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Abstract. We introduce a graph-theoretic formalism suitable for mod-
eling biochemical networks marked by combinatorial complexity, such as
signal-transduction systems, in which protein-protein interactions play a
prominent role. This development extends earlier work by allowing for
explicit representation of the connectivity of a protein complex. Within
the formalism, typed attributed graphs are used to represent proteins
and their functional components, complexes, conformations, and states
of post-translational covalent modification. Graph transformation rules
are used to represent protein-protein interactions and their effects. Each
rule defines a generalized reaction, i.e., a class of potential reactions that
are logically consistent with knowledge or assumptions about the rep-
resented biomolecular interaction. A model is specified by defining 1)
molecular-entity graphs, which delimit the molecular entities and mate-
rial components of a system and their possible states, 2) graph transfor-
mation rules, and 3) a seed set of graphs representing chemical species,
such as the initial species present before introduction of a signal. A re-
action network is generated iteratively through application of the graph
transformation rules. The rules are first applied to the seed graphs and
then to any and all new graphs that subsequently arise as a result of
graph transformation. This procedure continues until no new graphs are
generated or a specified termination condition is satisfied. The formal-
ism supports the generation of a list of reactions in a system, which can
be used to derive different types of physicochemical models, which can
be simulated and analyzed in different ways. The processes of generat-
ing and simulating the network may be combined so that species are
generated only as needed.

1 Introduction

A common feature of biochemical networks, especially those comprising protein-
protein interactions, is combinatorial complexity [15,7,29,26], which is present
whenever a relatively small number of biomolecular interactions have the poten-
tial to generate a much larger number of distinct chemical species and reactions.
For a system marked by combinatorial complexity, the conventional approach of
manually specifying each term of a mathematical model is often impossible if the
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model is intended to account comprehensively for the consequences of biomolec-
ular interactions. Thousands of reactions may arise from the interactions of only
a few proteins, as in cases we have studied [25,19,5]. A solution to this problem
is to specify a rule for each biomolecular interaction and its effects, and then use
the rules to automatically generate a logically consistent reaction network and
corresponding models, which may take diverse forms. This approach has been
used, typically ad hoc, to model a number of signal-transduction systems (for
examples, see [47,28,36]). These systems, in which combinatorial complexity is
ubiquitous, regulate cellular responses to environmental stimuli through protein-
protein interactions and play important roles in many diseases. The complexity
of models can be reduced in certain circumstances [8,18,6], but methods for
treating combinatorial complexity are still needed.

Recently, several frameworks and software tools have been developed for
modeling biochemical networks through formalized descriptions of biomolecu-
lar interactions. These frameworks include visualization tools and visual
languages [34,12,32,1], process algebras [43,10], and different types of rewrite
systems [9,48,20,4,17]. Software tools that allow specification of a kinetic model
via rules for biomolecular interactions include BioNetGen [4,17] and BIOCHAM
[20]. In both cases, rules are expressed in a rudimentary but general-purpose
language and interpreted through procedures of pattern matching and string
rewriting. Another tool that can be used to obtain a kinetic model, Moleculizer,
provides a set of modules for model specification [37]. Each module functions as
a reaction generator for a particular type of reaction. Related work is discussed
in more detail later.

Here, we provide a theoretical framework for extending the BioNetGen lan-
guage to include graph transformation rules [2]. This report formalizes the di-
agrammatic conventions proposed in [16] for representing proteins and protein
complexes as graphs and introduces new details about the graphical procedures
for model specification and generation. The motivation for this extension is a
desire to be able to explicitly track and account for the connectivity of a pro-
tein complex, which is important, for example, when the reactivity of a complex
depends on its configuration, which is common. The graph-theoretic formalism
is tailored to the problem of building physicochemical models of biochemical
networks, particularly protein-protein interaction networks. It allows for the ab-
straction of proteins, functional components of proteins, and protein complexes,
including multimeric proteins that function as a unit. Throughout the text, we
will illustrate concepts using cartoon diagrams of [16]. Most of these diagrams
pertain to the model of [19] for membrane-proximal events in FcεRI-mediated
signal transduction.

