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1 Research objectives

1.1 Introduction

In [7] H.Poincaré defined the notion of a center for a real vector field on the
plane

{ T = f(l‘, y)

v=y(z,y)

as an isolated singularity surrounded by closed integral curves. He showed
(see [8]) that a necessary and sufficient condition for a polynomial vector
field (i.e. f(z,y) = P(x,y) , g(x,y) = Q(x,y) are polynomials in x, y )
with a singular point with pure imaginary eigenvalues, to have a center at
this point is the annihilation of an infinite number of polynomials in the
coefficient of the vector field. The problem of explicitly finding a finite basis
for these algebraic conditions (the problem of the center), was solved in the
case of quadratic vector fields by the successive contributions of H.Dulac,
W.Kapteyn, N.Bautin, N.Sakharnikov, L.Belyustina, K.Sibirsky and others
(see e.g. [1], [9]). The complete conditions on P(x,y) , Q(x,y) of degrees
higher then 2 under which the system has a center are still unknown.

1.2 Description of the problem
1.2.1 The center problem

We will consider the following formulation of the center problem: Let P(x,y),
Q(x,y) be polynomials in z, y of degree d. Consider the system of differential
equations

{j;:—y—l—P(:L‘,y) (1)
y=z+ Q(l‘, y)

We will say that a solution x(t), y(t) of (1) is closed if it is defined in the
interval [0,%0] and 2(0) = x(t0), y(0) = y(to). We will say that the system (1)
has a center at 0 if all the solutions around zero are closed. Then the general
problem is: under what conditions on P, Q) the system (1) has a center at
zero?



1.2.2 Reduction to the Abel equation

It was shown in [4] that one can reduce the system (1) with homogeneous P,
() of degree d to the Abel equation

y' = p(x)y® + q(a)y’ (2)

where p(x), ¢(x) are polynomials in sin x, cos x of degree depending only on
d. Then (1) has a center if and only if (2) has periodic solutions on [0, 27] ,
i.e. solutions y = y(x) satisfying y(0) = y(27).

1.2.3 Classical approach to the study of the Abel equation

We will look for solutions of (2) in the form

y(x,Y0) = Yo + Z vi()ys

k=2

where y(0,y0) = yo. Then y(27) = y(27,y0) = yo + 3 vp(27)ys. Then the
k=2
condition y(27) = y(0) is equivalent to vi(27) = 0 for k =2,3,... c0.

Consider an ideal J = {vy(27), v3(27),...vx(27),...} C C[A], where A =
(M, Ag,...) is the (finite) set of the coefficients of p, ¢. By Hilbert Basis
theorem there exists dy < oo, s.t. J = {v2(27),v3(27), ... vq,(27)}. After
determination of dy the general problem will be solved, since we get finite
number of conditions on A, which define the set of p, ¢ having all the solutions
closed . The problem is that the Hilbert theorem does not allow us to define
dop constructively.

1.2.4 Modified approach to the study of the Abel equation
Let us study instead of J C C[)] the polynomials ideal I C C[\, 2], [ =
{va(x), v5(x), ... vp(x),...} = U Iy, where [}, = {vy(x), v5(x), ... ve(x)}.

k=2
The classical problem is to find conditions on p, ¢, under which * = 27 is a

common zero of all /.



Our generalized center problem consists of the following:

a) Study the behavior of I; as the ideals of univariate polynomials in x,
ie.

t. For given p, ¢ find zeroes in = of I, k =2,... and of [ = U 1.

k=2
12. For a given set of numbers find conditions on p, ¢, under which these
numbers are common zeroes of [.

b) Find the stabilization moment of the set of common zeroes, i.e.
t. For given p, ¢ find d, for which the set of common zeroes of [ is equal to
the set of common zeroes of 1.
2. For given set of common zeroes of [ find d, for which it is equal to the set
of common zeroes of [;. Under which conditions on p, ¢ is it possible?

c) For given p, ¢ find d, for which I = [; (Bautin’s problem).

