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Abstract. We consider an Abel equation(∗)y′ = p(x)y2+q(x)y3 withp(x), q(x)—polynomials
in x. A centre condition for this equation (closely related to the classical centre condition
for polynomial vector fields on the plane) is thaty0 = y(0) ≡ y(1) for any solutiony(x).
This condition is given by the vanishing of all the Taylor coefficientsvk(1) in the development
y(x) = y0 +

∑∞
k=2 vk(x)y

k
0. Following Briskin et al (Centre Conditions, Composition of

Polynomials and Moments on Algebraic Curvesto appear) we introduce periods of the equation
(∗) as thoseω ∈ C, for whichy(0) ≡ y(ω) for any solutiony(x) of (∗). The generalized centre
conditions are conditions onp, q under which givena1, . . . , ak are (exactly all) the periods of(∗).

A new basis for the idealsIk = {v2, . . . , vk} has been produced in Briskinet al (1998 The
Bautin ideal of the Abel equationNonlinearity10), defined by a linear recurrence relation. Using
this basis and a special representation of polynomials, we extend results of Briskinet al (Centre
Conditions, Composition of Polynomials and Moments on Algebraic Curvesto appear), proving
for small degrees ofp andq a composition conjecture, as stated in Alwash and Lloyd (1987 Non-
autonomous equations related to polynomial two-dimensional systemsProc. R. Soc. Edinburgh
A 105 129–52), Briskinet al (Centre Conditions, Composition of Polynomials and Moments on
Algebraic Curvesto appear), Briskinet al (Center Conditions II: Parametric and Model Centre
Problemsto appear). In particular, this provides transparent generalized centre conditions in the
cases considered. We also compute maximal possible multiplicity of the zero solution of(∗),
extending the results of Alwash and Lloyd (1987 Non-autonomous equations related to polynomial
two-dimensional systemsProc. R. Soc. EdinburghA 105129–52).

PACS numbers: 34A34, 34A20

1. Introduction

We consider the following formulation of the centre problem (see e.g. [Sch] for a general
discussion of the classical centre problem): letP(x, y), Q(x, y) be polynomials inx, y of
degreed. Consider the system of differential equations

ẋ = −y + P(x, y)

ẏ = x +Q(x, y).
(1.1)

We say that a solutionx(t), y(t) of (1) is closed if it is defined in the interval [0, t0] and
x(0) = x(t0), y(0) = y(t0). We say that the system (1.1) has a centre at 0 if all the solutions
around zero are closed. Then the general problem is: under what conditions onP,Q does the
system (1.1) have a centre at zero?
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It was shown in [Ch] that one can reduce the system (1.1) with homogeneousP , Q of
degreed to the Abel equation

y ′ = p(x)y2 + q(x)y3 (1.2)

wherep(x), q(x) are polynomials in sinx, cosx of degrees depending only ond. Herex, y
are new variables. Roughly speaking, newx is an angle in polar coordinates, and newy is a
‘perturbed’ radius (see [Ch] for details). Then (1.1) has a centre if and only if (1.2) has all the
solutions periodic on [0, 2π ], i.e. solutionsy = y(x) satisfyingy(2π) = y(0).

We will look for solutions of (1.2) in the form

y(x, y0) = y0 +
∞∑
k=2

vk(x, λ)y
k
0, (1.3)

wherey(0, y0) = y0. The coefficientsvk turn out to be polynomials both inx andλ, where
λ = (λ1, λ2, . . .) is the (finite) set of the coefficients ofp, q. Shortly we will writevk(x).

Theny(2π) = y(2π, y0) = y0 +
∑∞

k=2 vk(2π)y
k
0 and hence the conditiony(2π, y0) =

y(0, y0) for all y0 is equivalent tovk(2π) = 0 for k = 2, 3, . . .∞.
Consider an idealJ = {v2(2π), v3(2π), . . . vk(2π), . . .} ⊆ C[λ]. By the Hilbert basis

theorem there existsd0 <∞, s.t. J = {v2(2π), v3(2π), . . . vd0(2π)}. After determination of
d0 the general problem will be solved, since we get a finite number of conditions onλ, which
define the set ofp, q having all the solutions closed. The problem is that the Hilbert theorem
does not allow us to defined0 constructively.

As it was shown in [AL, L, BFY1–3] there are good reasons to consider the equation (1.2)
with p, q usual polynomials instead of trigonometric ones (although the relation to the initial
problem (1.1) becomes less direct here). In this paper we restrict ourselves to this case,
although some of our results remain valid for the trigonometric case. Notice, however, that
the composition conjecture, as is stated below, is not true in the trigonometric case (see [A]).

2. Composition conjecture, objectives and results

In what follows we shall study the Abel equation (1.2) withp, q the usual polynomials in
x instead of trigonometric ones. In this case we say that the equation (1.2) defines a centre
if y(1, y0) = y(0, y0) for all y0. Although this property does not correspond to the initial
problem (1.1), it presents an interest by itself and has been studied in [GL, L, AL] and in many
other papers.

Let us study instead ofJ ⊆ C[λ] the idealI ⊆ C[λ, x],

I = {v2(x), v3(x), . . . , vk(x), . . .} =
∞⋃
k=2

Ik, where Ik = {v2(x), v3(x), . . . , vk(x)}.

The classical problem is to find conditions onp, q, under whichx = 1 is a common zero of
all Ik.