2 Model Specification

A model specification necessarily includes a definition of the material parts of a
system and all of the internal states of these parts to be considered. An example
of an internal state, which might be associated with a tyrosine residue (as a
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convenient abstraction), is phosphorylation status. The two possible states of
such a protein component might be labeled ‘phosphorylated’ and ‘not phospho-
rylated.’ Another example is the three-dimensional conformation of a protein.
If consideration of two conformations is adequate for modeling purposes, these
states might be labeled ‘open’ and ‘closed.’ A specification also includes a defini-
tion of the chemical transformations that can potentially take place in a system.
Some transformations may change the connectivity of molecular parts, as when
two proteins form a complex. Other transformations may change the internal
states of molecular parts, as when a protein tyrosine kinase (PTK) catalyzes a
phosphorylation reaction or when binding of a ligand induces a conformational
change of an allosteric enzyme. A reaction network is obtained by applying reac-
tion rules for chemical transformations to a seed set of chemical species. Ensem-
ble functions corresponding to readouts of interest, such as conserved quantities
or observables, can be used to specify model outputs. Graphs for elements of a
model specification are defined in detail below.

2.1 Molecular Entities, Components, and Complexes

Most molecular entities of interest, such as polypeptide chains, are structured
units of a biochemical network. Proteins involved in signal transduction, for ex-
ample, typically contain multiple functional components and interactions are
mediated by such components. Examples include sites of modification (amino
acid residues), protein motifs, catalytic subunits, and protein interaction do-
mains [41].

Definition 1. A Molecular-entity Graph is a triple M = (V,E,AM ), where V
is a set of labeled attributed vertices and E is a set of undirected edges. Ver-
tices represent components. Vertex labels need not be unique; multiple vertices
with the same label indicate components considered to be equivalent and may
give rise to structural symmetry. Edges represent intra- or intermolecular bonds
between components. A molecular-entity graph has a unique label and may have
an optional set of attributes AM .

Molecular-entity graphs for the four proteins considered in the FcεRI model
are shown in Fig. 1(a). Note that edges are not included, even though the
components of the molecules are physically connected. Consideration of these
connections would not affect the behavior of this particular model. Molecular-
entity graphs reflect the level of abstraction in a model and largely define the
model’s scope. Additional definition of the problem domain comes from typing
of the components and edges in molecular-entity graphs, which is discussed later.
Briefly, typing defines which attributes of a vertex are variable and which are
fixed. Typing also defines the possible values of the variable attributes. Fixed
attributes might include sequence, molecular weight, links to annotation sources,
etc. Molecular weight is one example of a fixed attribute that might affect re-
activity [37,17]. An example of a variable attribute is phosphorylation status,
which often affects binding activity.
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Fig. 1. Graphs of the FcεRI model. (a) Graph representations of molecular entities
in the model of [19] according to conventions proposed in [16], with minor deviations.
Vertices within the PTK Syk represent three components: tandem SH2 phosphotyrosine
binding domains, linker region (L) and activation loop (A). Components L and A
have a ‘state’ attribute that can take two values: Y and pY, corresponding to ‘not
phosphorylated’ and ‘phosphorylated’. The bivalent ligand is comprised of two identical
binding domains (Fc). The PTK Lyn includes a single component that lumps the
unique and SH2 domains of this protein. The multichain FcεRI receptor consists of
three components representing the α, β and dimeric γ chains of the receptor. The β
and γ components have phosphorylation state attributes like A and L above. (b) A
chemical species graph. (c) Component-level type graph (CTG) corresponding to this
model. (d) The chemical species in (b) typed over CTG by the typing mapping g. (e) A
pattern graph. (f) Members of an ensemble of chemical species matched by the pattern
graph.

In the future, it may be desirable to extend the concept of molecular entity to
embrace recursion, such that a molecular entity may be comprised of molecular
entities. In the meantime, we treat a complex of molecular entities as a special
case.

Definition 2. A Complex Graph MΣ is a connected set of molecular-entity
graphs. A complex graph may be associated with an alphanumeric label, if desired,
and an optional set of attributes.