1.2.5 Main recurrence relations

We study Abel equation (2) with p, ¢ the usual polynomials in x. In this
case we say that the equation (2) defines a center if y(1,y0) = yo. Although
this property does not correspond to the initial problem (1), it presents an
interest by itself and it has been studied in [5], [6] and in many others arti-
cles. Our main goal is to study the generalized center problem for this case,
our first goal is to study part a) of it.

One can easily show (see e.g. [2]) that vg(x) satisfy recurrence relations

@) ¥ w@n@) +e@) T o), nz2 O

i+j=n i+jtk=n

It was shown in [2] that in fact this recurrence relations can be linearized,
i.e. the same ideals [;’s are generated by {&,...&:}, where p(x) satisfy



linear recurrence relations

b (@) = =(n = Db (@)p(e) — (n = 2)tbna(x)q(x), n =2

which are much more convenient then (3). We call (4) the main recurrence
relation for the main problem.

1.2.6 Model problem

Let us state an auxiliary problem:

The first model problem : Given p(z) , Qo(z) . Define Q41(x) by
recurrence relation Q) 4(x) = p(x)Qk(z) , £ > 0. Study the generalized
center problem for the ideals I}, = {Qo(x), ..., Qr(x)}.

Hopefully this problem can help us to study the main problem (4). It
allows for “analytic” solutions (through generating functions).

For the main problem the first few ideals [, are very similar to the first
few ideals of the first model problem , but start;ng with the Ig essentially

nonlinear equations with respect to Q(z) = / q(t)dt appear. This fact
0
presents the main difficulty in analysis of the problem (4).

1.2.7 Main conjecture and known results

The following conjecture for the main problem (4) has been proposed in [2]:



I = U I has zeroes aq,...ay if and only if
k=1

Pa) = [ p(t)dt = PW (), Q) = [ altydt = QW (a))
where W(z) = [J(z — a),

L =1
P, @) are some polynomials without free terms.

Exactly the same conjecture can be stated for the first model problem,
with () = ()o. Clearly, these conjectures are sufficient for zeroes of W to be
common zeroes of [ in each of these problems. It is not clear yet if these
conditions are also necessary.

The following particular results are known:
1) The conjecture is true for P(x) , Q(x) up to degree 3 and for some

cases of degree 4 (see [2]).
k

2) For the first model problem if P(z) = W(x) = [[(« — a;) , then | J I,
=1 k=1
has zeroes ay,...ay if and only if Qo(z) = QO(W(:L')) (see [3]).
3) For the first model problem combinatorial estimation of the [I}’s sta-
bilization moment is obtained (see [10], [11]).

1.2.8 Results

We present the following results:

a) Some remarks, connecting to the first model problem. They can be
useful as a tool for an estimation of the number of surviving zeroes (section2).

b) We have obtained the number of conditions, which should be checked
in order to say, that the hypothesys for the first model problem is true, and
some remarks about sufficiency of this number (section 3).

¢) Maximal number of zeroes of I for the recurrency relation (4) is ob-
tained (section 4).



d) Verification of the main conjecture 2.7 for the main problem (4) with
the degrees of P, () up to 4 and higher . It was done using computer sym-
bolic calculations with some convenient representation of P and ) (section 5).



2 Some remarks around the first model prob-

lem.

Consider so called “the zero model problem” : Given ¢g(z) . Define
dr41(x) by recurrence relation ¢4 (2) = ¢p() ,0441(0) = 0, £ > 0. Study
the generalized center problem for the ideals Iy = {¢o(x),..., dr(x)}.
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3.1 A convenient representation of P and ().