Ourgeneralized centre problemis the following:
for a given set of different complex numbersa1 = 0, a2, . . . , a` find conditions onp, q, under
which these numbers are common zeros ofI .

We shall say that suchp,q define a centre on[0; a2; . . . ; a`], or that they satisfygeneralized
centre conditions. Numbersa2, . . . , a` will be calledperiodsof (1.2), sincey(0) = y(ai) for
all the solutionsy(x) of (1.2).

In contrast to the situation over the real segment [0,1], the conditiony(0) = y(ω) over the
complex plane requires an additional explanation. Indeed, the solutions of (1.2) have ‘moving
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singularities’, where the solution behaves roughly as(x − x0)
−1/2. Hence the valuey(ω)

depends on the path along which we continue it fromy(0).
However, fory0 sufficiently small, the singularities ofy(x), satisfyingy(0) = y0, can be

shown to be out of any prescribed disc around the origin in thex-plane. (Notice thaty ≡ 0 is
a solution of (1.2).) Hence the valuesy(ω) for y0 small can be defined independently of the
chosen continuation path. Our precise centre property is that the germy(ω)(y0) at y0 = 0 is
identically equal toy0. (Of course, if this happens, by analytic continuationy(ω), properly
defined, is always equal toy0.)

For each numberω we definethe multiplicity of the zero solution with respect toω. Here
we follow notations in [AL], where multiplicity was defined for the standard equation (1.2) on
[0, ω] ⊂ R as the numberµ such thatv1(ω) = 1, v2(ω) = v3(ω) = · · · = vµ−1(ω) = 0, and
vµ(ω) 6= 0. Now we extend this notation and define multiplicity for the equation (1.2) onC
for any numberω ∈ C.

The numberω will be a period ifv1(ω) = 1 andvk(ω) = 0 for all k > 0. In other words,
ω is a period, if its multiplicity is equal to infinity.

We define multiplicityµ(d1, d2) as the maximal value of multiplicity achieved for some
p, q of degreesd1− 1, d2 − 1 respectively and for someω ∈ C.

Notice that here and below we define the degree of a polynomial as the highest degree of
x in it, entering withnonzerocoefficient.

The followingcomposition conjecturehas been proposed in [BFY2]:

I =
∞⋃
k=1

Ik has zerosa1, a2, . . . ak, a1 = 0, if and only if

P(x) =
∫ x

0
p(t) dt = P̃ (W(x)), Q(x) =

∫ x

0
q(t) dt = Q̃(W(x)),

whereW(x) = ∏k
i=1(x − ai)W̃ (x) is a polynomial, vanishing ata1, a2, . . . ak, andP̃ , Q̃ are

some polynomials without free terms (W̃ (x)is an arbitrary polynomial).
Sufficiency of this conjecture can be shown easily (see [BFY2]). But we still do not

have any method to prove the necessity of this conjecture in the general case, although the
connection between this conjecture and some interesting analytic problems was established (see
[BFY1, BFY2, BFY3]), and for some simplified cases it was partially or completely proved.

Notice that if the composition conjecture would be true it could provide compact and
transparent generalized centre conditions (which can be expressed relatively easily by explicit
equations on the coefficients ofp andq). See [BFY2] and section 7 below for explicit formulae.

As for now the only way known to us to prove the conjecture is to compute polynomials
vn(x), to solve systems of polynomial equationsvn(aj ) = 0 in many variables (aj and
coefficients ofp, q), and to show that the solutions satisfy the composition conjecture.

In [BFY2] it was shown that the composition conjecture is true for the cases
(degP, degQ) = (d1, d2) = (2, 2) − (2, 6) and(3, 2), (3, 3). In [AL] multiplicities were
computed for the cases(degP, degQ) = (d1, d2) = (2, 2)− (2, 6) and (3,4).

In this paper we present the following results:

(a) The maximal number of different zeros ofI , i.e. the maximal number of periods of (1.2)
is estimated (section 3).

(b) The generalized centre conditions are obtained for some classes of polynomialsp, q (of
a special form but of an arbitrarily high degree) (sections 4 and 5).

(c) The composition conjecture is verified for the following additional cases:
(degP, degQ) = (d1, d2) = (2, 7), (3, 4), (4, 2)–(4, 4), (5, 2), (6, 2), (3, 6). It is
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performed using computer symbolic calculations with some convenient representation
of P andQ . For these and previous cases multiplicities are computed (section 6).

(d) On this base explicit centre conditions for equation (1.2) on [0,1] are written in all the cases
considered. They turn out to be very simple and transparent, especially in comparison
with the equations provided by vanishing ofvk(1, λ) (section 7).

3. Maximal number of different zeros of I

One can easily show (by substitution of the expansion (1.3) into equation (1.2)) thatvk(x)

satisfy recurrence relations

v0(x) ≡ 0

v1(x) ≡ 1

vn(0) = 0

v′n(x) = p(x)
∑
i+j=n

vi(x)vj (x) + q(x)
∑

i+j+k=n
vi(x)vj (x)vk(x), n > 2

(3.1)

It was shown in [BFY1] that in fact the recurrence relations (3.1) can be linearized, i.e. the
same idealsIk are generated by{ψ1, . . . ψk}, whereψk(x) satisfy linear recurrence relations

ψ0(x) ≡ 0

ψ1(x) ≡ 1

ψn(0) = 0

ψ ′n(x) = −(n− 1)ψn−1(x)p(x)− (n− 2)ψn−2(x)q(x), n > 2

(3.2)

which are much more convenient than (3.1). We call (3.2)the main recurrence relation.
Direct computations (including several integrations by part) give the following expressions

for the first polynomialsψk(x), solving the recurrence relation (3.2) (remind thatP(x) =∫ x
0 p(t) dt ,Q(x) = ∫ x0 q(t) dt):

ψ2(x) = −P(x)
ψ3(x) = P 2(x)−Q(x)
ψ4(x) = −P 3(x) + 3P(x)Q(x)−

∫ x

0
q(t)P (t) dt.

