for such simple systems.
dot-dashed, and dashed lines, respectively, and it is clear that the number of m

All results in A–D are the means of 50 simulations for systems with 103 and 5

To see this figure in color, go online.
The fraction of molecules belonging to the largest cluster,
WLC, is the numerical correlate of Wg. WLC has been used
previously to identify the presence of a gel phase in systems
where intramolecular interactions are forbidden, with the
gel phase being characterized somewhat arbitrarily by
WLC > 0.05 (30). In contrast to Wg, this output has nonzero
values for pA%pA;c. We wanted to compare the WLC with
the analytical expression for Wg in the region pA>pA;c.
Fig. 3, A and B, shows that the values of WLC at pA < pA,c
are sensitive to the number of molecules chosen for the
simulations. For m ¼ 3, pA,c ¼ 0.5, and the results for sim-
ulations using 1 � 103 (green), 5 � 103 (blue), and 1 � 104

(red) molecules at pA ¼ pA,c produce WLC ¼ 0.15 5 0.06,
0.09 5 0.05, and 0.07 5 0.04, respectively. Similar results
are obtained for m ¼ 6, where pA,c ¼ 0.2 (Fig. 3 B). Thus,
the threshold of WLC ¼ 0.05 is not a robust criterion for
the prediction of pA,c. Although the results for WLC are
sensitive to the number of molecules in the simulation in
the region pA%pA;c, the three simulation sizes show that
WLC converges to Wg as pA exceeds pA,c.

It has been previously noted that in a nonreversible sys-
tem with single molecule and site types, the occurrence of
rings in the sol phase is negligible (13). Therefore, we felt
that the occurrence of rings in the largest cluster might serve
as a good criterion for the appearance of a gel phase. Indeed,
our simulations show that rings consistently appear in the
largest cluster whenever pA > pA,c. In Fig. 3 C, we show
that this result is robust for the three simulation sizes and
valencies m ¼ 3 and m ¼ 6. For a linear or branched
polymer (i.e., with no rings), the number of bonds is equal
to the total number of monomers minus one; thus, for a
large polymer or cluster, the ratio of bonds to monomers
FIGURE 3 Properties of the largest cluster (LC)

in a symmetric system consisting of an equal num-

ber of A and B molecules, each with valency m.

(A and B) The weight fraction of the largest cluster,

WLC, where colored plots correspond to different

numbers of molecules (green, 103 molecules; blue,

5 � 103 molecules; and red, 104 molecules), and

the weight fraction of the gel phase, Wg, from the

analytical theory (9) (black lines). Molecules A

and B have identical valency m ¼ 3 (A) or m ¼ 6

(B).The results of the simulations of WLC converge

toward the theory (black line) for pA > pA,c. (C)

Appearance of rings in the largest cluster is abrupt

at pA,c, indicated by the lines at pA ¼ 0.2 for valency

m ¼ 6 and at pA ¼ 0.5 for valency m ¼ 3; the color

code is as in A and B. (D) Average number of bonds

in each molecule A in the largest cluster. When this

quantity is >2, there must be rings, and as in C, this

condition is robustly met when pA > pA,c. Each

color corresponds to a different valency, m ¼ 6

to m ¼ 2 from top to bottom (and left to right

for pA,c). For each valency, simulations for 103,

5 � 103, and 104 molecules are plotted as dotted,

olecules does not significantly affect the results, especially past the pA,c.

� 103 molecules, and 10 simulations for the system with 104 molecules.

Biophysical Journal 105(11) 2451–2460
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approaches 1 (or 2 if computing bonds/molecules of A,
Fig. 3 D). Consistently, each molecule A that belongs
to the largest cluster has an average of two bonds to B mol-
ecules at pA ¼ pA,c (Fig. 3 D). When the number of bonds
per A exceeds 2, a cluster must contain rings. Fig. 3 D
therefore shows that this condition robustly predicts pA,c
for the three simulation sizes and valencies ranging from
m ¼ 2 to m ¼ 6. Physically, one would expect an increas-
ingly stable gel phase with an increasing number of rings:
the larger the number of rings the less likely that a single
bond dissociation will result in fragmentation of the cluster.
In addition, the occurrence of rings is rare in the region pA
< pA,c. In fact, our solution coincides with the F-S expres-
sions for distribution of cluster sizes in systems of branched
polymers in the sol phase (Figs. S2 and S3).

