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� Research objectives

��� Introduction

In ��� H	Poincar
e de�ned the notion of a center for a real vector �eld on the
plane

�
�x 
 f�x� y�
�y 
 g�x� y�

as an isolated singularity surrounded by closed integral curves	 He showed
�see ���� that a necessary and su�cient condition for a polynomial vector
�eld �i	e	 f�x� y� 
 P �x� y� � g�x� y� 
 Q�x� y� are polynomials in x� y �
with a singular point with pure imaginary eigenvalues� to have a center at
this point is the annihilation of an in�nite number of polynomials in the
coe�cient of the vector �eld	 The problem of explicitly �nding a �nite basis
for these algebraic conditions �the problem of the center�� was solved in the
case of quadratic vector �elds by the successive contributions of H	Dulac�
W	Kapteyn� N	Bautin� N	Sakharnikov� L	Belyustina� K	Sibirsky and others
�see e	g	 ���� ����	 The complete conditions on P �x� y� � Q�x� y� of degrees
higher then � under which the system has a center are still unknown	

��� Description of the problem

����� The center problem

We will consider the following formulation of the center problem� Let P �x� y��
Q�x� y� be polynomials in x� y of degree d	 Consider the system of di�erential
equations

�
�x 
 �y � P �x� y�
�y 
 x�Q�x� y�

���

We will say that a solution x�t�� y�t� of ��� is closed if it is de�ned in the
interval ��� t�� and x��� 
 x�t��� y��� 
 y�t��	 We will say that the system ���
has a center at � if all the solutions around zero are closed	 Then the general
problem is� under what conditions on P�Q the system ��� has a center at
zero�

�



����� Reduction to the Abel equation

It was shown in ��� that one can reduce the system ��� with homogeneous P �
Q of degree d to the Abel equation

y� 
 p�x�y� � q�x�y� ���

where p�x�� q�x� are polynomials in sin x� cos x of degree depending only on
d	 Then ��� has a center if and only if ��� has periodic solutions on ��� ��� �
i	e	 solutions y 
 y�x� satisfying y��� 
 y����	

����� Classical approach to the study of the Abel equation

We will look for solutions of ��� in the form

y�x� y�� 
 y� �
�X
k��

vk�x�y
k
� �

where y��� y�� 
 y�	 Then y���� 
 y���� y�� 
 y� �
�X
k��

vk����y
k
� 	 Then the

condition y���� � y��� is equivalent to vk���� 
 � for k 
 �� �� � � ��	

Consider an ideal J 
 fv������ v������ � � � vk����� � � �g � C���� where � 

���� ��� � � �� is the ��nite� set of the coe�cients of p� q	 By Hilbert Basis
theorem there exists d� � �� s	t	 J 
 fv������ v������ � � � vd�����g	 After
determination of d� the general problem will be solved� since we get �nite
number of conditions on �� which de�ne the set of p� q having all the solutions
closed 	 The problem is that the Hilbert theorem does not allow us to de�ne
d� constructively	

����� Modi�ed approach to the study of the Abel equation

Let us study instead of J � C��� the polynomials ideal I � C��� x�� I 


fv��x�� v��x�� � � � vk�x�� � � �g 

��
k��

Ik� where Ik 
 fv��x�� v��x�� � � � vk�x�g	

The classical problem is to �nd conditions on p� q� under which x 
 �� is a
common zero of all Ik	

�



Our generalized center problem consists of the following�

a� Study the behavior of Ik as the ideals of univariate polynomials in x�
i	e	

i� For given p� q �nd zeroes in x of Ik� k 
 �� � � � and of I 

��
k��

Ik	

ii� For a given set of numbers �nd conditions on p� q� under which these
numbers are common zeroes of I	

b� Find the stabilization moment of the set of common zeroes� i	e	
i� For given p� q �nd d� for which the set of common zeroes of I is equal to
the set of common zeroes of Id	
ii� For given set of common zeroes of I �nd d� for which it is equal to the set
of common zeroes of Id	 Under which conditions on p� q is it possible�

c� For given p� q �nd d� for which I 
 Id �Bautin�s problem�	

����� Main recurrence relations

We study Abel equation ��� with p� q the usual polynomials in x	 In this
case we say that the equation ��� de�nes a center if y��� y�� � y�	 Although
this property does not correspond to the initial problem ���� it presents an
interest by itself and it has been studied in ���� ��� and in many others arti�
cles	 Our main goal is to study the generalized center problem for this case�
our �rst goal is to study part a� of it	