Consequently, we get the following set of generators for the idealsIk, k = 2, . . . ,4:

I2 = {P }, I3 = {P,Q}, I4 =
{
P,Q,

∫
qP

}
.

Therefore, ifa is a zero of the idealI4, it must satisfy the following equations:

P(a) = 0, Q(a) = 0,
∫ a

0
P(t)q(t) dt = 0

Let us assume now that the set of zeros ofI4 consists of the pointsa1 = 0, a2, . . . , aν ,
ai 6= aj . In particular,ai are common zeros ofP andQ, and we can write

P(x) = W(x)P1(x), Q(x) = W(x)Q1(x)

whereW(x) =∏ν
i=1(x − ai).

Substituting these representations into the equation
∫ a

0 P(t)q(t) dt = 0 and integrating by
parts, we get fori = 1, . . . , ν,∫ ai

0
W 2(p1Q1− P1q1) = 0.
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Herep1(x) = P ′1(x), q1(x) = Q′1(x).
This allows us to prove the following theorem:

Theorem 3.1.Either the number of different zeros (including0) of I is less than or equal to
(degP + degQ)/3, or P is proportional toQ.

Proof. Let P = WP1, Q = WQ1, W = ∏k
i=1(x − ai)—a polynomial, accumulating

all surviving zerosa1, . . . , ak, degP1 = `1, degQ1 = `2. Consider the functionf (x) =∫ x
0 W

2(p1Q1− q1P1) dt and assume first thatp1Q1−q1P1 6= 0. Since allaj are zeros of both
f andW , we getf (x) = W 3S(x), hence degf (x) > 3k. From the other side degf (x) =
2k+(`1+`2−1)+1= `1+`2+2k. So,`1+`2+2k = (`1+k)+(`2+k) = degP +degQ > 3k.

Now letp1Q1 − q1P1 = 0, i.e. (P1Q1)
′ = 2q1P1. DenoteP1Q1 byX, Q1 by Y . Then

q1 = Y ′, P1 = X/Y , henceX′ = 2Y ′ X
Y

, i.e. X
′
X
= 2Y

′
Y

, i.e.X = CY 2, i.e.P1Q1 = CQ2
1. �

Corollary 3.2. Either P is proportional toQ, or the number of different periods of (1.2) is
less than or equal to((degP + degQ)/3)− 1.

Remark. This result is implicitly contained in computations, given in [BFY3].

4. A convenient representation ofP andQ and algebra of compositions of polynomials

Let polynomialsr(x) andW(x) be given. Assume we are interested in checking whether
R(x) = ∫ x0 r(t) dt can be represented as a composition withW(x), i.e. if R(x) = R̃(W(x))
for some polynomialR̃ without a free term.

LetW(x) = x(x − a). Notice, that the derivative of W is a polynomial of the first degree
W ′(x), the polynomialW(x)W ′(x) has the third degree and so on. Generally, polynomials
W(x)k have degree 2k and polynomialsW(x)k W ′(x) have degree 2k + 1. Therefore, they are
linearly independent and form a basis ofC[x]. So, one can uniquely represent any polynomial
r(x) as a linear combination of polynomialsW(x)k andW(x)kW ′(x). Hence any polynomial
r(x) of the degree 2k or 2k + 1 we will write in the form

r(x) = W(x)k(αkW(x)′ + βk) +W(x)k−1 (αk−1W(x)
′ + βk−1) + · · · + (α0W(x)

′ + β0),

or simply

r(x) = Wk(αkW
′ + βk) +Wk−1(αk−1W

′ + βk−1) + · · · + (α0W
′ + β0).

Generally, ifW(x) = x(x − a2) . . . (x − a`), degW(x) = ` andr(x) is a polynomial of
degreem` + k, k ∈ {0, . . . , `− 1}, thenr(x) can be uniquely represented in the form

r = Wm(c1
mW

′ + c2
mW

′′ + · · · + ckmW(`)) + · · · + (c1
0W
′ + c2

0W
′′ + · · · + ck0W(`)),

(where, of course,W(`) is a constant).
Now we can state the following.

Theorem 4.1.R(x) = ∫ x0 r(t) dt is a composition withW(x) if and only ifcij = 0 for i > 2,
j = 0, . . . , m.

Proof. If cij = 0 for i > 2, j = 0, . . . , m, then obviouslyR(x) is a composition withW(x).

LetR(x) be a composition withW(x), thenr(x) = R′(x) = R̃(W)W ′, and by the uniqueness
of basis expansion allcij = 0 for i > 2. �
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Notice that in the case degW = ` > 2 we can instead of the basis{WnW(k), k =
0, . . . , ` − 1} consider the basis{WnW ′,Wnxk, k = 0, . . . , ` − 2} and the same statement
holds.