We conclude that in systems where equal reactivity is
applied consistently to both sol and gel phases, the occur-
rence of rings in the sol phase is negligible. Indeed, the
occurrence of rings in the largest cluster can be used as a
reliable indicator of the sol-gel transition for the numerical
simulations (Fig. 3, C and D). In contrast, the fraction of
molecules in the largest cluster is sensitive to the number
of molecules in the simulation and does not, therefore, offer
a robust criterion for prediction of the sol-gel transition
(Fig. 3, A and B).
Efficiency of the clustering algorithm

The computational cost of purely stochastic algorithms
scales with the number of events. Therefore, no matter
how coarsely a trajectory is ultimately sampled (including
only once when a steady-state solution is all that is sought),
the full trajectory of events must be simulated. Our method,
on the other hand, randomly distributes a deterministically
established fraction of bound sites assigned at each of a
number of time points, predetermined as sufficient to char-
acterize the system behavior. If a trajectory sampled at a
series of discrete time points is sufficient for a simulation
of multivalent kinetics, our method will be significantly
more efficient than purely stochastic approaches. This is
because our algorithm bypasses repeated stochastic dissoci-
ations and associations within the intervals between
sampled time points; it establishes only the bonds that exist
at the sampled times.

Solvers optimized for systems that do not allow rings
have increased computational cost due to rejection of events
as the system approaches the sol-gel transition (percolation
threshold) (31). In contrast, Step 3 of our method was devel-
oped so that it is most efficient when the probability of
bonds exceeds the percolation threshold. We use the system
described in the previous section to illustrate the efficiency
of the solver. In Fig. S4 we show that once the percolation
threshold is met, the computational cost decreases exponen-
tially with the valency of the system, for a fixed number of
bonds. This computational advantage arises from the algo-
Biophysical Journal 105(11) 2451–2460
rithm described in Step 3, and because equal reactivity is
consistently applied in both sol and gel phases, ring forma-
tion is allowed and no reactions are rejected.
Analysis of an experimental PE system with
cooperative synergistic interactions

Nck is an adaptor protein with both SH2 and SH3 domains
that link, respectively, phosphotyrosine motifs on the cyto-
plasmic face of the plasma membrane to proline-rich motifs
(PRMs) in actin-nucleation-promoting factors such as N-
Wasp. In particular, the phosphotyrosines on nephrin in
the membranes of kidney podocytes interact with Nck,
which in turn recruits N-Wasp to organize the delicate
foot processes that comprise the filtration barrier in the
kidney (2). In addition to recruiting Nck to the membrane,
tryrosine phosphorylation at multiple sites on nephrin may
help promote the formation of nephrin-Nck-N-Wasp clus-
ters. Because of the importance of this PE system, and
because it has been characterized in vitro (1), we chose it
to demonstrate the applicability of our algorithm to an
experimental system.

The subject of this analysis is the recently published study
of liquid-liquid demixing phase separation involving the
multivalent domains of phosphorylated nephrin, Nck, and
N-Wasp (1). Based on physical characterization of multi-
valent interactions of model systems, and on theoretical
descriptions of multivalent polymers (20), it was postulated
that these phase separations are accompanied by sol-gel
transitions within the more concentrated of the two coexist-
ing phases. Accordingly, we use the experimentally observ-
able phase separation as an indicator of the sol-gel transition
in this system. Nck SH3 domains interact with the important
actin-nucleation promoter N-Wasp through the latter’s PRM
domains. Although affinities have not yet been reported in
this system, analogies to other SH3-PRM systems suggest
that they will have dissociation constant values on the order
of tens to hundreds of micromolar.