Assume we are interested in the checking if numbers 0, a are common zeroes
of our ideal I. Let R(x) be an arbitrary polynomial of degree n. Con-
sider W(x) = x(x — a) - polynomial of the second degree. Notice, that the
derivative of W is a polynomial of the first degree W'(x), the polynomial
W (z)W’(z) has the second degree and so on. Generally, polynomials W (z)*
have degree 2k and polynomials W (z)* W’(z) have degree 2k + 1. So, one
can uniquely represent any polynomial R(x) as a linear combination of poly-
nomials W (z)* and W (z)*W’(z). Hence the polynomial R(x) of the degree
2k or 2k 4+ 1 we will write in the form

R(x) = W(a)* (axW () +8) + W ()" (s W () +851) + - + (oW () + o),

or simply

R(x) = WHaxW' + By) + W (s W'+ Broa) + oo+ (oW + Bo).

In general, if W(z) = 2(z —az)...(x — ai),deg W(a) = k, then any polyno-
mial R(x) can be uniquely represented in the form

R(z) = W WH+E W+, +EWE ) 4 (W W+, 4w R,

(where, of course, W) is simply constant).



4 Maximal number of surviving zeroes.

4.1 Connection between the first model problem and
the main problem. A convenient basis for the

ideals I,k = 2,...6.

Direct computations (including several integrations by part) give the follow-

ing expressions for the first polynomials ¢4 (), solving the recurrency relation

(4):
o)
s(x)

Pa()
¥s(x)

ve()

+4P() [ g P+ 5Q%w)
_ P () + 10P*(2)Q(x) + 5P(x) /0 g(H)P(1)dt
~8Q*(2)P(x) = 10P*(2) ["q(O)P()dt +4Q(x) [ q(t)P(t)dt

—/ P (t)dt + = / p(t)Q*(¢)dt 0

Consequently, we get the following set of generators for the ideals I, k =

2,....,6,

]2 = {P}
I; = {PvQ}
Ii = (PQ. [aP)

Is = (P.Q, [aP. [qr?)
Iy = {P,Qv/qP,/qua/(qPS — %pQZ)}

Therefore, if a € Y(j6) is a zero of the ideal Is, it must satisfy the following

equations:



Pla) =0, Q(a) =
| P@yatydt =0 (5)

/Oa P(1)q(t)dt = 0

[ Pt =3 [ p@*wd =0

Notice that the third and the fourth equations coincide with the moment
equations of the first model problem (with the same p(x) and Qo) = Q(z)).
The fifth equation contains the corresponding term of the model problem and
an additional term, which is (for the first time) nonlinear in ).

o

Let us assume now that the set of zeroes of Ig consists of the points
ay =0,as,...,a,, a; # a;. In particular, a; are common zeroes of P and @),
and we can write

Px) = W(z)P(z)Q(x) = W(2)Qs(x)
where W(x) = [T, (x — a;).

Substituting this representation into the last three equations of (5) and
integrating by parts, we get for2 =1,..., v,

/0 l WQ(plQl - PlQl) =0
/0 l W3P1(P1Q1 - PlQl) =0

a; 2 ra;
/0 W4P12(p1Q1 - P1Q1) - g/o W3Q1(p1Q1 — qul) =0

Here pi(x) = P{(2), ¢1(x) = Q4(x).

4.2 Maximal number of surviving zeroes.

Theorem 1 Fither the number of surviving different zeroes (including 0) of
I is less or equal then (deg P + deg QQ)/3, or P is proportional to Q).

Proof :
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5 Verification of the main conjecture.

5.1 Note about rescaling of P and ().

As it was shown in [2], it is possible, using rescaling @ — Ciz, y — Cay, to
make the leading coefficients of P, () beeing equal to any positive number.
It can be done if deg ) # 2deg P, but these cases will be not considered in
this article. So we will use polynomials P and () in the form with the leading
coefficient equals either 1 or 2, i.e. if required we will be able to deal with
polynomials in the form (for W(z) = z(x — a)):

R(x) = W'W' + B + W oW + Bict) + o+ (oW + Bo),

or

R(z) = WP + WY oy W+ Bect) + oo + (oW + Bo),

5.2 Verification of the main conjecture for the case
deg P=3, deg Q=4

The goal of this subsection is to prove that in this case [ = U Iy can
k=1
not have zeroes, others then (0. Since in this case we can not represent

P(x) = P(W(z)) , where W(z) is polynomial, accumulating common zeroes,
the conjecture for this case is true.