This representation will be used below for the verification of the composition conjecture
(see section 6).

5. Generalized centre conditions for some classes of polynomials

The representation, introduced in section 4, provides us with a convenient tool for finding
generalized centre conditions for some classes of polynomials, i.e. for the verification of the
composition conjecture. As the first example let us show that one can easily produce sequences
of polynomialsp andq of arbitrarily high degrees, for which the composition conjecture is
true, i.e. the generalized centre conditions imply the representability ofP ,Q as a composition.

Let a1 = 0, a2, . . . , a` be given. Consider any polynomialW(x) vanishing at all the
pointsaj , j = 1, . . . , `.

Theorem 5.1.Assume that for at least oneaj ,
∫ aj

0 Wk dx 6= 0 and
∫ aj

0 Wn dx 6= 0.
Polynomialsp = Wk(α +βW ′), q = Wn(γ +δW ′) define centre on[0; a1; . . . ; a`] if and only
if α = γ = 0.

Remark. Notice, that the condition ‘
∫ aj

0 Wk dx 6= 0 for at least oneaj ’ is satisfied, for

instance, forW(x) = ∏`
i=1(x − ai), where allaj are different. Indeed, consider the function

f (x) = ∫ x0 W(t)k dt . If all aj , j = 1, . . . , ` would be zeros off (x), then degf > (k + 1)`.
But degW = `, so degf (x) = k` + 1. We obtaink` + 1> (k + 1)`, which is not satisfied for
` > 1 .

Similarly, one can show thatW(x) = ∏`
i=1(x − ai)mi satisfies the condition

‘
∫ aj

0 Wk dx 6= 0 for at least oneaj ’ for almost allk, and so on. So, this condition is ‘almost
generic’.

Proof of theorem 5.1.Sinceψ2(x) = P(x), the conditionsψ2(aj ) = 0 imply α = 0. Since
ψ3(x) = P 2(x)−Q(x), the conditionsψ3(aj ) = 0 imply γ = 0. �

Theorem 5.2.Assume thatdegW > 2 and for at least oneaj

det

∣∣∣∣
∫ aj

0 Wn dx
∫ aj

0 WnW ′′ dx∫ aj
0 Wn+k+1 dx

∫ aj
0 Wn+k+1W ′′ dx

∣∣∣∣ 6= 0.

Polynomialsp = Wk(α +βW ′), q = Wn(γ + δW ′ + εW ′′) define the centre on[0; a1; . . . ; a`]
if and only ifα = γ = ε = 0.

Proof. The conditionsψ2(aj ) = 0 imply α = 0. The conditionsψ3(aj ) = 0 imply

γ

∫ aj

0
Wn + ε

∫ aj

0
WnW ′′ = 0,

and the conditionsψ4(aj ) = 0 imply

γ

∫ aj

0
Wn+k+1 + ε

∫ aj

0
Wn+k+1W ′′ = 0.

If the determinant of the system is nonzero, we get that the system has the only zero solution.�
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Table 1. Maximal possible values of multiplicityM(d1, d2).

d1 = degP

d2 = degQ 2 3 4 5 6

2 3 or∞ 4 4 or∞ 8 9 or∞
3 4 4 or∞ 8
4 4 or∞ 8 9 or∞
5 5
6 5 or∞ 10 or∞
7 10

Remark. In this paper we discuss questions, connected to the polynomial case, but actually
constructions from section 5 can be easily generalized to the case of arbitrary (analytic)
functionsp, q,W .

6. Verification of the main conjecture and counting of multiplicities

6.1. Remarks about rescaling of P and Q

(1) As was stated above, we always assume that the highest degree coefficient is not zero.
(2) As was shown in [BFY2], if degQ 6= 2 degP then using rescalingx 7→ C1x, y 7→ C2y,

one can make the leading coefficients ofP , Q be equal to any positive number. So, for
possible cases we will use polynomialsP andQ in the form where the leading coefficients
equal either 1 or 2. For instance, for the case degP = 3, degQ = 4 we will assume
thatP(x) = 2x3 + · · · (in terms of degrees less than three),Q(x) = x4 + · · · (in terms of
degrees less than four) and so on.

6.2. Main results

Theorem 6.1.Table 1 of the maximal possible values of multiplicityµ(d1, d2) holds.

In this theorem we extend the results of [AL], where multiplicities for the equation (1.2) on
[0,1] were computed for the cases(degP, degQ) = (2, 2)–(2, 6), (3, 4). Alwash and Lloyd
used the standard representation of polynomials in basis{xn, n = 0, 1, . . .}on [0,1] and leading
coefficients ofP andQ as parameters. Also they used nonlinear recurrence relation (3.1). Our
representation together with linear recurrence relation (3.2) allows us to go further and to
compute multiplicities for higher degrees ofP andQ.

Theorem 6.2.For these cases the composition conjecture is true and table 2 gives the possible
number of different periods in each case.

