Nonlinearity12 (1999) 1013-1028. Printed in the UK PIl: S0951-7715(99)92858-X

Generalized centre conditions and multiplicities for
polynomial Abel equations of small degrees

M Blinov and Y Yomdin

Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot, 76100,
Israel

Received 31 March 1998
RecommendedybV F Lazutkin

Abstract. We consider an Abel equatigr)y’ = p(x)y?+q(x)y3 with p(x), g (x)—polynomials

in x. A centre condition for this equation (closely related to the classical centre condition
for polynomial vector fields on the plane) is theg = y(0) = y(1) for any solutiony(x).

This condition is given by the vanishing of all the Taylor coefficientél) in the development
y(x) = yo + Z/fiz vk(x)yé. Following Briskin et al (Centre Conditions, Composition of
Polynomials and Moments on Algebraic Curtesappear) we introduce periods of the equation
(%) as thosevo € C, for which y(0) = y(w) for any solutiony(x) of (x). The generalized centre
conditions are conditions op, ¢ under which giver, . .., a; are (exactly all) the periods ¢%).

A new basis for the ideals, = {vy, ..., vt} has been produced in Brisket al (1998 The
Bautin ideal of the Abel equatioNonlinearity10), defined by a linear recurrence relation. Using
this basis and a special representation of polynomials, we extend results of BtigkifCentre
Conditions, Composition of Polynomials and Moments on Algebraic Ciovappear), proving
for small degrees gf andg a composition conjecture, as stated in Alwash and Lloyd (1987 Non-
autonomous equations related to polynomial two-dimensional syfRemes R. Soc. Edinburgh
A 105129-52), Briskinet al (Centre Conditions, Composition of Polynomials and Moments on
Algebraic Curvego appear), Briskiret al (Center Conditions II: Parametric and Model Centre
Problemsto appear). In particular, this provides transparent generalized centre conditions in the
cases considered. We also compute maximal possible multiplicity of the zero solut{en, of
extending the results of Alwash and Lloyd (1987 Non-autonomous equations related to polynomial
two-dimensional systenfdroc. R. Soc. EdinburgA 105129-52).

PACS numbers: 34A34, 34A20

1. Introduction

We consider the following formulation of the centre problem (see e.g. [Sch] for a general
discussion of the classical centre problem): Fgk, y), Q(x, y) be polynomials inx, y of
degreel. Consider the system of differential equations

x=-y+P(x,y)
y=x+0(x,y).
We say that a solutior(z), y(¢) of (1) is closed if it is defined in the interval [@] and
x(0) = x(t0), y(0) = y(#0). We say that the system (1.1) has a centre at O if all the solutions

around zero are closed. Then the general problem is: under what conditiéhgbdoes the
system (1.1) have a centre at zero?

(1.1)
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It was shown in [Ch] that one can reduce the system (1.1) with homogergo@sof
degreed to the Abel equation

Y = p)y*+qx)y? (1.2)

wherep(x), ¢(x) are polynomials in sim, cosx of degrees depending only @h Herex, y
are new variables. Roughly speaking, news an angle in polar coordinates, and nguws a
‘perturbed’ radius (see [Ch] for details). Then (1.1) has a centre if and only if (1.2) has all the
solutions periodic on [2r], i.e. solutionsy = y(x) satisfyingy(27r) = y(0).

We will look for solutions of (1.2) in the form

oo
Y, y0) = Yo+ Y velx, 1)yg, (1.3)
k=2
wherey(0, yg) = yo. The coefficientsy turn out to be polynomials both im andA, where
A = (A1, A2, ...) is the (finite) set of the coefficients of ¢g. Shortly we will write vy (x).

Theny(2r) = y(2, yo) = yo+ Y ey vk(27)ys and hence the condition(2r, yo) =
v(0, yo) for all yg is equivalent tay (27) = 0fork = 2,3, ... cc.

Consider an ideal = {v2(27), v3(27), ... v (27), ...} € C[A]. By the Hilbert basis
theorem there existf < oo, s.t. J = {v2(21), v3(27), ... vy (2)}. After determination of
do the general problem will be solved, since we get a finite number of conditioaswhich
define the set op, ¢ having all the solutions closed. The problem is that the Hilbert theorem
does not allow us to defin& constructively.

As itwas shown in [AL, L, BFY1-3] there are good reasons to consider the equation (1.2)
with p, ¢ usual polynomials instead of trigonometric ones (although the relation to the initial
problem (1.1) becomes less direct here). In this paper we restrict ourselves to this case,
although some of our results remain valid for the trigonometric case. Notice, however, that
the composition conjecture, as is stated below, is not true in the trigonometric case (see [A]).