One can easily show �see e	g	 ���� that vk�x� satisfy recurrence relations

����
���

v��x� � �
v��x� � �
v�n�x� 
 p�x�

X
i�j�n

vi�x�vj�x� � q�x�
X

i�j�k�n

vi�x�vj�x�vk�x�� n � �
���

It was shown in ��� that in fact this recurrence relations can be linearized�
i	e	 the same ideals Ik�s are generated by f��� � � � �kg� where �k�x� satisfy

�



linear recurrence relations

�������
������

���x� � �

���x� � �

��n�x� 
 ��n� ���n���x�p�x�� �n� ���n���x�q�x�� n � �

���

which are muchmore convenient then ���	 We call ��� the main recurrence
relation for the main problem	

����� Model problem

Let us state an auxiliary problem�

The �rst model problem � Given p�x� � Q��x� 	 De�ne Qk���x� by
recurrence relation Q�

k���x� 
 p�x�Qk�x� � k � �	 Study the generalized
center problem for the ideals Ik 
 fQ��x�� � � � � Qk�x�g	

Hopefully this problem can help us to study the main problem ���	 It
allows for �analytic� solutions �through generating functions�	

For the main problem the �rst few ideals Ik are very similar to the �rst
few ideals of the �rst model problem � but starting with the I� essentially

nonlinear equations with respect to Q�x� 

Z x

�
q�t�dt appear	 This fact

presents the main di�culty in analysis of the problem ���	

����	 Main conjecture and known results

The following conjecture for the main problem ��� has been proposed in ����

�



I 

��
k��

Ik has zeroes a�� � � � ak if and only if

P �x� 

Z x

�
p�t�dt 
 �P �W �x�� � Q�x� 


Z x

�
q�t�dt 
 �Q�W �x�� �

where W �x� 

kY

i��

�x� ai��

�P � �Q are some polynomials without free terms	

Exactly the same conjecture can be stated for the �rst model problem�
with Q 
 Q�	 Clearly� these conjectures are su�cient for zeroes of W to be
common zeroes of I in each of these problems	 It is not clear yet if these
conditions are also necessary	

The following particular results are known�
�� The conjecture is true for P �x� � Q�x� up to degree � and for some

cases of degree � �see ����	

�� For the �rst model problem if P �x� 
 W �x� 

kY

i��

�x� ai� � then
��
k��

Ik

has zeroes a�� � � � ak if and only if Q��x� 
 �Q��W �x�� �see ����	
�� For the �rst model problem combinatorial estimation of the Ik�s sta�

bilization moment is obtained �see ����� �����	

����
 Results

We present the following results�

a� Some remarks� connecting to the �rst model problem	 They can be
useful as a tool for an estimation of the number of surviving zeroes �section��	

b� We have obtained the number of conditions� which should be checked
in order to say� that the hypothesys for the �rst model problem is true� and
some remarks about su�ciency of this number �section ��	

c� Maximal number of zeroes of I for the recurrency relation ��� is ob�
tained �section ��	

�



d� Veri�cation of the main conjecture �	� for the main problem ��� with
the degrees of P � Q up to � and higher 	 It was done using computer sym�
bolic calculations with some convenient representation of P and Q �section ��	

�



� Some remarks around the �rst model prob�

lem�

Consider so called �the zero model problem� � Given ���x� 	 De�ne
�k���x� by recurrence relation ��k���x� 
 �k�x� ��k����� 
 �� k � �	 Study
the generalized center problem for the ideals Ik 
 f���x�� � � � � �k�x�g	