Proof of theorems 6.1 and 6.2.The proof consists of computations ofψn(x) for each of the
cases considered, and for solving the systems of polynomial equations. It was conducted using
computer symbolic calculations using the special representation ofP andQ. Descriptions of
computations for the most interesting cases are given as follows:

degP = 4, degQ = 4—section 6.4;

degP = 3, degQ = 6—section 6.5.
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Table 2. Possible number of different periods.

degP

degQ 2 3 4 5 6

2 0, 1 0 0, 1 0 0, 1
3 0 0, 2 0
4 0, 1 0 0, 1, 3
5 0
6 0, 1 0, 2
7 0

Other cases were considered similarly, but in most of the cases straightforward
computations were far beyond the limitations of the computer used. Consequently, some
non-obvious analytic simplifications were used. Part of them is presented in sections 6.4 and
6.5.

Computations for the cases(degP, degQ) = (2, 7), (3, 6) were performed together with
Jonatan Gutman and Carla Scapinello.

6.3. Remark about resultants

Resultants give us a convenient tool for checking, whethern + 1 polynomials ofn variables
Pi(x1, . . . , xn) ∈ C[x1, . . . , xn] do not have common zeros.

Consider one example. Assume we are interested whether polynomialsP(x, y),Q(x, y),
R(x, y) have common zeros.

Claim. Let Resultant[P,Q, x] = S1(y), Resultant[R,Q, x] = S2(y). If
Resultant[S1, S2, y] 6= 0, thenP,Q,R do not have common zeros.

Proof. Assume there exists common zero(x0, y0) of all polynomialsP,Q,R, thenS1(y0) =
S2(y0) = 0, hence Resultant[S1, S2, y] = 0. Contradiction. �

The general construction forn + 1 polynomials ofn variables is exactly the same.

6.4. degP = 4, degQ = 4

Our goal is to prove that in this caseI =⋃∞k=1 Ik has common zeros other than 0 if and only if
eitherP(x) = P̃ (W(x)),Q(x) = Q̃(W(x)) for certain polynomialsP̃ , Q̃ without free terms,
whereW(x) = x(x − a), a 6= 0, orP is proportional toQ (and in this caseW = P and
againP = P̃ (W), Q = Q̃(W)). In the process of computations we find the maximal finite
multiplicity, which is achieved on polynomials unrepresentable as a composition.

(1) If P ,Q are proportional, we are done. IfP ,Q are not proportional, then from theorem 3.1.
we obtain that the maximal number of different zeros is two. And one of them is necessarily
zero.

(2) Assume thatI has zeros 0,a (a 6= 0). Since zeros ofI should be also zeros ofP andQ,
P andQ can be represented in the form (up to rescaling)

P = W(W + γW ′ − α), Q = W(W + δW ′ − β)
whereW = x(x − a). For suchP , Q numbers 0,a are common zeros of idealsI1, I2,
I3. Then we will directly calculate, using the ‘Mathematica’ software, idealsI4–I8 and
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we will show that the only possibilities forI to have zeros 0,a are eitherγ = δ = 0 or
P = Q. It will complete the verification of the composition conjecture for this case.

(3) Running a program, which utilizes recurrence relation (3.2):

(* n-the number of ideals to be computed *)
(* P, Q are defined symbolically *)

W=x(x-a);
P=W*(W + gamma W’ - alpha);
Q=W*(W + beta W’ - delta);
psi[0]=0;
psi[1]=1;
psi[2]=-P;
Do[psi[i]=Integrate[

-(i-1)psi[i-1]*p-(i-2)psi[i-2]*q,x],{i,3,n}];
x=a;
Do[Simplify[psi[i]],{i,1,n}];

we obtain the following results:

ψ4(a) = a5(7αδ + 2a2(δ − γ )− 7βγ )

210
,

ψ5(a) = a7(4a4(δ − γ ) + 66α(αδ − βγ ) + 11a2(3αδ − 2αγ − βγ ))
6930

.

Sincea 6= 0, we get
2
7a

2(δ − γ ) = βγ − αδ (*)

(4a4 + 22a2α)(δ − γ ) + (αδ − βγ )(66α + 11a2) = 0. (**)

(a) If δ = γ 6= 0, then from(∗) α = β, and henceP = Q, we are done.
(b) If δ = γ = 0, then we get a composition withW , and we are done.
(c) Assume nowδ 6= γ . Let us prove that in this case polynomialsψk(a), k = 6, 7, 8, 9

cannot have common zeros. Substitutingαδ − βγ = 2a2

7 (γ − δ) into (**) and dividing

it by γ − δ we obtainα = − 3a2

11 . Then from (*) we getδ = 77βγ
a2 + 22γ . Running the

program for these values ofα, δ, we get

ψ6(a) = −(a
7(3a2 + 11β)γ (−4719a2 + 3a6− 17 303β − 363a4γ 2))

10 900 890
.

If γ = 0, then from (*) we get2a
2δ

7 + αδ = 0, i.e.δ( 2a2

7 + α) = 0. Sinceα = − 3a2

11 , we
getδ = 0. This is in contradiction to the assumptionδ 6= γ .

If β = − 3a2

11 , thenβ = α, hence from(∗) δ = γ . Contradiction.
Otherwise fromψ6(a) = 0 we get

β = 3a6− 4719a2 − 363a4γ 2

17 303
, (***)

and running the program for these values (i.e. after substitution ofα, δ, β), we get thatψ7(a),
ψ8(a), ψ9(a) are polynomials ina andγ times(γ (a − 11γ )(a + 11γ ). If γ = ±a/11, then
from (***) we get β = −3a2/11, soα = β and henceγ = δ. Contradiction. Notice that
γ 6= 0, since in this caseδ = 0—contradiction.