2. Composition conjecture, objectives and results

In what follows we shall study the Abel equation (1.2) wphg the usual polynomials in
x instead of trigonometric ones. In this case we say that the equation (1.2) defines a centre
if y(1, yo) = y(0, yo) for all yo. Although this property does not correspond to the initial
problem (1.1), it presents an interest by itself and has been studied in [GL, L, AL] and in many
other papers.

Let us study instead of € C[)] the ideall < C[2, x],

1 = {vz(x), vg(x), e, vk(x), .. } = U I, where I, = {vz(x), vg(x), e vk(x)}.
k=2

The classical problem is to find conditions png, under whichx = 1 is a common zero of
all Ik.
Our generalized centre probleia the following:

for a given set of different complex numbets= 0, a5, . . ., a, find conditions orp, ¢, under
which these numbers are common zeros. of

We shall say that sugh, ¢ define acentre of®; ay; . . . ; a¢], orthatthey satisfgeneralized
centre conditionsNumbersay, ..., a, will be calledperiodsof (1.2), sincey(0) = y(a;) for

all the solutionsy(x) of (1.2).
In contrast to the situation over the real segment [0,1], the conditi®n= y(w) over the
complex plane requires an additional explanation. Indeed, the solutions of (1.2) have ‘moving
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singularities’, where the solution behaves roughly(as- xo)~%2. Hence the valug ()
depends on the path along which we continue it froi®).

However, foryg sufficiently small, the singularities of(x), satisfyingy(0) = yo, can be
shown to be out of any prescribed disc around the origin inctpéane. (Notice thay = 0 is
a solution of (1.2).) Hence the valugéw) for yg small can be defined independently of the
chosen continuation path. Our precise centre property is that thegerntyg) atyo = 0 is
identically equal toyo. (Of course, if this happens, by analytic continuatiqm), properly
defined, is always equal t®.)

For each numbep we definethe multiplicity of the zero solution with respectdo Here
we follow notations in [AL], where multiplicity was defined for the standard equation (1.2) on
[0, w] C R as the numbeg such thaty(w) = 1, vo(w) = v3(w) = -+ = v,_1(w) = 0, and
v, (w) # 0. Now we extend this notation and define multiplicity for the equation (1.2J on
for any numbew € C.

The numbeww will be a period ifvi(w) = 1 andv;(w) = 0 for allk > 0. In other words,
w is a period, if its multiplicity is equal to infinity.

We define multiplicity(d1, d») as the maximal value of multiplicity achieved for some
p, q of degreesl; — 1, d, — 1 respectively and for some € C.

Notice that here and below we define the degree of a polynomial as the highest degree of
x in it, entering withnonzerocoefficient.

The followingcomposition conjecturbas been proposed in [BFY2]:

o0
I = U I, has zerosiy, ap, . . .ax, a1 = 0, if and only if
k=1

P(x) =/0 p(t)dt = P(W(x)), Q) =/0 q(1)dr = Q(W (x)),

whereW (x) = []'_,(x — a;))W(x) is a polynomial, vanishing aty, a, . .. a, and P, O are
some polynomials without free termi& (x)is an arbitrary polynomial).

Sufficiency of this conjecture can be shown easily (see [BFY2]). But we still do not
have any method to prove the necessity of this conjecture in the general case, although the
connection between this conjecture and some interesting analytic problems was established (see
[BFY1, BFY2,BFY3]), and for some simplified cases it was partially or completely proved.

Notice that if the composition conjecture would be true it could provide compact and
transparent generalized centre conditions (which can be expressed relatively easily by explicit
equations on the coefficientspfindg). See [BFY2] and section 7 below for explicit formulae.

As for now the only way known to us to prove the conjecture is to compute polynomials
v, (x), to solve systems of polynomial equations(a;) = 0 in many variablesd; and
coefficients ofp, ¢), and to show that the solutions satisfy the composition conjecture.

In [BFY2] it was shown that the composition conjecture is true for the cases
(degP,degQ) = (d1,d2) = (2,2) — (2,6) and (3, 2), (3,3). In [AL] multiplicities were
computed for the casédegP, degQ) = (d1, d2) = (2, 2) — (2, 6) and (3,4).

In this paper we present the following results:

(a) The maximal number of different zeros kfi.e. the maximal number of periods of (1.2)
is estimated (section 3).

(b) The generalized centre conditions are obtained for some classes of polynpnaidsf
a special form but of an arbitrarily high degree) (sections 4 and 5).

(c) The composition conjecture is verified for the following additional cases:
(degP,degQ) = (di,d2) = (2,7),(3,4), (4, 2—4,4),(5,2),(6,2),(3,6). Itis
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performed using computer symbolic calculations with some convenient representation
of P andQ . For these and previous cases multiplicities are computed (section 6).

(d) Onthis base explicit centre conditions for equation (1.2) on [0,1] are written in all the cases
considered. They turn out to be very simple and transparent, especially in comparison
with the equations provided by vanishingwf(1, A) (section 7).