�



� ���

��� A convenient representation of P and Q�

Assume we are interested in the checking if numbers �� a are common zeroes
of our ideal I	 Let R�x� be an arbitrary polynomial of degree n	 Con�
sider W �x� 
 x�x� a� � polynomial of the second degree	 Notice� that the
derivative of W is a polynomial of the �rst degree W ��x�� the polynomial
W �x�W ��x� has the second degree and so on	 Generally� polynomials W �x�k

have degree �k and polynomials W �x�k W ��x� have degree �k � �	 So� one
can uniquely represent any polynomial R�x� as a linear combination of poly�
nomials W �x�k and W �x�kW ��x�	 Hence the polynomial R�x� of the degree
�k or �k � � we will write in the form

R�x� 
 W �x�k ��kW �x���	k� �W �x�k�� ��k��W �x���	k��� � ���� ���W �x���	���

or simply

R�x� 
 W k��kW
� � 	k� �W k����k��W

� � 	k��� � ���� ���W
� � 	���

In general� if W �x� 
 x�x� a�� � � � �x� ak��degW �x� 
 k� then any polyno�
mial R�x� can be uniquely represented in the form

R�x� 
 Wm�c�mW
��c�mW

���� � ��ckmW
�k���� � ���c��W

��c��W
���� � ��ck�W

�k���

�where� of course� W �k� is simply constant�	

�



� Maximal number of surviving zeroes�

��� Connection between the �rst model problem and

the main problem� A convenient basis for the

ideals Ik� k � �� � � ���

Direct computations �including several integrations by part� give the follow�
ing expressions for the �rst polynomials �k�x�� solving the recurrency relation
����

���x� 
 �P �x�

���x� 
 P ��x��Q�x�

�	�x� 
 �P ��x� � �P �x�Q�x��
Z x

�
q�t�P �t�dt

�
�x� 
 P 	�x�� �P ��x�Q�x��
Z x

�
q�t�P ��t�dt

��P �x�
Z x

�
q�t�P �t�dt�

�

�
Q��x�

���x� 
 �P 
�x� � ��P ��x�Q�x� � �P �x�
Z x

�
q�t�P ��t�dt

��Q��x�P �x�� ��P ��x�
Z x

�
q�t�P �t�dt� �Q�x�

Z x

�
q�t�P �t�dt

�
Z x

�
q�t�P ��t�dt�

�

�

Z x

�
p�t�Q��t�dt

Consequently� we get the following set of generators for the ideals �Ik� k 

�� � � � � ��

I� 
 fPg

I� 
 fP�Qg

I	 
 fP�Q�
Z
qPg

I
 
 fP�Q�
Z
qP�
Z
qP �g

I� 
 fP�Q�
Z
qP�
Z
qP ��

Z
�qP � �

�

�
pQ��g

Therefore� if a � Y ��I�� is a zero of the ideal �I�� it must satisfy the following
equations�

�



P �a� 
 � � Q�a� 
 �Z a

�
P �t�q�t�dt 
 � ���

Z a

�
P ��t�q�t�dt 
 �

Z a

�
P ��t�q�t�dt�

�

�

Z a

�
p�t�Q��t�dt 
 �

Notice that the third and the fourth equations coincide with the moment
equations of the �rst model problem �with the same p�x� and Q��x� 
 Q�x��	
The �fth equation contains the corresponding term of the model problem and
an additional term� which is �for the �rst time� nonlinear in Q	

Let us assume now that the set of zeroes of �I� consists of the points
a� 
 �� a�� � � � � a�� ai �
 aj	 In particular� ai are common zeroes of P and Q�
and we can write

P �x� 
W �x�P��x�Q�x� 
 W �x�Q��x�

where W �x� 

Q�

i���x� ai�	
Substituting this representation into the last three equations of ��� and

integrating by parts� we get for i 
 �� � � � � 
�

Z ai

�
W ��p�Q� � P�q�� 
 �

Z ai

�
W �P��p�Q� � P�q�� 
 �

Z ai

�
W 	P �

� �p�Q� � P�q�� �
�

�

Z ai

�
W �Q��p�Q� � P�q�� 
 �

Here p��x� 
 P �

��x�� q��x� 
 Q�

��x�	

��� Maximal number of surviving zeroes�

Theorem � Either the number of surviving di�erent zeroes �including �� of
I is less or equal then �degP � degQ���� or P is proportional to Q�

Proof �

��



� Veri�cation of the main conjecture�

��� Note about rescaling of P and Q�

As it was shown in ���� it is possible� using rescaling x �� C�x� y �� C�y� to
make the leading coe�cients of P � Q beeing equal to any positive number	
It can be done if degQ �
 �degP � but these cases will be not considered in
this article	 So we will use polynomials P and Q in the form with the leading
coe�cient equals either � or �� i	e	 if required we will be able to deal with
polynomials in the form �for W �x� 
 x�x� a���

R�x� 
 W kW � � 	k �W k����k��W
� � 	k��� � ���� ���W

� � 	���

or
R�x� 
 W k �W k����k��W

� � 	k��� � ���� ���W
� � 	���

��� Veri�cation of the main conjecture for the case

deg P��� deg Q��

The goal of this subsection is to prove that in this case I 

��
k��

Ik can

not have zeroes� others then �	 Since in this case we can not represent
P �x� 
 �P �W �x�� � whereW �x� is polynomial� accumulating common zeroes�
the conjecture for this case is true	

�
 From the theorem �	�	 we get the maximal number of surviving zeroes
is �	 And one of them is necessarily �	

�
 Assume that I has zeroes �� a	 Since zeroes of I should be also zeroes
of P and Q � P and Q are necessary represented in the form �up to rescaling�

P 
 WP� � Q 
WQ��

where
W 
 x�x� a� � degP� 
 � � degQ� 
 ��

For such P � Q numbers �� a will be common zeroes of ideals I�� I�� I�	 Now
represent

P� 
 W � � � � Q� 
W � 	W � � ��

��



Then we will directly calculate� using the �Mathematica� software� ideals I	�
I
� I�� I�� I� and we will show that for all �� 	� � they can not have zeroes ��
a	 It will complete veri�cation of the main conjecture ��� for this case� since
it is impossible to present P 
 �P �W �x��	

�
 We will calculate consecutively �k�a�� using the following �Mathemat�
ica� program�

W�x�x�a��

W���x�a�

P�W��W��al��

Q�W��W �bt�W� � ga��

p�D	P
x��

q�D	Q
x��

k����

k
�
�

k���P�

k��Integrate	��k��p�
k
�q
x��

k��Integrate	��k��p��k��q
x��

k��Integrate	��k��p��k��q
x��

k��Integrate	��k��p��k��q
x��

k��Integrate	��k��p��k��q
x��

k��Integrate	��k��p��k��q
x��

x�a�

Print	�k�� �
Simplify	k����

Print	�k�� �
Simplify	k����

Print	�k�� �
Simplify	k����

Print	�k�� �
Simplify	k����

Print	�k�� �
Simplify	k����

Print	�k�� �
Simplify	k����

Print	�k�� �
Simplify	k����

Running this program� we obtain the following results�

�	�a� 

� �a
 �� a� � �� 	 � � ���

���
�

�
�a� 

a� � �a� � �� 	 � � ��

���
�

��



Since a �
 �� we get

�	 � � 
 ��a��� � ���	 � � � a���� 
 ��

It can be satis�ed only if � 
 � � � 
 �a���	 Running the program for these
values� we get the following conditions�

���a� 

a�� ��� � �� a��

�������
�

���a� 

�� a�� 	

������
�

from which we obtain 	 
 � � a 
 	
q
������ and for them we get

���a� 
 ��������

i	e	 we obtain contrudiction	 The conjecture is veri�ed	

Remark� We can do the same calculations for P 
 �P � Q 
 
Q	 For
� �
 � � 
 �
 � from conditios ���a� 
 �	�a� 
 �
�a� 
 � we obtain exactly
the same conditions on �� �	 Then