So, we get three polynomials of two variablesγ , a—reminders after division polynomials
ψ7(a), ψ8(a), ψ9(a) by (a2− 121γ 2). Cancelling constants and computing resultants, we get
a nonzero number.
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The maximal finite multiplicity is nine and it is achieved on the polynomials

P = x(x − a)
(
x2 + (2γ − a)x +

3a2

11
− aγ

)
Q = x(x − a)(W + δW ′ − β)

where

β = 3a6− 4719a2 − 363a4γ 2

17 303
,

δ = γ +
21a4γ

1573
− 21a2γ 3

13
,

anda, γ are chosen to vanishψ7(a), ψ8(a).

6.5. degP = 3, degQ = 6

This section is one of the most interesting parts of our computations, since for the first time
from theorem 3.1 it follows that the number of different zeros may be either two or three. The
nontrivial common divisor of three and six is equal to three, and we have to prove that in this
caseI = ⋃∞k=1 Ik has common zeros other than 0 if and only ifQ(x) can be represented as
a composition withW(x) = ConstP(x). The next point why this case differs from others is
that according to section 6.1 we can assume that only one of the leading coefficients ofP ,Q
is one. Say, the leading coefficient ofQ is one, and the leading coefficient ofP is λ.

(1) Assume first, that there are two common zeros 0,a, which means that we can put

P = λW(x + α), Q = W(W 2 + βx3 + γ x2 + δx + ε),

whereW(x) = x(x − a).
(a) Leta + 2α 6= 0. After running a ‘Mathematica’ program up toψ5(a), we express

ε = −a
4 + 5a3β + 12a2αβ + 14αδ + 4a2γ + 14aαγ

14

γ = −−9a3− 18a2α + 31a2β + 44aαβ − 22α2β

22(a + 2α)
.

After substitution and running the program again, we obtain fromψ6(a) = 0 that
β = a + 2α. After substitution of all these values into an expression forQ, we obtain

Q = W(W + (a + 2α)x3 + (−a2 − 2aα + α2)x2 + δx + α(aα2 + δ))

= (W(x + α))
(
W(x + α) + aα2δ)

)
,

which means that we get the composition, andα is necessarily the zero of our ideal.
We would like to stress, that we have obtained thatα is a zero ofI without directly
checking conditionsψk(α) = 0.

(b) Forα = −a/2 we obtain fromψ4(a) = 0 that

ε = −a
4 + a3β + 7aδ + 3a2γ

14
,

after that we immediately get fromψ5(a) = 0 thatβ = 0. Then

ψ6(a) = Const1 a
11λ(−a2 + 4γ )(−20a2 + 52γ − 21a2λ2).

Let γ = a2/4. After substitution ofα, β, γ, ε into the expression forQ, we get
Q = (W(x−a/2))(W(x−a/2)+a3 +4δ), so the composition conjecture holds with
x(x − a)(x − a/2) as the greater common divisor ofP andQ in the composition
algebra of polynomials.
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Now let γ 6= a2/4. Then fromψ6(a) = 0 we obtainγ = 20a2+21a2λ2

52 . After
substituting and performing computations, we get

ψ7(a) = −a
15λ2(1 + 3λ2)(52δ + a3(20 + 21l2))

487 206 720
.

If λ = ± i√
3
, then γ = a2

4 . Contradiction. So, we expressδ = −a3(20+21λ2)

52 .
Substituting it into the program and computingψ8(a), we get

ψ8(a) = a21λ(9 + 29λ2 + 5508λ4 + 16 506λ6)

12 274 686 103 680
.

The equationψ8(a) = 0 has the solutionsλ = 0, λ2 = − 1
3, λ2 = −1±13i

√
293

5502 .

For λ = ± i√
3

we haveγ = a2

4 . Contradiction. And forλ2 = −1±13i
√

293
5502 we

obtain thatψ8(a) = 0,ψ9(a) = 0, butψ10(a) 6= 0.
The maximal finite multiplicity is 10 and it is achieved on polynomials

P = λx(x − a)
(
x − a

2

)
Q = x(x − a)

(
x4 − 2ax3 +

a2(72 + 21λ2)

52
x2 − a

3(20 + 21λ2)

52
x +

a4(1 + 3λ2)

26

)
whereλ2 = −1±13i

√
293

5502 .
(2) Now comes another interesting case, when we assume from the very beginning that we

have three distinct common zeros 0, a, b. Here we put

P = λW, Q = W(W + αx2 + βx + γ ), where W = x(x − a)(x − b).
Notice, that here in contrast to all the previous computations we must check vanishing at
the two different pointsa, b. The equationsψ4(a) = 0,ψ4(b) = 0 form a linear system
with respect toα, β:

−a5λ(5a3α + 14ab(αb − β) + 14b2β + 4a2(−4αb + β))

840
= 0

−b5λ(14a2(αb + β) + b2(5αb + 4β)− 2ab(8αb + 7β))

840
= 0.

The determinant of this system is equal to 70(a − b)5, so for a 6= b, λ 6= 0, a 6= 0,
b 6= 0 the system may have the only zero solutionα = 0,β = 0, q.e.d. The conjecture is
completely verified and the maximal multiplicity is ten. �

7. Description of a centre set forp, q of small degrees

Consider again the polynomial Abel equation (1.2):

y ′ = p(x)y2 + q(x)y3, y(0) = y0

with p(x), q(x)—polynomials inx of the degreesd1, d2, respectively. We will write

p(x) = λd1x
d1 + · · · + λ0,

q(x) = µd2x
d2 + · · · +µ0,

(λd1, . . . , λ0, µd1, . . . , µ0) = (λ, µ) ∈ Cd1+d2+2.