3. Maximal number of different zeros of I

One can easily show (by substitution of the expansion (1.3) into equation (1.2)) that
satisfy recurrence relations

vo(x) =0

vi(x) =1

v,(0) =0 (3.1)
v, (x) = p(x) Z v; (X)v;(x) +g(x) Z v; () v (X)ve (), nz2

i+j=n i+jtk=n

It was shown in [BFY1] that in fact the recurrence relations (3.1) can be linearized, i.e. the
same idealg; are generated b/, ... ¥}, wherey, (x) satisfy linear recurrence relations

Yo(x) =0
Yix) =1 (3.2)
¥, (0) =0 '

Y, (x) = —(n = D 1(x) p(x) — (n — 2),—2(x)gq (x), nz=2
which are much more convenient than (3.1). We call (a2)main recurrence relation

Direct computations (including several integrations by part) give the following expressions
for the first polynomialsy, (x), solving the recurrence relation (3.2) (remind thRat) =

Jo p()dt, Q(x) =[5 q(t) dr):
Ya(x) = —P(x)
Y3(x) = P3(x) — Q(x)
Yax) = —P2(x) + 3P(x) Q(x) — /O SO P dr.

Consequently, we get the following set of generators for the idéals = 2, .. ., 4:

L ={P}, I3 ={P, 0}, I4={P,Q,/qP}.
Therefore, ifa is a zero of the idealy, it must satisfy the following equations:

P(a) =0, Q(a) =0, /a P(t)q(t)dr =0
0

Let us assume now that the set of zerod.p€onsists of the points; = 0, ay, ..., a,,
a; # a;. In particularg; are common zeros d? andQ, and we can write

P(x) = W(x)P1(x), Ox) = W(x)Q1(x)

whereW (x) = []/_;(x — a).
Substituting these representations into the equg(ﬁoﬁ(r)q(t) dr = 0 and integrating by
parts, we getfor =1,..., v,

/ W2(p101 — Piq1) = 0.
0
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Herepi(x) = P{(x), q1(x) = Q) (x).
This allows us to prove the following theorem:

Theorem 3.1. Either the number of different zeros (includi@igof 7 is less than or equal to
(degP +degQ)/3, or P is proportional toQ.

Proof. Let P = WP, Q = WQ,, W = ]_[f.‘zl(x — a;)—a polynomial, accumulating
all surviving zerosus, ..., a;, degPy = £1, degQ:1 = ¢,. Consider the functiory (x) =
fox W?2(p10Q1 — g1 P1) dr and assume first that 01 — g1 P1 # 0. Since alkz; are zeros of both
f andW, we getf(x) = W3S(x), hence deq(x) > 3k. From the other side def(x) =
2k+ U1+l —1)+1 =41 +0p+2k. SOL1+L0p+2k = (U1+k)+(Lr+k) = degP+degQ > 3k.
Now let p101 — q1P1 = 0, i.e. (P]_Q]_)/ = quP]_. DenoteP; 01 by X, 01 by Y. Then
q1=Y,Pi=X/Y henceX' =2y'% ie. £ =2 ie. X =CY?%ie P01=CQ% O

Corollary 3.2. Either P is proportional to Q, or the number of different periods of (1.2) is
less than or equal te(degP + degQ)/3) — 1.

Remark. This result is implicitly contained in computations, given in [BFY3].

4. A convenient representation ofP and @Q and algebra of compositions of polynomials

Let polynomialsr(x) and W(x) be given. Assume we are interested in checking whether
R(x) = fg‘ r(t) dr can be represented as a composition Withx), i.e. if R(x) = R(W (x))
for some polynomiaR without a free term.

Let W(x) = x(x — a). Notice, that the derivative of W is a polynomial of the first degree
W’(x), the polynomialW (x) W'(x) has the third degree and so on. Generally, polynomials
W (x)* have degreeiand polynomials¥ (x)* W’(x) have degree/+ 1. Therefore, they are
linearly independent and form a basis@fc]. So, one can uniquely represent any polynomial
r(x) as a linear combination of polynomiai(x)* andW (x)*W’(x). Hence any polynomial
r(x) of the degree Ror 2k + 1 we will write in the form

r(x) = W W @) + )+ W) ™ (s W) + Breg) + - + (oW (x)' + o),
or simply
r(x) = Wia W' + B) + Wt o a W'+ Bioa) + - + (oW’ + Bo).

Generally, ifW(x) = x(x —a2) ... (x —ay), degW (x) = £ andr(x) is a polynomial of
degreent +k,k € {0, ..., £ — 1}, thenr(x) can be uniquely represented in the form
F=WNEW +EW + A E WO+ (AW W+ W),
(where, of courseW © is a constant).