1) From the theorem 4.1. we get the maximal number of surviving zeroes
is 2. And one of them is necessarily 0.

2) Assume that [ has zeroes 0, a. Since zeroes of I should be also zeroes
of Pand ), P and () are necessary represented in the form (up to rescaling)

P:WP1,Q:WQ1,

where

W=ux(x—a), degPy =1, deg@Qy = 2.

For such P, () numbers 0, a will be common zeroes of ideals [, I, I35. Now
represent

Plzl/l//—|—067 Q1:W—|—6W/—|—’}/

11



Then we will directly calculate, using the “Mathematica” software, ideals Iy,
15, Ig, I7, Is and we will show that for all «, 3,7 they can not have zeroes 0,
a. It will complete verification of the main conjecture (4) for this case, since
it is impossible to present P = P(W(l‘))

3) We will calculate consecutively v, (a), using the following “Mathemat-
ica” program:

W=x(x-a);

W?=2x-a;

P=Wx (W’+al) ;

Q=W (W +bt*W’ + ga);
p=D[P,x];

q=D[Q,x];

k0=0;

ki=1;

k2=-P;
k3=Integrate[-2k2*p-1kl*q,x];
k4=Integrate[-3k3*p-2k2%*q,x];
k5=Integrate[-4k4*p-3k3*q,x];
k6=Integrate[-5k5*p-4kd*q,x];
k7=Integrate[-6k6*p-5k5%q,x];
k8=Integrate[-7k7*p-6k6*q,x];

X=a;

Print["k2= ",Simplify[k2]];
Print["k3= ",Simplify[k3]];
Print["k4= ",Simplify[k4]];
Print["k5= ",Simplify[k5]1];
Print["k6= ",Simplify[k6]];
Print["k7= ",Simplify[k71];
Print["k8= ",Simplify[k8]];

Running this program, we obtain the following results:

(@ (2 +Taf—T7)

Pala) = 210 :
aa(a*>+3aB—-3
ba(a) = ( ﬁé15 F=37)

12



Since a # 0, we get
af —v=-2a*/T, alaf —~+a*/3) = 0.

It can be satisfied only if & = 0, v = 2¢*/7. Running the program for these
values, we get the following conditions:

a't (13 —21a?)

Yolo) = — o
_2a136
vrle) = 315315

from which we obtain =0, a = £4/13/21, and for them we get
Ys(a) = —3668/9,

i.e. we obtain contrudiction. The conjecture is verified.

Remark: We can do the same calculations for P = AP |, () = u@). For
A#0, pu# 0 from conditios ¥s(a) = ¢4(a) = ¢5(a) = 0 we obtain exactly
the same conditions on «, ~. Then
at A (=21a? A\ 413 )
ve(a) = 4414410 ’
—2a13 B A% 42
vl = 55
From t7(a) = 0 we get 3 =0, so now the condition ¥s(a) =0 is
o) = = (@™ Ay (490 a* At — 2527 a® \? 4+ 969 p?))
S 9980931010 ’

and the conditions ¢g(a) = 0 and ¢g(a) = 0 are again incompatible.

5.3 Verification of the main conjecture for the case
deg P=4, deg Q=2

The goal of this subsection is to prove that in this case I = U I}, has zeroes
k=1

0 and « if and only if Q(z) = W(z) = 2(x — a), P(z) = P(W(x)) .

13



Assume that [ has zeroes 0, a. Since zeroes of I should be also zeroes of
P and @@, P and () are necessary represented in the form (up to rescaling)

P=WPFP ,6 Q=W

where W = az(x —a) , deg P, = 2 For such P, @ numbers 0, a will be
common zeroes of ideals Iy, I, I3. Now represent P, = W + W'+~ . Then
computing the condition 0 = 14(a) = a®3/30, we obtain 3 = 0, q.e.d.