In the model of [19], 300 out of 354 potential chemical species contain a receptor
dimer, which can be represented as a complex graph. It is important to consider
complexes, because complexes can be observed experimentally and are often of
functional significance. An example is provided by the case of a receptor that
becomes phosphorylated only when it is complexed with a second receptor of the
same type. Complex graphs are connected at the level of molecular-entity graphs,
but because the vertices of a molecular-entity graph need not be connected, a
complex graph may be unconnected at the level of component vertices. Note
that if we restrict ourselves to consideration of binary interactions (the default
assumption), then each vertex of a complex graph is connected by at most one
edge. The label of a complex graph may be either assigned or derived from
stoichiometry and molecule labels.
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2.2 Chemical Species

The material building blocks of a biochemical network, defined above, are its
components, molecules, and complexes. Chemical species, one of the two kinds
of elements in a chemical reaction network, are particular configurations of these
building blocks in specific internal states.

Definition 3. A Chemical-species Graph C is a molecular-entity or complex
graph with any and all variable attributes taking specific values.

A chemical-species graph is illustrated in Fig. 1(b). Note that, consistent with
the layout conventions of [16], molecular-entity graphs comprising the chemical-
species graph are enclosed in boxes for clarity and some labels are suppressed to
avoid clutter.

2.3 Types of Components and Bonds

The molecular-entity graphs of a system, and all derivative graphs of a system,
are typed over a component-level type graph, which defines the types of vertices
and edges in the system.

Definition 4. A Component-level Type Graph (CTG) of a biochemical system
comprises a pair (CV,CE), where CV is a set of vertex (component) types, and
CE is a set of edge (bond) types. Each type is associated with a set of attributes,
which may be variable or fixed. Values of fixed attributes are defined, and the
allowable values of variable attributes are enumerated or otherwise indicated. Any
graph G of a system comprised of or derived from the system’s set of molecular-
entity graphs is typed over CTG via a mapping g : G→ CTG.

As indicated in Fig. 1(c), we consider the components of molecules in the FcεRI
model to belong to one of two types. Each component is a site of binding and/or
a site of phosphorylation. A site of phosphorylation has a variable attribute,
which has two possible values, Y (not phosphorylated) or pY (phosphorylated).
Components α, β, γ, Fc, unique/SH2, and SH2 are sites of binding. Components
β, γ, L, and A are sites of phosphorylation. The type graph of Fig. 1(c) further
indicates that two types of bonds are considered. A bond is allowed between
two binding sites or between a binding site and a phosphorylation site. A typing
mapping is partially illustrated in Fig. 1(d).

2.4 Pattern Graphs and Ensembles of Chemical Species

Pattern graphs are derived from molecular-entity graphs. They appear in reac-
tion rules and function evaluation rules, defined later, and they can be consid-
ered subgraphs of chemical-species graphs. We refer to the set of chemical-species
graphs matching a pattern graph as an ensemble, because these graphs represent
chemical species that all have a common reactivity or all contribute to a common
quantity (the value of an output function).
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Definition 5. A Pattern Graph P = (VP , EP ) is a set of molecular-entity
and/or complex graphs. These graphs need not be connected. The components,
molecular entities, and complexes of P may each be associated with a set of
variable attributes. In addition, connectivity of the graphs of P to external com-
ponents is specified via an interface. The Interface of a Pattern Graph IP is a
partition of VP into three sets: VP = V 0

P

⊔
V 1

P

⊔
V 01

P , where V 0
P is a set of com-

ponents that cannot be bound to components external to the pattern graph, V 1
P

is a set of components that must be bound to components external to the pattern
graph, and V 01

P is a set of components that are free to be either bound or unbound
to components external to the pattern graph.

A pattern graph is illustrated in Fig. 1(e). According to the conventions of [16],
the interface of a pattern graph is specified by the symbol used for a node (open,
half-filled, or filled circle). An open circle represents a component v ∈ V 0

P . A
half-filled circle represents a component v ∈ V 01

P . A filled circle represents a
component v ∈ V 1

P . By convention, a half-filled circle is omitted in the diagram-
matic representation of a graph if values of variable attributes of this component
are unrestricted. As indicated earlier, a pattern graph is used to define an en-
semble of chemical-species graphs.

Definition 6. An Ensemble of Chemical-species Graphs ΩP is a set of
chemical-species graphs each matched by an identical pattern graph P .

A chemical species graph C = (V,E) is matched by a pattern graph P =
(VP , EP ) iff

1. there exists a subgraph C′ = (V ′, E′) ⊆ C isomorphic to P via an isomor-
phism f : P → C′;

2. f is consistent with the interface IP ; and
3. f preserves attributes of components, molecular entities, and complexes, e.g.,

for a vertex v ∈ VP attributes of f(v) ∈ V ′ fall within the set of attributes
defined for v ∈ VP .