First, we investigate the potential importance of a syner-
gistic interaction to help explain the general shape of the
sol-gel transition diagram for Nck and N-Wasp in the
absence of nephrin. Multivalent molecules may be orga-
nized in supramodules, whereby the specific sequence of
sites and linker domains may promote synergistic interac-
tions (6) between a single binding site in one molecule
and multiple domains in its binding partner. For example,
it has been shown that a single PRM in Pak1 may interact
with any one of the three SH3 domains of Nck. However,
if both the second and third SH3 domains of Nck are pre-
sent, a significantly stronger synergistic interaction between
Nck and Pak1 occurs (27).

The Nck-N-Wasp interaction is modeled as an interaction
between a molecule with three SH3 domains (SH33) and a
molecule with five PRMs (PRM5). The SH33 molecule is
treated as cooperative. We label the SH3 domains as s1,
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s2, and s3. The synergistic interaction is depicted by the ar-
row labeled (s) in Fig. 4 A and is represented as follows: if s2
establishes a bond with any one PRM, and s3 of the same
molecule is free, the latter may cooperatively bind to the
same PRM with binding and unbinding-rate constants ksþ
and ks�. To break the bond, both unbinding steps must
occur. A similar sequence of reactions may occur if s3 estab-
lishes the first link. These interactions can be thought of as a
two-stage binding. Alternatively, the s2 and s3 sites may
establish two independent links to separate PRM domains
(Fig. 4 A, (i)). In Fig. 4, B and C, we explore the impact
of synergy strength by varying ksþ/ks�.We use the occur-
rence of rings in the largest cluster (absolute number of
molecules) as an indicator of the presence of a gel phase
(Fig. S5 shows the fraction of SH33 and PRM5 in the largest
cluster). For a fixed pairwise affinity for the binding be-
tween a single SH3 domain and a PRM motif (arbitrarily
set to KD ¼ 90 mM), the ratio ksþ/ks� tunes the shape of
the sol-gel transition interface. When ksþ/ks� << 1 (i.e.,
synergy is negligible), the transition boundary overlaps
with that predicted by the analytical F-S theory (Fig. 4 B,
yellow curve), but the fit to the experimental data are poor.
In contrast, increasing the value of ksþ/ ks� shifts the sol-
gel transition interface toward higher concentrations of
SH33 molecules. When ksþ/ ks� ¼ 50, corresponding to a
high degree of synergy, the shape of the predicted region
of gel phase closely follows the pattern in the experimental
data (Fig. 4 C).
We now turn our attention to the addition of a third
component to the system, nephrin (Fig. 4, D–G). The inter-
action between Nck and nephrin occurs via the single SH2
domain of the former with the phosphorylated tyrosine
(pY) domains of the latter, with affinity 1 mM (2). By
distributing 9 mM of pY sites among bivalent molecules
(pY2, as for rat nephrin; Fig. 4, D and E) or trivalent mole-
cules (pY3, as for human or mouse nephrin; Fig. 4, F andG),
the sol-gel transition interface is brought to much lower
concentrations of SH33 and PRM5 than in the absence of
nephrin (Fig. 4, B and C), as shown both in our simulations
and in experiments (note the different x and y scales in the
plots of Fig. 4); the trivalent nephrin or pY3 (Fig. 4, F and
G) displays greater potency in promoting the gel phase
than the bivalent nephrin or pY2 (Fig. 4, D and E), as would
be expected and as was found both in our simulations and in
experiments (1). Thus, in vivo, multiple phosphorylations
may be expected to do more than simply recruit Nck to
the membrane-bound nephrin, but would also be expected
to organize dense foci of N-Wasp-mediated actin-nucleation
activity.

The two-component SH33-PRM5 system shows that the
synergistic interaction reduces the region of concentrations
where the gel phase can occur (compare Fig. 4, B and C).
However the opposite trend occurs when the pY2 or pY3

scaffolding molecules are added (Fig. 4, D–G). This
behavior likely reflects the tradeoff, for the synergistic
interaction, between increased effective affinity and
FIGURE 4 Impact of synergistic interactions in

sol-gel transition diagrams. (A) The second and

third SH3 domains of Nck may act independently

(i) or synergistically (s). Sol-gel transition dia-

grams for systems with trivalent molecule SH33
(of Nck) binding to pentavalent molecule PRM5

of (N-Wasp), without (B and C) or with (D–G)

the inclusion of Nck binding to nephrin. Plots in

D–G are simulated with 9 mM of phosphorylated

tyrosine sites distributed among bivalent (D and

E) or trivalent (F and G) molecules. The intensity

of the synergistic interaction between the last two

SH3 domains is represented by the ratio ksþ/ks�.
The results shown are averages of 20 simulations

for each condition, with 50 molecules/mM (B and

C) or 250 molecules/mM (D–G). The occurrence

of rings in the largest cluster is used to identify

the occurrence of a gel phase. Experimental data

for Nck and N-Wasp are represented by the circles

(red, gel phase present; black, gel phase absent)