���a� 

a�� �
 ���� a� �� � ��
�

�������
�

���a� 

�� a�� 	 �� 
�

������
�

From ���a� 
 � we get 	 
 �� so now the condition ���a� 
 � is

���a� 

� �a�
 �
 ���� a	 �	 � ���� a� �� 
� ���
���

����������
�

and the conditions ���a� 
 � and ���a� 
 � are again incompatible	

��� Veri�cation of the main conjecture for the case

deg P��� deg Q��

The goal of this subsection is to prove that in this case I 

��
k��

Ik has zeroes

� and a if and only if Q�x� 
 W �x� 
 x�x� a�� P �x� 
 �P �W �x�� 	

��



Assume that I has zeroes �� a	 Since zeroes of I should be also zeroes of
P and Q � P and Q are necessary represented in the form �up to rescaling�

P 
 WP� � Q 
 W�

where W 
 x�x � a� � deg P� 
 � For such P � Q numbers �� a will be
common zeroes of ideals I�� I�� I�	 Now represent P� 
 W �	W �� � 	 Then
computing the condition � 
 �	�a� 
 a
	���� we obtain 	 
 �� q	e	d	

Remark� The same answer we obtain if we replace P by �P � Q by 
Q�
�	�a� 
 a
	�
���	

��� Remark about resultants�

Resultants give us a very powerful tool for checking� if n � � polynomials of
n variables Pi�x�� � � � � xn� � C�x�� � � � � xn� do not have common zeroes	

Consider one example	 Assume we are interested if polynomials P �x� y��
Q�x� y�� R�x� y� have common zeroes	 ComputeResultant�P�Q� x� 
 f��y� �
Resultant�R�Q� x� 
 f��y�	 If Resultant�f�� f�� y� �
 �� then P� Q� R do
not have common zeroes	

Indeed� if there exists common zero of all polynomials �x�� y��� then
f��y�� 
 f��y�� 
 �� hence Resultant�f�� f�� y� 
 �� q	e	d	

The general construction is exactly the same	

��� Veri�cation of the main conjecture for the case

deg P��� deg Q��

The goal of this subsection is to prove that in this case I 

��
k��

Ik can

not have zeroes� others then �	 Since in this case we can not represent
Q�x� 
 �Q�W �x�� � where W �x� is polynomial� accumulating common zeroes�
the conjecture for this case is true	

�
 From the theorem �	�	 we get the maximal number of surviving zeroes
is �	 And one of them is necessarily �	

��



�
 Assume that I has zeroes �� a	 Since zeroes of I should be also zeroes
of P and Q � P and Q are necessary represented in the form �up to rescaling�

P 
 WP� � Q 
WQ��

where
W 
 x�x� a� � degP� 
 � � degQ� 
 ��

For such P � Q numbers �� a will be common zeroes of ideals I�� I�� I�	 Now
represent

P� 
 W � 	W � � � � Q� 
 W � � ��

Then we will directly calculate� using the �Mathematica� software� ideals I	�
I
� I�� I�� I� and we will show that for all �� 	� � they can not have zeroes ��
a	 It will complete veri�cation of the main conjecture ��� for this case� since
it is impossible to present Q 
 �Q�W �x��	

�
 We will calculate consecutively �k�a�� using the �Mathematica� pro�
gram� similar to above	
Running the program� we obtain the following results�

�	�a� 

a
 �� a� � �� 	 � � ��

���
�

�
�a� 

a� �� a	 � �� a� �� 	 � � ��� �� ��	 � �� ��

����
�

From the �rst equation �	 
 � � ���a�� substituting into the second equa�
tion� we obtain � 
 �a����	 So� these and only these conditions force the
equations �	�a� 
 �� �
�a� 
 � to be satis�ed	 Obviously 	 may not be equal
to zero� so we can put � 
 �a����		 Running the program for these values�
we obtain the following equations�

���a� 

a�� ����� � �� a	 	 � ���� a� 	��

��������� 	
�

���a� 

� a�� ������� a� � ��� a� 	 � �������	� � ������ a	 	��

������������	
�

���a� 
 �a������������a�������������	���������a��	������������a		�

����������a�		 � �����a�	����� � �����	
����������������������	���

��



We obtain three polynomials of two variables a� 		 Now according to sub�
section �	�	 we can compute