Now we can state the following.

Theorem 4.1.R(x) = fox r(t) dt is a composition with¥ (x) if and only ifcfi =0fori > 2,
j=0,...,m.

Proof. If c§ =0fori > 2,j =0,...,m, then obviouslyR (x) is a composition with¥ (x).
Let R(x) be a composition withV (x), thenr (x) = R'(x) = R(W)W’, and by the uniqueness
of basis expansion azh’j =0fori > 2. O
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Notice that in the case dé§j = ¢ > 2 we can instead of the basj®y"wW® k =
0,...,¢ — 1} consider the basigW"W’, W'x*, k = 0, ..., £ — 2} and the same statement
holds.

This representation will be used below for the verification of the composition conjecture
(see section 6).

5. Generalized centre conditions for some classes of polynomials

The representation, introduced in section 4, provides us with a convenient tool for finding
generalized centre conditions for some classes of polynomials, i.e. for the verification of the
composition conjecture. As the firstexample let us show that one can easily produce sequences
of polynomialsp andgq of arbitrarily high degrees, for which the composition conjecture is
true, i.e. the generalized centre conditions imply the representabilty §fas a composition.

Leta; = 0,ay,...,a, be given. Consider any polynomi#l (x) vanishing at all the
pointsa;, j=1,...,¢

Theorem 5.1.Assume that for at least ong;, [;” Wfdx # 0 and [;” W"dx # O.
Polynomialsp = W*(a+BW’), g = W"(y +8W’) define centre of0; ay; . . .; a;] if and only
ifoa=y=0.

Remark. Notice, that the condition g’ W* dx s O for at least one:;’ is satisfied, for
instance, foW (x) = ]_[le(x — a;), where alla; are different. Indeed, consider the function
fx) = [ Wnkde. Ifalla;, j =1,..., ¢would be zeros of (x), then degf > (k + 1)¢.
But degW = ¢, so degf (x) = k£ + 1. We obtaink? + 1 > (k + 1)¢, which is not satisfied for
L>1.

Similarly, one can show thatV(x) = ]_[le(x —a;)™ satisfies the condition
‘[ Wk dx # 0 for at least one;’ for almost allk, and so on. So, this condition is ‘almost
generic’.

Proof of theorem 5.1. Sincey>(x) = P(x), the conditions)(a;) = 0 imply « = 0. Since
Ya(x) = P?(x) — Q(x), the conditiong/3(a;) = 0imply y = 0. O

Theorem 5.2. Assume thatlegW > 2 and for at least one;
o) Wndx Jo! WrW” dx
/61/' Wn+k+1 dx f(;l_/ Wn+k+1W// dx

Polynomialsp = W*(a+BW'), g = W"(y +8W' +eW") define the centre of); ay; . . . ; a;]
ifandonly ife =y =€ =0.

det

Proof. The conditions),(a;) = 0 imply @ = 0. The conditions)z(a;) = 0 imply

aj aj
)// W"+€/ W'wW"” =0,
0 0

and the conditiongs(a;) = 0 imply

aj aj
y/ Wn+k+1 + 6/ Wn+k+1W// =0.
0 0

If the determinant of the system is nonzero, we get that the system has the only zero daolution.
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Table 1. Maximal possible values of multiplicity/ (d1, d2).

d; = degP
dp =degQ 2 3 4 5 6
2 3oro0 4 4o0rc0 8 9 oroo
3 4 4 oroo 8
4 4orco0 8 9 oroo
5 5
6 50rco  10o0roco
7 10

Remark. In this paper we discuss questions, connected to the polynomial case, but actually
constructions from section 5 can be easily generalized to the case of arbitrary (analytic)
functionsp, g, W.

6. Verification of the main conjecture and counting of multiplicities

6.1. Remarks about rescaling of P and Q

(1) As was stated above, we always assume that the highest degree coefficient is not zero.
(2) As was shown in [BFY?2], if de@®@ # 2 degP then using rescaling — Cix, y — Coy,
one can make the leading coefficientsihaf Q be equal to any positive number. So, for
possible cases we will use polynomi&@sandQ in the form where the leading coefficients
equal either 1 or 2. For instance, for the case Beg 3, degQ = 4 we will assume
that P(x) = 2x3 + - - - (in terms of degrees less than thre@)x) = x* + - - - (in terms of
degrees less than four) and so on.

6.2. Main results

Theorem 6.1. Table 1 of the maximal possible values of multipligiti/;, d») holds.

In this theorem we extend the results of [AL], where multiplicities for the equation (1.2) on
[0,1] were computed for the casédegP, degQ) = (2, 2)—(2, 6), (3, 4). Alwash and Lloyd
used the standard representation of polynomialsin p&&is = 0, 1, ...} on[0,1] and leading
coefficients ofP andQ as parameters. Also they used nonlinear recurrence relation (3.1). Our
representation together with linear recurrence relation (3.2) allows us to go further and to
compute multiplicities for higher degrees Bfand Q.