(1). The yellow line in B corresponds to the F-S

theoretical prediction when ksþ ¼ 0. To see this

figure in color, go online.
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decreased valency, because one strong cooperative inter-
action uses up two SH3 domains. For the two-component
system of Fig. 4 C, the decreased valency of the synergistic
interaction dominates and the gel region shrinks compared
to its size in Fig. 4 B. The addition of pY2 or pY3 to the sys-
tem effectively boosts the valency of the overall system so
that this factor is no longer limiting; thus, in Fig. 4, D–G,
increased affinity is most important, producing a dramatic
increase in the size of the gel region when synergy is
included in the simulations. Consistently, the synergy
increases the percentage of SH33 molecules that are bound
and the stoichiometry (SH33/PRM5) of the largest cluster
(Figs. S6 and S7).

Although the trends predicted by the models follow the
trends in experiments, the simulations in Fig. 4, C, E, and
G, are not perfect reproductions of the experiment. The
lack of precise agreement with experiment may reflect our
use of estimates for the relevant affinities. We did not
attempt an extensive parameter search over a range of
reasonable values of affinities or ksþ/ks�. Furthermore,
additional cooperative or synergistic interactions may need
to be considered. It is also possible that these discrepancies
arise from the limitations of the algorithm. However, this
analysis points to the importance of cooperative synergistic
interactions and the complex interplay between valency and
affinity in this important PE system.
DISCUSSION

Multimolecular weak-affinity multivalent interactions are
ubiquitous in cell biological systems and can lead to
formation of PEs within the cytoplasm (1,3,4,8,33,34).
However, these interactions are difficult to model and
analyze because of the combinatorial explosion of the
possible number of states and species (8). Such interac-
tions have been successfully treated with fully stochastic
network-free particle-based methods (25,26), which proba-
bilistically assign binding or unbinding events in a com-
plete trajectory for the assembly of PEs. In this work,
we describe a multistep hybrid deterministic/stochastic
approach toward predicting the size, composition, and
assembly kinetics of PEs. To do so, we compute the prop-
erties of the ensemble of binding sites rather than the
kinetic details of a single trajectory. We make use of the
concept, first demonstrated over 50 years ago by F-S
theory, that the fractions of occupied binding sites deter-
mine cluster-size distribution. Thus, by building on the
F-S theory, we can avoid using a purely stochastic parti-
cle-based method. Instead, we deterministically compute
the fractional site occupancy for each time point, and
then stochastically distribute the bonds between molecules
containing the multivalent binding sites. For purely
stochastic simulations, every binding and unbinding event
must be traversed during a dynamic simulation to generate
a complete trajectory; this is true even when only the
Biophysical Journal 105(11) 2451–2460
steady-state properties of the PE are desired. For our
algorithm, the deterministic step precalculates the proba-
bility of a site being occupied at each point in time, thus
dramatically improving simulation efficiency; for steady-
state properties, it suffices to determine only a single set
of site occupancies calculated from the binding-site con-
centrations and affinities. The same concept may be ex-
tended to systems with cooperativity, as validated against
numerical simulations performed with existing fully sto-
chastic software tools (25,26) (Fig. 2).

The advantage of our numerical method, in comparison
to the F-S theory, is that it can handle more than two
types of binding site and more than two molecule types.
Furthermore, here, for the first time that we know of, the
idea of tracking the fraction of cooperative molecules in
each state (15) is applied toward improving a com-
putational method. Our method also overcomes the limita-
tions (9,10,19) of F-S analytical theory by permitting a full
treatment of ring formation (i.e., intracluster reactions) in
both sol and gel phases. The same binding-rate constants
are consistently applied in both the sol and gel phases,
allowing intramolecular reactions. We show that rings
are indeed rare within the sol phase, permitting us to
use the occurrence of rings in the largest cluster to
indicate that the system has reached the sol-gel transition
(Fig. 3).