Remind ourselves thatvk(x) (see introduction for details) are polynomials inx with the
coefficients polynomially depending on the parameters(λ, µ) ∈ Cd1+d2+2. Let thecentre
setC ⊂ Cd1+d2+2 consist of those(λ, µ) for which y(0) ≡ y(1) for all the solutionsy(x) of
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(1.2). (This definition is not completely accurate, since the valuey(1) may depend on the
continuation path from zero to one in thex-plane. See section 2 for a detailed discussion.)

Clearly, C is defined by an infinite number of polynomial equations in(λ, µ) :
v2(1) = 0, . . . , vk(1) = 0, . . .. In other words,C is the set of zerosY (I) of the ideal
I = {v1(1), . . . , vk(1), . . .} in the ring of polynomialsC[λ,µ]. (In [BFY1] I is called the
Bautin ideal of equation (1.2).) Notice that in this section, in contrast to the general approach
introduced in this paper, we considerI as the ideal inC[λ,µ] and not inC[x, λ, µ] .

The table of multiplicities, given in theorem 6.1, gives the number of equationvk(1) = 0,
necessary to defineC (i.e. the stabilization moment for the set of zeros of the idealsIk(x)).
Since bothvk(1) andψk(1) are polynomials of degreek − 1 in (λ, µ), the straightforward
description ofC contains polynomials of a rather high degree, for example up to degree ten of
nine variables for the case(degP, degQ) = (3, 6).

As it was said before, the composition conjecture, in contrast, gives us very explicit and
transparent equations, describing this centre setC. Especially explicit are equations in a
parametric form (see below).

7.1.

The central set for the equation (1.2) with degp = degq = 2 has been described in [BFY1].
We remind this result here. Let

p(x) = λ2x
2 + λ1x + λ0

q(x) = µ2x
2 +µ1x +µ0.

Theorem 7.1 ([BFY1], theorem V.1).The centre setC ⊆ C6 of equation (1.2) is given by

2λ2 + 3λ1 + 6λ0 = 0

2µ2 + 3µ1 + 6µ0 = 0

λ2µ1− λ1µ2 = 0.

The setC in C6 is determined by the vanishing of the first three Taylor coefficientsv2(1) =
0, . . . , v4(1) = 0.

Of course, this result, which was obtained from completely different considerations than
in this paper, confirms the composition conjecture: sinceP andQ are of a prime degree three,
their greater common divisor in a composition algebra can be eitherx or a polynomial of
degree three. This corresponds to a proportionality ofP andQ (or of p andq), which gives
us exactly the last equation, and the first two are obtained fromP(1) = Q(1) = 0.

7.2.

Now let

p(x) = λ3x
3 + λ2x

2 + λ1x + λ0

q(x) = µ1x +µ0.

Theorem 7.2.The centre setC ⊆ C6 of equation (1.2) is given by

2λ2 + 3λ3 = 0

2λ1− λ3 + 4λ0 = 0

µ1 + 2µ0 = 0.

The setC in C6 is determined by vanishing of the first three Taylor coefficientsv2(1) =
0, . . . , v4(1) = 0.
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Proof. By the composition conjecture, which holds for this case,p andq belong to the centre
set if and only ifP = P̃ (W), Q = µW , whereW = x(x − 1). So, we may assume
Q = µx(x − 1), P = αW 2 + βW . Thus we get

Q = µx(x − 1) = µ1

2
x2 +µ0x

P = α(x(x − 1))2 + βx(x − 1) = λ3

4
x4 +

λ2

3
x3 +

λ1

2
x2 + λ0x.

Comparing coefficients ofxk in both sides of equalities, we get

λ3 = 4α λ2 = −6α

λ1 = 2α + 2β λ0 = −β
µ1 = 2µ µ0 = −µ

which is equivalent to the system in the statement of the theorem. �

7.3.

If
p(x) = λ1x + λ0

q(x) = µ3x
3 +µ2x

2 +µ1x +µ0

then similar to the previous theorem one can prove the following.

Theorem 7.3.The centre setC ⊆ C6 of equation (1.2) is given by

2µ2 + 3µ3 = 0

2µ1− µ3 + 4µ0 = 0

λ1 + 2λ0 = 0.

The setC in C6 is determined by vanishing of the first three Taylor coefficientsv2(1) =
0, . . . , v4(1) = 0.

7.4.

Now let
p(x) = λ5x

5 + λ4x
4 + λ3x

3 + λ2x
2 + λ1x + λ0

q(x) = µ1x +µ0.

Theorem 7.4.The centre setC ⊆ C8 of equation (1.2) is given by

5λ5 + 2λ4 = 0

10λ5 + 12λ4 + 15λ3 + 20λ2 + 30λ1 + 60λ0 = 0

λ3 + 4λ2 + 10λ1 + 20λ0 = 0

µ1 + 2µ0 = 0.

The setC in C8 is determined by vanishing of the first eight Taylor coefficientsv2(1) =
0, . . . , v9(1) = 0.