Theorem 6.2. For these cases the composition conjecture is true and table 2 gives the possible
number of different periods in each case.

Proof of theorems 6.1 and 6.2The proof consists of computationséf (x) for each of the

cases considered, and for solving the systems of polynomial equations. It was conducted using
computer symbolic calculations using the special representati®namid Q. Descriptions of
computations for the most interesting cases are given as follows:

degP = 4, degQ = 4—section 6.4;
degP = 3, degQ = 6—section 6.5.
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Table 2. Possible number of different periods.

degP

degQ

Sooo| &
-
o
o
=

~No A wWN
cooococo|N
[
=
w

Other cases were considered similarly, but in most of the cases straightforward
computations were far beyond the limitations of the computer used. Consequently, some
non-obvious analytic simplifications were used. Part of them is presented in sections 6.4 and
6.5.

Computations for the casédegP, degQ) = (2, 7), (3, 6) were performed together with
Jonatan Gutman and Carla Scapinello.

6.3. Remark about resultants

Resultants give us a convenient tool for checking, whetherl polynomials ofn variables
P;(x1,...,x,) € C[xy, ..., x,] do not have common zeros.

Consider one example. Assume we are interested whether polynahdials), Q(x, y),
R(x, y) have common zeros.

Claim. Let ResultantP, Q,x] = Si(y), ResultantR, 0,x] = S2(y). If
Resultantf;, S,, y] # 0,thenP, Q, R do not have common zeros.

Proof. Assume there exists common z€rg, yo) of all polynomialsP, Q, R, thenSi(yo) =
S2(yo) = 0, hence Resultarff, S,, y] = 0. Contradiction. |

The general construction far+ 1 polynomials of: variables is exactly the same.

6.4.degP = 4,degQ =4

Our goal is to prove that in this cage= | ;- ; I, has common zeros other than 0 if and only if
eitherP(x) = P(W(x)), Q(x) = Q(W (x)) for certain polynomials®, Q without free terms,
whereW(x) = x(x — a), a # 0, or P is proportional toQ (and in this casé&V = P and
againP = P(W), O = Q(W)). In the process of computations we find the maximal finite
multiplicity, which is achieved on polynomials unrepresentable as a composition.

(1) If P, Q are proportional, we are done.Rf Q are not proportional, then from theorem 3.1.
we obtain thatthe maximal number of different zeros istwo. And one ofthem s necessarily
zero.

(2) Assume thaf has zeros Oz (a # 0). Since zeros of should be also zeros &f and Q,

P andQ can be represented in the form (up to rescaling)

P=WW+yW —a), 0 =WW+SW — B)

whereW = x(x — a). For suchP, Q numbers Og are common zeros of ideals, I,
I3. Then we will directly calculate, using th#athematica’ software, ideald,—Ig and
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we will show that the only possibilities far to have zeros Oy are eithery = § = 0 or
P = Q. It will complete the verification of the composition conjecture for this case.
(3) Running a program, which utilizes recurrence relation (3.2):

(*  n-the number of ideals to be computed  *)
(* P, Q are defined symbolically *)
W=x(x-a);
P=W* (W + gamma W’ - alpha);
Q=Wx(W + beta W’ - delta);
psil[0]=0;
psilil=1;
psil2]=-P;
Do[psil[il=Integratel
-(i-Dpsili-11*p-(i-2)psili-2]*q,x],{i,3,n}];
x=a;
Do[Simplify[psilill,{i,1,n}];

we obtain the following results:
a®(Tad +2a*(8 — y) — 7By)

Yaa) = 10
@ = a’(4a*(8 — y) + 66a(ad — By) + 11a?3as — 2ay — By))
Vs(a) = 6930 '
Sincea # 0, we get
2% —y) = By — b *
(4a* + 22a%0) (8 — y) + (a8 — By) (660 + 11a°) = 0. ()

(@) If 8 = y # 0, then from(x) @ = 8, and hence? = Q, we are done.

(b) If § =y =0, then we get a composition will/, and we are done.

(c) Assume nows # y. Let us prove that in this case polynomialg(a), k = 6,7,8,9
cannot have common zeros. Substituting— Sy = 2”72(;/ — §) into (**) and dividing
it by y — & we obtaina = —31";12. Then from (*) we get = 73{# + 22y. Running the
program for these values af §, we get

—(a’(3a® + 118)y (—471%? + 3a® — 1730 — 360*y?))
10900890 ’
If y = 0, then from (*) we get@ +ad =0, i.e.(S(z"72 +a) = 0. Sincex = —31&12, we
gets = 0. This is in contradiction to the assumpti®s y .