Figure 1(f) shows an ensemble of chemical-species graphs, each of which is
matched by the pattern graph of Fig. 1(e). Note that chemical-species graphs
containing multiple subgraphs isomorphic to a pattern graph may be matched
multiple times. For example, the simple string pattern AB matches BAB twice.
In the future, it may be useful to associate ‘context’ attributes with vertices of
a pattern graph to restrict or otherwise control the number of matches, which
affects parameterization of reactions (see below).

The observables of an experiment typically correspond to properties of ensem-
bles. Thus, it is important to be able to determine such properties so that model
predictions can be tested. This capability is obtained by specifying a function
evaluation rule [4,17].

Definition 7. A Function Evaluation Rule is a pattern P and a function of
attributes of chemical-species graphs belonging to ΩP . This function is referred
to as an output function.
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A function evaluation rule is processed by first finding the chemical-species
graphs matched by the pattern graph of the rule and then calculating the value
of the rule’s output function. An example of an output function is a weighted
sum of concentrations. A rule associated with this type of function is useful, for
example, for determining the total concentration of a protein X in a particular
state of phosphorylation when the protein may be distributed among numerous
chemical species, as is usually the case. Concentrations of chemical species are
weighted by the number of X proteins in each species.

2.5 Chemical Reactions

We have now introduced definitions needed to consider one of the two kinds of
elements in a biochemical reaction network, a chemical species. The second kind
of element is a chemical reaction.

Definition 8. A Chemical Reaction ρ comprises a set of reactant chemical
species graphs Rρ, a set of product chemical species graphs Pρ, and a rate law
νρ. Product chemical species graphs are obtained from reactant chemical species
graphs via graph rewriting consistent with chemistry.

Graph rewriting consistent with chemistry in the case of a closed system means
that Pρ is obtained from Rρ via composition of the following operations:

– addition/removal of intra- or inter-molecular edge(s),
– change of values of variables attribute(s), and
– replacement of a molecular entity or set of molecular entities with another

molecular entity or set of molecular entities having the same components.

The first two classes of operations are found in the FcεRI model. The third class
of operations is allowed so that one may model assembly and disassembly of a
multimeric protein (Fig. 2(d)), covalent reactions between proteins, and prote-
olytic cleavage of a protein. Examples of the latter reactions occur in activation
of the complement system via the classical pathway. (The enzyme C1 assembles
on the surface of an antigen, which leads to cleavage of complement component
C3 to generate fragments C3a and C3b. C3b may then attach covalently to the
antigen.) Two additional operations are allowed for an open system: synthesis
and degradation of a set of molecular entities. Degradation of a molecule means
that its corresponding molecular-entity graph is removed (to a sink external to
the system being modeled) along with any and all bonds to which it is connected.
Synthesis of a molecule means that a new molecular entity appears (from a source
external to the system being modeled). Finally, we note that the second class of
operations includes transport between compartments if compartment location
is included as a variable attribute of molecular entities in a multicompartment
system.

Figure 2 illustrates chemical reactions involving representative rewriting op-
erations. The composition of the rewriting operations of a reaction implies a
mapping fρ between vertices of Rρ and Pρ. This mapping must preserve, add,
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and remove molecular-entity graphs as units. In other words, if any vertex of a
molecular entity in Rρ maps to ∅ then all other vertices of this molecular entity
must also map to ∅ (Fig. 2(e)). Vice versa, if some vertex v ∈ M ⊆ Pρ lacks a
preimage, then no other vertices of M may have preimages. Importantly, up to
synthesis/degradation of molecular entities, fρ preserves components, i.e., ver-
tices of chemical species in Rρ and Pρ are the same even if molecular entities are
replaced with other molecular entities (Fig. 2(d)).
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Fig. 2. Different types of reactions. (a) Addition of an intermolecular chemical bond.
(b) Breaking of an intermolecular chemical bond. Note that breaking a bond does not
necessarily lead to two separate chemical species, because molecular entities may be
connected by more than one bond and bonds may be intramolecular as well as inter-
molecular. (c) Change of a component’s attribute value. (d) Replacement of a molecular
entity with two molecular entities having the same components. (e) Degradation of a
molecular entity. Note that, as suggested by the layout of the diagrams in this figure,
if the chemical-species graphs in Rρ and Pρ are each replaced with a single node, then
a chemical reaction can be represented as a directed bipartite graph.