Remark: The same answer we obtain if we replace P by AP, Q) by uQ):
bala) = a>BAp/30.

5.4 Remark about resultants.

Resultants give us a very powerful tool for checking, if n + 1 polynomials of
n variables P;(xy,...,x,) € Clxq,...,2,] do not have common zeroes.
Consider one example. Assume we are interested if polynomials P(x,y),
Q(x,y), R(x,y) have common zeroes. Compute Resultant[P,Q,z] = fi(y),
Resultant[R, Q,z] = f3(y). If Resultant[f, f2,y] # 0, then P, @, R do
not have common zeroes.
Indeed, if there exists common zero of all polynomials (x¢,yo), then

fi(yo) = f2(yo) = 0, hence Resultant[fi, f2,y] =0, q.e.d.

The general construction is exactly the same.

5.5 Verification of the main conjecture for the case
deg P=4, deg Q=3

The goal of this subsection is to prove that in this case [ = U Iy can
k=1
not have zeroes, others then (0. Since in this case we can not represent

Q(x) = Q(W(x)) , where W (x) is polynomial, accumulating common zeroes,
the conjecture for this case is true.

1) From the theorem 4.1. we get the maximal number of surviving zeroes
is 2. And one of them is necessarily 0.

14



2) Assume that [ has zeroes 0, a. Since zeroes of I should be also zeroes
of Pand ), P and () are necessary represented in the form (up to rescaling)

P:WP17Q:WQ17

where

W=ux(x—a), degPy =2, deg@Qy = 1.

For such P, () numbers 0, a will be common zeroes of ideals [, I, I35. Now
represent

P=W4+BW +~, Q=W +a.

Then we will directly calculate, using the “Mathematica” software, ideals Iy,
15, Ig, I7, Is and we will show that for all «, 3,7 they can not have zeroes 0,
a. It will complete verification of the main conjecture (4) for this case, since
it is impossible to present Q = Q(W(z)).

3) We will calculate consecutively vy (a), using the “Mathematica” pro-
gram, similar to above.
Running the program, we obtain the following results:

o’ (2aP+TapB—T7)

tala) = 210 ’

Vs(a) = a” (da' +11a* (af—37) —66 (af—7)7)

6930
From the first equation a3 = v — 2/7a?, substituting into the second equa-
tion, we obtain v = —a?/77. So, these and only these conditions force the
equations 14(a) = 0,95(a) = 0 to be satisfied. Obviously 4 may not be equal
to zero, so we can put o = —a*/773. Running the program for these values,

we obtain the following equations:

a' (1573 — 21 a* B + 2541 a2 3°)

e(a) = 534143610 3 ’

br(a) 2a"® (—63954 4 + 819 a® 5 + 3009391 3% — 112651 a* 3°)

a) =
! 948906123165 3 ’
Ps(a) = (a'*(315517059a* +479666831493* —1036350a'° 3° — 64655880524 3°

+151367370a% 8* + 106264° 3(7543 + 93170537)))/(20166152929502580,32 ).

15



We obtain three polynomials of two variables a, 5. Now according to sub-
section 5.4. we can compute

Resultant[vs(a), ¥r(a), 8] = 171355466545636153516888971819 o’

—55381482335935291356128 a'? + 4434102226084608 a2,
Resultant[vg(a), vs(a), 8] = Const(2169086556165106969035751876079314°
+4587869622987216107761251882084¢'® — 1616048607975051451006084°
+14080788862156800a°%),

and computing resultant of the last two expressions (dividing by the proper
power of a) we get nonzero number, q.e.d.