If B = —31";12, thenB = «, hence from(x) § = y. Contradiction.
Otherwise fromyg(a) = 0 we get
3a® — 47192 — 3624y ? .
p= 17303 ’ )

and running the program for these values (i.e. after substitution&fs), we get thaty7(a),
Yg(a), Yo(a) are polynomials i andy times(y (a — 11y)(a + 11y). If y = +a/11, then
from (***) we get B = —342/11, soa = B and hencesr = 8. Contradiction. Notice that
y # 0, since in this cas& = 0—contradiction.

So, we get three polynomials of two variabjesi—reminders after division polynomials
Y7(a), vg(a), Yo(a) by (a®> — 121y?). Cancelling constants and computing resultants, we get
a nonzero number.

Ye(a) =
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The maximal finite multiplicity is nine and it is achieved on the polynomials

3612
P=x(x—a)<x2+(2y—a)x+ﬁ—ay>

O=x(x—a)(W+sW' —B)

where
_ 348 — 47192 — 36%%y?
p= 17 303 ’
21a* 2142y3
6 = ‘}/ + y —_ y ,
1573 13

anda, y are chosen to vanisfiz(a), vg(a).

6.5.degP = 3,degQ =6

This section is one of the most interesting parts of our computations, since for the first time
from theorem 3.1 it follows that the number of different zeros may be either two or three. The
nontrivial common divisor of three and six is equal to three, and we have to prove that in this
casel = | J;-, It has common zeros other than 0 if and onlyifx) can be represented as

a composition with (x) = ConstP (x). The next point why this case differs from others is
that according to section 6.1 we can assume that only one of the leading coeffici@nt® of

is one. Say, the leading coefficient @fis one, and the leading coefficient Bfis A.

(1) Assume first, that there are two common zeras, Oyhich means that we can put
P =AW(x+a), 0 =WW2+Bx3+yx2+8x+e),
whereW (x) = x(x — a).
(a) Leta + 20 # 0. After running aMathematica’' program up toys(a), we express
_ —a*+5a°B +124%ap + 14ad + 4a’y + 1daay
14
—9a® — 184%a + 314%B + 4daapf — 220°p
22(a + 200) '

After substitution and running the program again, we obtain figytu) = O that

B = a +2u. After substitution of all these values into an expressiondpwe obtain

0 =WW +(a+20)x3+ (—a? — 2aa + a®)x? + 5x + a(aa? + 8))

= (Wkx+a)) (W(x +a)+ aoz28)) ,

which means that we get the composition, and necessarily the zero of our ideal.

We would like to stress, that we have obtained thig a zero ofl without directly

checking conditiong (o) = 0.
(b) Fora = —a/2 we obtain fromy4(a) = 0 that

a*+a®B + 7as + 3a%y
14 ’
after that we immediately get fromis(a) = 0 thatg = 0. Then
Ve(a) = Const a*r(—a? + 4y)(—20a? + 52y — 214%)?).

Let y = a?/4. After substitution ofx, B, y, € into the expression foQ, we get
0 = (W(x—a/2)(W(x —a/2)+a®+45), so the composition conjecture holds with
x(x — a)(x — a/2) as the greater common divisor &f and Q in the composition
algebra of polynomials.

V==
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Now let y # a?/4. Then fromyg(a) = O we obtainy = M. After
substituting and performing computations, we get
—a'®).2(1+ 3A?) (528 +a>(20 + 21?))
vrta) = 487206 720 '
If » = :t\/Lé, theny = "742. Contradiction. So, we express =
Substituting it into the program and computitrg(a), we get
a®th(9 + 292 + 5508.* + 16 506.5)
Vela) = 12274686103 680
The equationjg(a) = 0 has the solutions = 0,1? = —1, 12 = %&2@‘.

—a3(20+2122)
52 :

Fori = £-= we havey = . Contradiction. And for2 = =1£13v293 e
obtain thatyg(a) = 0, ¥9(a) = 0, butyrig(a) # 0.
The maximal finite multiplicity is 10 and it is achieved on polynomials

P=)Lx(x—a)(x—c—l)

2
2(72 4+ 212 3(20 + 212 41+32
sz(x—a) <x4_20x3+a ( 52 )xz_a( 52 )x+a ( 26 ))

2 _ —1+13iV/293
whereis = ===

(2) Now comes another interesting case, when we assume from the very beginning that we
have three distinct common zerosQb. Here we put

P =AW, 0 =W(W+ax?+Bx+y), where W = x(x —a)(x — b).