2.6 Reaction Rules

A reaction rule is a generalization of an individual reaction. It defines a class of
chemical transformations of reactants to products; the reactants have common
properties, as do the products.

Definition 9. A Reaction Rule is a graph transformation rule r : RP → PP ,
a rate law ν, an application condition α, and precedence index N , where

1. A disjoint union of m reactant pattern graphs RP is used to match and
select m reactant chemical species Cr.

2. The transformation rule r includes a component-level mapping function f :
RP → PP consistent with chemistry (see above). It maps RP to a set of
n product pattern graphs PP . A set of reactant chemical species Cr un-
dergoes transformation by replacing the image of RP in Cr with PP via f .
Dangling edges are removed. This process of graph rewriting corresponds to
the well-known single-pushout approach [13]. Note that, to avoid ambiguity
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while embedding PP in Cr, any vertex of RP in V 0
RP of the interface IRP

must remain in the same set in PP , i.e., f(V 0
RP ) ⊆ V 0

PP .
3. The rate law ν is a function of rate parameters, such as a single-site rate

constant, and properties of chemical species Cr, such as their concentrations.
4. The application condition α may include, for example, a pattern selecting

species that may not serve as reactants.
5. The precedence index N is the priority of reactions generated by the rule.

It is sometimes convenient to specify a rule that will generate reactions that
replace a subset of reactions generated by another rule [17].

A reaction rule is illustrated in Fig. 3(a). It should be noted that a negative
application condition can be specified by assigning a zero-valued rate law to a
rule. All reactions with lower precedence generated by other rules are overridden.
A practical application of this idea is the case in which an inhibitor of an enzyme
is introduced to a model. An old rule that generates reactions catalyzed by the
enzyme can be overridden by a new rule that additionally contains the inhibitor
in RP and generates with higher precedence a reaction with a zero-valued or
reduced rate.

3 Model Generation

3.1 Application of Reaction Rules

A biochemical reaction network can be generated through iterative application
of a set of reaction rules to a seed set of chemical species until no further change
is possible (exhaustive generation) or a specified termination condition is reached
(such as iteration until a given number of product species or reactions has been
generated).

The process of applying reaction rules to a set of distinct chemical species
graphs C0 consists of the following steps, generalizing the algorithm of [17]. For
each chemical species C matched by RP , a transformation replaces RP in C
with PP according to a procedure of graph rewriting, which as mentioned earlier
corresponds to the standard single-pushout approach [13].

1. For each reaction rule rm,n, RP1+ . . . RPm → PP1+ . . . PPn, identify all sets
of species graphs in C0 that qualify as reactants. Then, for each RPi, find
all matching species graphs Ci ∈ C0. If an application condition is specified,
exclude all sets of species graphs that do not satisfy the condition.

2. For each set of reactant species
⊔
Ci, define a chemical reaction (graph trans-

formation) by replacing the image of
⊔
RPi in

⊔
Ci with

⊔
PPj . In this

operation, attributes of vertices in
⊔
Ci that do not differ between the cor-

responding vertices of
⊔
RPi and

⊔
PPj are preserved. Incident edges of⊔

Ci not indicated in
⊔
RPi or

⊔
PPj are also preserved. Any edge (l, c)

between a vertex l ∈ ⊔
RPj and c ∈ C \ ⊔

RPi is either replaced with an
edge (f(l), c), if f(l) ∈ ⊔

PPj , or removed, if f(l) = ∅. Assign the precedence
index N of the reaction rule to each reaction.
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3. Applying all reaction rules to the set of seed species, generate a list of distinct
reactions R0. If the list R0 contains identical reactions with different prece-
dence indices, delete reactions with indices less than the maximum index.
All identical reactions of the same precedence remain in R0.

4. Identify chemical species that are products in the list R0 but that are not
isomorphic to any in the list C0 to obtain a list of new species graphs C1.