A higher level of accuracy can be achieved with
methods that consider each molecule to be a space-filling
object that diffuses and interacts with its binding partners
in 3D space. Although such methods are important to
assess the applicability of the theory to specific problems
(22,23), the computational cost can be immense. For
example, with our algorithm all the simulations used to
generate the plots in Figs. 3, S2, and S3 were completed
within a few hours. In contrast, a similar system with
1000 molecules computed using a spatial Monte Carlo
method in 3D may require months of computer time
(22,23). Three assumptions of our method are: 1), as
with any nonspatial approach, the binding rates are taken
to be lower than the diffusion limit; 2), for a given bind-
ing-site pair, intracluster reactions have the same bind-
ing-rate constants as intermolecular reactions; and 3),
cooperative (or synergistic) molecules must interact with
equal-reactivity sites. In comparison with the available
nonspatial software, our method can be more efficient
than time-resolved stochastic particle-based simulations,
treats high valencies with simplicity, and is well suited
for computation of ring formation.

A wide range of biologically relevant systems are con-
sistent with these assumptions (1,5,6,35). Indeed, this
modeling approach was designed for systems that we have
called PEs (8) to denote assemblies of multivalent
monomers driven by relatively weak binding interactions.
These PEs are characterized by a distribution of stoichiom-
etries and sizes. They are thus distinguished from the
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stoichiometric molecular assemblies that we have termed
machines; these have a fixed composition and size and are
characterized by strong, often highly cooperative, inter-
actions between their subunit components. Ribosomes,
viruses, flagella, the proteasome, and nuclear pores are all
structures that would fall into this category.

We applied our algorithm to an experimental system
consisting of interactions within a trimolecular PE consist-
ing of nephrin, Nck, and N-Wasp. Nephrin has up to three
binding sites for a single binding site on Nck; Nck has
three additional binding sites that can bind up to five sites
on N-Wasp. Fig. 4 shows that when we invoked coopera-
tive synergistic interactions between the Nck SH3 domains
and the PRMs on N-Wasp, we were able to reproduce the
general shape of the experimentally reported (1) liquid-
liquid demixing phase diagrams (which we use as a proxy
for the sol-gel transition). The simulations also produced a
substantial decrease in critical concentration when
multiply phosphorylated nephrin was included in the sys-
tem, also consistent with experiment. This analysis high-
lights the impact of the previously established synergistic
interactions between the Nck SH3 domains and PRM bind-
ing partners (27) on the sol-gel transition diagram. The
synergy results in an apparent reduction of valency, and
the region of the diagram where the gel phase occurs is
reduced for the bimolecular system. However, upon addi-
tion of the bivalent or trivalent nephrin, the synergistic
interaction promotes gelation for lower Nck and N-Wasp
concentrations than in a corresponding equal-reactivity
system. This analysis demonstrates how both the shape
and region of the sol-gel transition interface can be used
to help elucidate the details of interactions between multi-
valent molecules.
CONCLUSIONS

We have described a novel (to our knowledge) and
efficient method, built on classical polymer theory, for
modeling the properties of PEs. It is not appropriate for
modeling the assembly of stoichiometric molecular
machines. Our method directly addresses the combinatorial
complexity of the multivalent interactions underlying
PEs, which has been a major challenge to previous
modeling approaches. The utility of this method was
exemplified by application to a signaling system that
reveals the importance of cooperative synergistic interac-
tions in controlling PE composition and size. This system
also demonstrates how signaling through tyrosine phos-
phorylation and multidomain adaptor proteins can poten-
tiate the production of large clusters of actin-nucleation
promotion factors such as N-Wasp. We believe this
approach can be directly applied for the modeling and anal-
ysis of cellular PEs such as signaling platforms, nucleopro-
tein particles, lipid rafts, and cell-cell or cell-matrix
contacts.
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