Proof. By the composition conjecture, which holds for this case,p and q belong to the
centre set if and only ifP = P̃ (W), Q = µW , whereW = x(x − 1). So, we may assume
Q = µx(x − 1), P = αW 3 + βW 2 + γW . Thus we get

µx(x − 1) = µ1

2
x2 +µ0x

α(x(x − 1))2 + β(x(x − 1))2 + γ x(x − 1) = λ5

6
x6 +

λ4

5
x5 +

λ3

4
x4 +

λ2

3
x3 +

λ1

2
x2 + λ0x.
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Hence

λ5 = 6α λ4 = −15α

λ3 = 12α + 4β λ2 = −3α − 6β

λ1 = 2β + 2γ λ0 = −γ
µ1 = 2µ µ0 = −µ,

which is equivalent to the system in the statement of the theorem. �

7.5.

If
p(x) = λ1x + λ0

q(x) = µ5x
5 +µ4x

4 +µ3x
3 +µ2x

2 +µ1x +µ0

then similarly to the previous theorem one can prove the following.

Theorem 7.5.The centre setC ⊆ C8 of equation (1.2) is given by

5µ5 + 2µ4 = 0

10µ5 + 12µ4 + 15µ3 + 20µ2 + 30µ1 + 60µ0 = 0

µ3 + 4µ2 + 10µ1 + 20µ0 = 0

λ1 + 2λ0 = 0.

The setC in C8 is determined by the vanishing of the first four Taylor coefficientsv2(1) =
0, . . . , v5(1) = 0.

Remark. An interesting fact that centre setsC for the ‘similar’ cases degp = 5, degq = 1
and degp = 1, degq = 5 have different number of generatorsvk(1) = 0 can be explained by
a different role ofp andq in idealsI . See section 3 for the first idealsIk, and [BFY2] for an
attempt to analyse this problem.

7.6.

Now let
p(x) = λ3x

3 + λ2x
2 + λ1x + λ0,

q(x) = µ3x
3 +µ2x

2 +µ1x +µ0.

Theorem 7.6 ([BFY2], theorem 9.2).The central setC ⊆ C8 of (1.2) consists of two
componentsC(1) andC(2), each of dimension four.

C(1) is given by

3λ3 + 4λ2 + 6λ1 + 12λ0 = 0

3µ3 + 4µ2 + 6µ1 + 12µ0 = 0
(7.6.1)

and

λ3µ2 − µ3λ2 = 0

λ3µ1− µ3λ1 = 0

λ2µ1− µ2λ1 = 0

(7.6.2)
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andC(2) is given by (7.6.1) and

3λ3 + 2λ2 = 0

3µ3 + 2µ2 = 0.
(7.6.3)

The setC in C8 is determined by the vanishing of the first eight Taylor coefficients
v2(1) = 0, . . . , v9(1) = 0.

This theorem was proved in [BFY2] using the fact that the composition conjecture is true
for this case. The component (7.6.1) and (7.6.2) corresponds to the proportionality ofP and
Q, and the component (7.6.1) and (7.6.3) corresponds to the composition withW = x(x−1).

7.7.

Let
p(x) = λ2x

2 + λ1x + λ0

q(x) = µ5x
5 +µ4x

4 +µ3x
3 +µ2x

2 +µ1x +µ0

then similar to the previous theorems one can prove the following.

Theorem 7.7.The centre setC ⊆ C9 of equation (1.2) is given in a parametric form by

λ2 = 3λ λ1 = −2λ(a + 1)

λ0 = aλ µ5 = 6α
µ4 = −10α(a + 1) µ3 = 4α(a + 1)2 + 8aα
µ2 = −6αa(a + 1) + 3β µ1 = 2αa2 − 2(a + 1)β

µ0 = aβ

(7.7.1)

or by

µ4 = −5µ5

3

(
3λ0

λ2
+ 1

)
µ3 = 2µ5

3

(
3λ0

λ2
+ 1

)2

+ 4
λ0

λ2
µ5

µ2 = −3µ5λ0

λ2

(
3λ0

λ2
+ 1

)
+
µ0λ2

λ0

µ1 = 3µ5λ
2
0

λ2
2

− 2

(
3λ0

λ2
+ 1

)
µ0λ2

3λ0

3λ1 = −2λ2 − 6λ0.

(7.7.2)

The setC in C9 is determined by the vanishing of the first 9 Taylor coefficientsv2(1) =
0, . . . , v10(1) = 0.

Proof. We can representP = λW ,Q = αW 2 + βW , whereW = x(x − 1)(x − a). Thus

λ(x3− (a + 1)x2 + ax) = λ2

3
x3 +

λ1

2
x2 + λ0x,

α(x6 + (a + 1)2x4 + a2x2 − 2(a + 1)x5 + 2ax4 − 2a(a + 1)x3)

+β(x3− x2(a + 1) + ax) = µ5

6
x6 + · · · +µ0x.

Comparing coefficients byxk in both sides of equalities, we obtain (7.7.1). After some
transformations we obtain (7.7.2). (Notice, thatλ2 6= 0 as leading coefficient.) �
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Remark. Essential nonlinearity in (7.7.2) appears because of a ‘free period’a. Notice, that
for fixed a the parametric form (7.7.1) is linear with respect toα, β, λ. One notices, that
nonlinearity appears in those and only those cases, when there are ‘moving periods’, different
from the endpoint 1 (see (7.1), (7.6) and (7.7)).
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