FcFc FcFc

f

f f
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K
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RPRP

α

K
PPPP

PPPPRPRP
(a)(a) (b)(b)

Fig. 3. Reaction rule for ligand-receptor binding in the model of [19]. (a) The rule
consists of a reactant pattern graph RP , a product pattern graph PP , and a mapping
f . The interface of RP specifies that two Fc components and an α component of RP
should be unbound. The rule generates a reaction in which one Fc component is bound
to the α component; the other Fc component is unaffected. The remaining components
of species matched by the rule are also unchanged. (b) An example of a reaction that
may be generated by the rule.

After the initial steps listed above, we continue the network generation pro-
cedure by iteratively applying each of the reaction rules to the set of species in⋃k

i=0 Ci, where k is a counter that is updated after each round of rule applica-
tion. Note that reactions need only be generated when reactant species include
at least one reactant in the list Ck. After each round of exhaustive application of
the rules, we obtain a list of new reactions Rk and a list of new product species
Ck+1. Termination occurs when either no new species are found or a specified
termination condition is satisfied. Application of the reaction rule of Fig. 3(a)
is illustrated in Fig. 3(b). In general, finding subgraph and graph isomorphisms
can be computationally expensive (the subgraph isomorphism problem is NP-
complete [27]), but efficient methods are available for many problems of practical
concern [50,39]. Also, for two labeled attributed graphs, (sub)graph isomorphism
can be ruled out in many cases by a simple comparison of labels and attributes.
Issues of termination and computational complexity are discussed further below.

Termination. Figure 4 illustrates a set of rules for which the rule-evaluation
procedure described above is non-terminating [11,16]. The rules of Fig. 4 describe
interaction of a symmetric bivalent ligand with a symmetric bivalent cell-surface
receptor. Rules (a) and (b) and their reverse forms describe the formation and
break up of polymer chains of alternating ligands and receptors. Rule (c) and its
reverse form describe ring closure and opening. The potential size of the network
is limited physically by the numbers of ligands and receptors and binding pa-
rameters, but without regard to these quantities, the network is of infinite size.
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Rule evaluation can be terminated by specifying an arbitrary cutoff for chain
size, number of species, etc. or a maximum number of iterations of rule evalu-
ation. With such an approach, one must be careful to ensure that a generated
network is of sufficient size to encompass the species populated in a simulation.
Alternatively, as described below, rule evaluation can be embedded in network
simulation. With this approach, network elements (species and reactions) are
generated as needed and arbitrary termination of network generation is avoided.
The fact that a set of reaction rules can generate sets of species and reactions of
unbounded size demonstrates that membership of a given species in a reaction
network is semi-decidable, meaning that membership cannot generally be ruled
out in a finite number of steps. Also, in general, it cannot be determined if eval-
uation of a set of rules will eventually terminate in the absence of a specified
termination condition, such as a maximum number of iterations. For biochemi-
cal systems, it is difficult to imagine a situation in which non-terminating rule
evaluation could pose a major problem. The effective size of a network is always
limited for physical reasons (e.g., as when only a finite number of molecules is
available to populate the species of a network). An example of network size being
limited by protein copy number is discussed in [15].

RP1RP1

K1

PP1PP1

(a)(a)

RP2RP2

K2

PP2PP2

Ligand capture

Receptor chain elongation

RP3RP3

K3(n)(n)
PP3PP3

Receptor chain closure

K3(4)(4)

(c)(c)

(b)(b)

K2

K1

Fig. 4. Reaction rules for interaction of a bivalent ligand with a bivalent cell-surface
receptor. Evaluation of these rules is non-terminating. (a) Rule for ligand capture rule
and an example of rule application. (b) Rule for receptor chain elongation and an
example of rule application. (c) Rule for receptor chain closure and an example of rule
application. Note that the rate law in this rule depends on ring size [11]. Also note that
pattern RP3 selects a single species, whereas the pattern RP2 above selects two species.

Computational Complexity. The procedure of rule evaluation may be com-
putationally expensive for several reasons. Two important issues are as follows.

1. A problem of subgraph isomorphism must be solved to map a pattern graph
onto a species graph. Each reactant pattern in a rule set must be tested for
isomorphism against all of the species arising in a network.
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2. A problem of graph isomorphism must be solved to determine the uniqueness
of a species graph appearing in a new reaction. Each product of a new re-
action must be checked for uniqueness against the other species arising in
a network, which can be accomplished by generating a canonical label (a
string) for each product of each reaction.