Notice, that here in contrast to all the previous computations we must check vanishing at
the two different points, b. The equationg4(a) = 0, Y4(b) = 0 form a linear system
with respect tax, g8:
—a®L(5a%a + 14ab(ab — B) + 14b2B + 4a’(—4ab + B))
840 N
—boA(14a?(ab + B) + b?(5ab + 4B) — 2ab(8ab + 7B)) 0
840 N
The determinant of this system is equal to@0- b)°, so fora # b, » # 0,a # 0,
b # 0 the system may have the only zero solutios: 0, 8 = 0, g.e.d. The conjecture is
completely verified and the maximal multiplicity is ten. O

0

7. Description of a centre set forp, g of small degrees

Consider again the polynomial Abel equation (1.2):
Y =p@y2+q@)y® (0 =yo
with p(x), g (x)—polynomials inx of the degreeds, d,, respectively. We will write
P(x) = hax® + -+ + ko,
q(x) = papx @+ -+ po,
dys - -+ s 205 [hdys - - - Jh0) = (A, ) € CH¥d*2,

Remind ourselves that; (x) (see introduction for details) are polynomials xinwith the
coefficients polynomially depending on the parametersu) € C%*%*2, Let the centre
setC c C4*%*2 consist of thoséx, w) for which y(0) = y(1) for all the solutionsy(x) of
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(2.2). (This definition is not completely accurate, since the valdge may depend on the
continuation path from zero to one in theplane. See section 2 for a detailed discussion.)

Clearly, C is defined by an infinite number of polynomial equations (i )
v2() = 0,..., 5 (@) = 0,.... In other words,C is the set of zero¥ (1) of the ideal
I = {v1(D), ..., % (1),...} in the ring of polynomialsC[x, 1]. (In [BFY1] I is called the
Bautin ideal of equation (1.2).) Notice that in this section, in contrast to the general approach
introduced in this paper, we consideas the ideal irC[A, u] and not inCl[x, X, u] .

The table of multiplicities, given in theorem 6.1, gives the number of equatidn = 0,
necessary to defin€ (i.e. the stabilization moment for the set of zeros of the idégls)).
Since bothv, (1) and v (1) are polynomials of degree — 1 in (A, u), the straightforward
description ofC contains polynomials of a rather high degree, for example up to degree ten of
nine variables for the cagdegP, degQ) = (3, 6).

As it was said before, the composition conjecture, in contrast, gives us very explicit and
transparent equations, describing this centreGsetEspecially explicit are equations in a
parametric form (see below).

7.1.
The central set for the equation (1.2) with geg- degg = 2 has been described in [BFY1].
We remind this result here. Let
p(x) = dox®+ A1x + Ao
q(x) = pox? + pax + po.
Theorem 7.1 ([BFY1], theorem V.1).The centre sef < C® of equation (1.2) is given by
2.+ 301+ 610 =0
2102+ 31 + 6o =0
Aopty — Az = 0.

The setC in C8 is determined by the vanishing of the first three Taylor coefficiesity =
0,...,u(1) =0.

Of course, this result, which was obtained from completely different considerations than
in this paper, confirms the composition conjecture: siR@ndQ are of a prime degree three,
their greater common divisor in a composition algebra can be eitlm@ra polynomial of
degree three. This corresponds to a proportionalit® eind Q (or of p andg), which gives
us exactly the last equation, and the first two are obtained ff¢in = Q(1) = 0.

7.2.

Now let
px) = hax2 + Aox? + Ax + Ag
q(x) = u1x + po.
Theorem 7.2. The centre sef < C® of equation (1.2) is given by

20, +303=0
20 —A3+4hp=0
pa+2p0 = 0.

The setC in C® is determined by vanishing of the first three Taylor coefficientd) =
0,...,v(D) =0.
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Proof. By the composition conjecture, which holds for this cgsandg belong to the centre
setif and only ifP = P(W), Q = uW , whereW = x(x — 1). So, we may assume
Q =ux(x —1), P =aW?+ BW. Thus we get

0=px(x—1 = %xzﬂtox

A A A
P=a(x(x—1)%+ Bx(x —1) = st4 + §2x3 + Elxz + Aox.

Comparing coefficients of* in both sides of equalities, we get
Az =4da Ap = —6a
A =20 +28 A =—P8
M1 =2u Mo = —k
which is equivalent to the system in the statement of the theorem. |

7.3.

I p(x) = Apx + Ao

q(x) = puax® + pox® + puax + po
then similar to the previous theorem one can prove the following.
Theorem 7.3.The centre sef < C® of equation (1.2) is given by
2112+ 3u3 =0
2101 — 3 +4puo =0
A1+ 20 =0.
The setC in C8 is determined by vanishing of the first three Taylor coefficientd) =
0,...,v(1) =0.

7.4.

Now let () = Asx® + Aax? + Agx3 + Aox? + Arx + Ao

q(x) = pax + po.
Theorem 7.4.The centre sef < C8 of equation (1.2) is given by
S5k5+ 244 =0
10h5 + 12k4 + 1503 + 204, + 304 + 6000 = O
A3+ i+ 100 + 2000 =0
pa+2p0 = 0.
The setC in C8 is determined by vanishing of the first eight Taylor coefficients) =
0,...,v9() =0.