Remark:We can do the same calculations for P = AP |, ) = p@). For
A#0, pu# 0 from conditios ¥s(a) = ¢4(a) = ¢5(a) = 0 we obtain exactly

the same conditions on «, ~. Then

B a M Ap(—21a* BN + 2541a* 2N 4 1573 p)

e(a) = 53414361043 ’

a'®> X2 (81948 BA? — 112651a* 32X — 6395401 + 300939152 1)
B ’

s(a) = Const(—1036350a'° 82A* + 151367370a° 3* A1 — 64655880524 5>\ p

+315517059a” j1* 447966683149 3% 11* +10626a° (93170 3° \* + 754380 1)) / 32,

Yr(a) = Const

and repeating the same computations with resultants, we obtain the same
result.

5.6 Verification of the main conjecture for the case
deg P=4, deg Q=4

The goal of this subsection is to prove that in this case [ = U I}, has com-
k=1

mon zeroes if and only if either P(z) = P(W(z)), Q(x) = Q(W(z)), where

16



W(x) = a(x — a), or P is proportional to Q.

1) Let P, @ be not proportional. From the theorem 4.1. we get the
maximal number of surviving zeroes is 2. And one of them is necessarily 0.
2) Assume that [ has zeroes 0, a. Since zeroes of I should be also zeroes
of Pand ), P and () are necessary represented in the form (up to rescaling)

P:WP17Q:WQ17

where

W=ux(x—a), degPy =2, deg@Qy = 2.

For such P, () numbers 0, a will be common zeroes of ideals [, I, I35. Now
represent

Pi=W4+AW —a, Q =W+ W — 8.

Then we will directly calculate, using the “Mathematica” software, ideals Iy,
Is, Is, I7, I3 and we will show that the only possibilities for [ to have zeroes
0, a are either v =6 = 0 or P = ). It will complete verification of the main
conjecture (4) for this case.

3) We will calculate consecutively vy (a), using the “Mathematica” pro-
gram, similar to above. Running the program, we obtain the following results:

&’ (Tabd+2a* (6—7)—T67)
Yala) = 210 ’

" (4a* (8 —7)+66a (ad—Fy)+11a* Bad—2ay—f7))

¥s(a) = 6930 ‘

Since a # 0, we get

2
Za'(6—=7) = By —ad,

(4@4 + 22a2a)(5 — )+ (ad — Bv)(66a + 11a2) = 0.

If 6 = ~, then from the first equation o = 3, and hence P = (). So, §6 # v
and dividing the second equation by § — «, we obtain a = —3a?/11. Then
6 =T13~v/a* + 227.

17



Running the program for these values, we get

—(a" (3a®> +113) v (—4719a* + 3a® — 17303 3 — 363 a* 4?))

Yola) = 10900890 ‘

It v =0, then 6 =0, q.e.d.
If 3= —3a*/11, then 8 = «, hence § = ~, and hence P = Q.
So,
5= 3a° — 4719a* — 363a*~?
B 17303 ’

and running the program for these values (i.e. without «, 8, 3), we get

Yr(a) = (2a"(a—117)y(a+117)(508079a* +711a° —614775597% — 6299264 * 4>

4+99309903a%~")) /145201356 7609605
Yg(a) = (a'®(a—117)y(a+117)(—165436111269a>+23749415118a° 43753254 7a"°
+200177694635497% —2920126191268a" 42 —289983228814% 4> —64672793651466a2~*
+4252091239473a°~y* + 52235717949261a*~1°)) /630388786350574791540.
o(a) = —(a'®(a—117)y(a+117) (1664604834750 +4591313298a° +8200347a'°
+22896141543275~% —436487623572a" v* —5747949999a°~* —49500160259550a> ~*
+782017522209a%4* + 20215061125875a"7°)/3467138324928161353470

If v = £a/11, then 3 = —3a*/11, so a = 8 and hence v = §,s0 P = Q.

It v =0, then 6 =0, q.e.d.

Otherwise we get 3 polynomials in two variables v, a. Computing resul-
tants, we get nonzero number, q.e.d. The conjecture for this case is com-
pletely verified.

18
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