The need to solve these problems in the procedure of rule evaluation could
limit the applicability of our modeling approach to ‘small’ systems in some cir-
cumstances. However, we expect the procedure to be practical more often than
not. Two factors serve to mitigate the computational costs. First, the vertices of
graphs are labeled and attributed, and as a result, the computational cost of iso-
morphism scales as the number of identical vertices (those sharing the same label
and attributes). This number is small in most cases we have considered, for ex-
ample, as in two models we have reported for signal-transduction systems [19,5].
It should be noted that these models are among the largest ever considered for
such systems, comparable in size to models developed for other systems using
distinct rule-based methods [36,37]. Second, even in cases where the first prop-
erty does not hold, as in the model of Fig. 4, the maximum degree of vertices
is generally small, one to three, and thus low-complexity algorithms are applica-
ble [38,21]. An unoptimized prototype implementation of our algorithm in Perl
(available upon request) demonstrates the practicality of the algorithm, which we
have used to generate an array of biological networks ranging in size from scores
of species to more than 104 species (unpublished material). Compared with the
method of BioNetGen 1.1 [4,17], which is based on string matching and substitu-
tion, we find that graph-based network generation is currently about an order of
magnitude slower. However, the method is still feasible. For example, with a lap-
top computer, the model of [19], which includes 354 species, is generated in about
2 s using BioNetGen 1.1 [4,17], and it is generated using the prototype software
in about 45 s. An extension of this model that includes 2954 species (available at
http://cellsignaling.lanl.gov) is generated in about 40 s and 1400 s using the
two software tools. Again, the prototype software has not been optimized: the al-
gorithm for (sub)graph isomorphism implemented at this time is simply that of
Ullmann [50]. Substantial improvements in performance should be possible.

3.2 Assigning Reaction Parameters

Although the rate law is the same for all reactions generated by a rule, rate con-
stants assigned to individual reactions may be different [17,37]. For purposes of
discussion, we will now assume that rate laws in reaction rules are rate laws for ele-
mentary reactions (i.e., they have the form νr = κrΠ

m
i=1[Ci], where [Ci] denotes the

concentration of chemical speciesCi) and that the rate constant of the rate law, κr,
is a single-site rate constant. For a given individual reaction, the rate constant κr

may need to be multiplied by any of a variety of factors to ensure consistency with
other reactions generated by the same rule r. A factor may arise for reasons related
to collision frequency. For example, the collision frequency of A + B reactions, in
the limit of large numbers, is twice that of A+A reactions, all other factors being
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equal. A statistical factor may arise if there is reaction path degeneracy (multiple
chemically indistinguishable reaction paths from reactants to products). A factor
may arise for reasons related to turnover frequency in the case of a catalytic reac-
tion. For example, if formation of a complex facilitates an enzymatic reaction by
co-localizing enzyme and substrate, then we must consider the number of enzymes
in the complex. A factor, which equals a volume ratio, may arise if reactions take
place in separate compartments of different volumes. Rate constants may also be
modified by the properties of the reactant chemical species (Fig. 4(c)).

Statistical factors are related to symmetries [17]. Factors greater than 1 arise
when a pattern RP is symmetric, meaning there exist non-trivial automorphisms
ψ : RP → RP , and the reaction rule breaks the symmetry of the pattern. A
transformation that completely breaks pattern symmetry is associated with a
statistical factor of |Aut(RP )|, where Aut(RP ) is the automorphism group of
RP . Consider, for example, the reaction rule A.A → A + A′ in which A is a
molecular entity graph, A′ is a form of A that differs with respect to attribute
values, RP ≡ A.A, ‘.’ represents an edge connecting molecular entities, and ‘+’
serves to indicate that PP ≡ A + A′ is disjoint union of the graphs A and A′

and that the molecularity of each reaction defined by the rule is 2. The reactant
pattern is symmetric, with |Aut(RP )| = 2, but the nontrivial autmorphism is
not preserved under the mapping onto the product patterns. This reaction rule,
applied to the chemical species B.A.A.B, has a statistical factor of 2, because
either of the two A molecules can be transformed into A′ and the reactions
B.A.A.B → B.A + A′.B and B.A.A.B → B.A′ + A.B are chemically indistin-
guishable. When an automorphism is preserved under the mapping onto product
patterns, it does not contribute to the statistical factor of a reaction. For exam-
ple, the rule A.A → A + A applied to the chemical species B.A.A.B generates
the reaction B.A.A.B → B.A + A.B with a statistical factor of one. In gen-
eral, the statistical factor arising from pattern symmetry is given by the ratio