Proof. By the composition conjecture, which holds for this caseand g belong to the
centre setif and only i = P(W), Q = uW, whereW = x(x — 1). So, we may assume
Q=ux(x—1),P=aW3+8W?+yW. Thus we get

ux(x —1) = %xz + wox

A A A A A
a(x(x — 1)%+ Bx(x — 1)) + yx(x —1) = Esxﬁ + é‘xs + st“ + sza + ?lxz + Aox.



1026 M Blinov and Y Yomdin

Hence

A5 = Ba Ag = —150

Az =120 +48 *2 = —3a — 6B

M =2B+2y o= —y

M1 =2/ Mo = —H,
which is equivalent to the system in the statement of the theorem. |
7.5.

If
p(x) = Arx + 2o

q(x) = psx® + pax® + pax® + pox? + pax + po

then similarly to the previous theorem one can prove the following.

Theorem 7.5. The centre sef < C8 of equation (1.2) is given by
Sus+2u4 =0
10us + 12uq + 1503 + 20up + 30uy + 60uo = 0
uz+ 4 +10us +20u0 =0
A+ 200 =0.

The setC in C8 is determined by the vanishing of the first four Taylor coefficiepts) =
0,...,vs(1) =0.

Remark. An interesting fact that centre seafsfor the ‘similar’ cases deg = 5,degg = 1
and degp = 1, degg = 5 have different number of generatayg1) = 0 can be explained by
a different role ofp andq in ideals/. See section 3 for the first ideallg and [BFY2] for an
attempt to analyse this problem.

7.6.

Now let
p(x) = Aax® + Aox? + Ayx + Ao,

q(x) = pax®+ pox? + pix + po.
Theorem 7.6 ([BFY2], theorem 9.2).The central setC < C8 of (1.2) consists of two

component€® andC@, each of dimension four.
c® is given by
33 +4ro+ 6L +12=0
8T 0 (7.6.1)

ug + 4z +6u1 +12u0 =0

and
Aapp — p3ip =0
Aapr — par1 =0 (7.6.2)
Aopry — pory =0
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andC@ is given by (7.6.1) and
A3+, =0

8T (7.6.3)

3pz +2u2 = 0.

The setC in C® is determined by the vanishing of the first eight Taylor coefficients
1)2(1) = 0, ey Ug(l) =0.

This theorem was proved in [BFY2] using the fact that the composition conjecture is true
for this case. The component (7.6.1) and (7.6.2) corresponds to the proportionatitguf
0, and the component (7.6.1) and (7.6.3) corresponds to the compositioWwithx (x — 1).

7.7.

Let )
p(x) = Apx“ +A1x + A

q(x) = psx® + pax® + pax® + pox? + pax + po

then similar to the previous theorems one can prove the following.

Theorem 7.7.The centre sef < C° of equation (1.2) is given in a parametric form by
Ao =31 A =—-2A(a+1)
Ao = ak s = 6a

s = —10x(a + 1) w3 = 4a(a + 1) + 8ax (7.7.1)
U2 = —6aa(a +1) + 38 Ml:Zozaz—Z(a+l),3
o = af
or by
Sus (3ho
=T (22041
Ha 3 < A2 )
2us (3o 2 o
=— | —+1) +4—
pa= 22 (32 1) +42s
3usio [ 3A
n2 = _M (_O + 1) + MO)LZ (772)
Ao Ao Ao
3usr2 3 A
py = 2500 —2<—°+1) rotz
A5 A2 3o

301 = —2X15 — BAg.

The setC in C° is determined by the vanishing of the first 9 Taylor coefficientd) =
0, ey vlo(l) =0.

Proof. We can represe® = AW, Q = aW?+ W, whereW = x(x — 1)(x — a). Thus

A A
A3 = (a+ Dx%+ax) = §2x3 + Elxz + Aox,
a(x®+ (a + 1)%x* + a®x% — 2(a + Dx® + 2ax?* — 2a(a + 1)x®)

+,3()c3 —x%(a+1) +ax) = %xe’ + .-+ uox.
Comparing coefficients by* in both sides of equalities, we obtain (7.7.1). After some
transformations we obtain (7.7.2). (Notice, that£ 0 as leading coefficient.) O
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Remark. Essential nonlinearity in (7.7.2) appears because of a ‘free peariolotice, that

for fixed a the parametric form (7.7.1) is linear with respectotg3, A. One notices, that
nonlinearity appears in those and only those cases, when there are ‘moving periods’, different
from the endpoint 1 (see (7.1), (7.6) and (7.7)).
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