Resultant����a�� ���a�� 	� 
 ������������������������������ a�

������������������������ a�� � ���������������� a���

Resultant����a�� ���a�� 	� 
 Const����������������������������������a�

�������������������������������a�� � ������������������������a��

������������������a����

and computing resultant of the last two expressions �dividing by the proper
power of a� we get nonzero number� q	e	d	

Remark�We can do the same calculations for P 
 �P � Q 
 
Q	 For
� �
 � � 
 �
 � from conditios ���a� 
 �	�a� 
 �
�a� 
 � we obtain exactly
the same conditions on �� �	 Then

���a� 

a���
����a		�� � ����a�	��� � ����
�

���������	
�

���a� 
 Const
a����
����a�	�� � ������a		��� � �����a�
 � �������	�
�

	�
�

���a� 
 Const���������a��	��	 � ���������a�		�	 � ����������a		���


����������a�
�������������	�
�������a��������	��	�����	��
���	��

and repeating the same computations with resultants� we obtain the same
result	

��	 Veri�cation of the main conjecture for the case

deg P��� deg Q��

The goal of this subsection is to prove that in this case I 

��
k��

Ik has com�

mon zeroes if and only if either P �x� 
 �P �W �x��� Q�x� 
 �Q�W �x��� where

��



W �x� 
 x�x� a�� or P is proportional to Q	

�
 Let P � Q be not proportional	 From the theorem �	�	 we get the
maximal number of surviving zeroes is �	 And one of them is necessarily �	

�
 Assume that I has zeroes �� a	 Since zeroes of I should be also zeroes
of P and Q � P and Q are necessary represented in the form �up to rescaling�

P 
 WP� � Q 
WQ��

where
W 
 x�x� a� � degP� 
 � � degQ� 
 ��

For such P � Q numbers �� a will be common zeroes of ideals I�� I�� I�	 Now
represent

P� 
 W � �W � � � � Q� 
 W � �W � � 	�

Then we will directly calculate� using the �Mathematica� software� ideals I	�
I
� I�� I�� I� and we will show that the only possibilities for I to have zeroes
�� a are either � 
 � 
 � or P 
 Q	 It will complete veri�cation of the main
conjecture ��� for this case	

�
 We will calculate consecutively �k�a�� using the �Mathematica� pro�
gram� similar to above	 Running the program� we obtain the following results�

�	�a� 

a
 ��� � � � a� �� � ��� �	 ��

���
�

�
�a� 

a� �� a	 �� � �� � ��� �� � � 	 �� � �� a� ��� � � �� � � 	 ���

����
�

Since a �
 �� we get

�

�
a��� � �� 
 	� � ���

��a	 � ��a����� � �� � ��� � 	������� ��a�� 
 ��

If � 
 �� then from the �rst equation � 
 	� and hence P 
 Q	 So� � �
 �
and dividing the second equation by � � �� we obtain � 
 ��a����	 Then
� 
 ��	��a� � ���	

��



Running the program for these values� we get

���a� 

� �a� �� a� � ��	� � ������ a� � � a� � �����	 � ��� a	 ����

��������
�

If � 
 �� then � 
 �� q	e	d	
If 	 
 ��a����� then 	 
 �� hence � 
 �� and hence P 
 Q	
So�

	 

�a� � ����a� � ���a	��

�����
�

and running the program for these values �i	e	 without �� �� 	�� we get

���a� 
 ��a�
�a�������a������������a�����a�������������������a	��

���������a��	�������������������

���a� 
 �a�
�a�������a�������������������a�������������a����������a��

�������������������������������a	��������������a������������������a��	

��������������a��	 � ��������������a	���������������������������

�
�a� 
 ��a
�
�a�������a�������������������a������������a���������a��

������������������������������a	�������������a������������������a��	

�������������a��	 � ��������������a	��������������������������

If � 
 	a���� then 	 
 ��a����� so � 
 	 and hence � 
 �� so P 
 Q	
If � 
 �� then � 
 �� q	e	d	
Otherwise we get � polynomials in two variables �� a	 Computing resul�

tants� we get nonzero number� q	e	d	 The conjecture for this case is com�
pletely veri�ed	

��
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