|Aut(RP )|
|Aut(RP→PP )| , where the denominator indicates the size of the group of autmor-
phisms of RP that are preserved under the mapping of RP onto PP . Statistical
factors also arise when the reactant chemical species Cr contain symmetric in-
stances of RP . For example, the rule A→ A′ applied to A.A would generate the
reaction A.A→ A.A′ with a statistical factor of 2.

3.3 Embedding Rule Evaluation in Simulation

The method of network generation described above does not rely on the popu-
lations of species in the seed set or rate laws. Once a biochemical reaction net-
work has been generated, it can be used to formulate different types of models.
For example, one can generate a system of coupled ordinary differential equa-
tions (ODEs) or a stochastic simulation algorithm (SSA) [23,24], which is a Monte
Carlo procedure for simulating discrete-event reaction kinetics. However, there are
cases when all potential species of a reaction network cannot be exhaustively enu-
merated, as for interaction of a bivalent ligand with a bivalent receptor (Fig. 4).
For such a system, rule evaluation would proceed indefinitely unless an arbitrary
termination condition is specified. A solution to this problem is to embed rule
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evaluation in the simulation procedure, such that chemical species are generated
only as needed. Two methods for embedding rule evaluation in SSA-based simu-
lation of biochemical reaction kinetics have been proposed [37,17], and both are
now implemented in BioNetGen. With lazy rule evaluation [37], only reactions
and species connected to newly populated species are generated. With layered rule
evaluation [17], the network is extended when a species is populated for the first
time by applying the reaction rules for a specified number of iterations (the de-
fault is one round), as in the procedure described earlier, to all current species.
The relative efficiencies of the various simulation procedures have yet to be fully
evaluated, but preliminary (unpublished) results indicate that pregeneration of
a network followed by simulation and on-the-fly generation of a network during
simulation are complementary. Lazy and layered simulation-embedded evaluation
of rules are comparable for problems we have considered (unpublished material).
Embedding rule evaluation in ODE-based simulations is straightforward and may
provide better performance than analogous SSA-based simulations.

4 Discussion

The sheer size of some biochemical systems makes it difficult to formulate mod-
els for them and represent these models in comprehensible ways. Reaction rules
for biomolecular interactions help to solve these problems [29,26]. Rules serve
as generators of reactions, which can then be translated into mathematical or
computational models, in the way SBML [30] is translated into, say, a system of
coupled ordinary differential equations (ODEs). In our experience, the equations
of a rule-based model typically far outnumber the rules from which they are de-
rived [19,5]. The ability to generate models through automatic interpretation of
rules overcomes limitations of writing models manually, which may be impossi-
ble. In mathematics, many combinatorial problems that are intractable become
tractable when reformulated in terms of generating functions (rules). Here, we
have extended methods for rule-based modeling of biochemical systems by intro-
ducing a formalism for graphical reaction rules, which can expressively represent
biomolecular interactions and the consequences of these interactions.

Our main motivation for introducing graphical reaction rules is that such rules
allow the connectivity of proteins in a complex to be explicitly and systematically
represented. This ability is needed when connectivity affects the reactivity of a
complex. A simple example is provided by the case of a bivalent ligand interacting
with a bivalent cell-surface receptor. As illustrated in Fig. 4, such a ligand induces
the formation of rings and chains of receptors. However, only a chain, such as
the protein complex illustrated on the right side of panel (b), can associate with
additional ligand or receptor. A ring, such as the protein complex illustrated on
the right side of panel (c), can only break apart. Clearly, chains and rings, which
may have identical composition and differ only with respect to connectivity, must
be distinguished. The most straightforward way of solving this type of problem,
we believe, is through the introduction of graphs. The cost of introducing graphs
is computational complexity. This cost seems difficult to avoid if one wishes to
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track connectivity of complexes, which is important for mechanistic modeling of
many biological systems.

Graphical reaction rules have further representational advantages over other
means of summarizing and analyzing biological systems. They can be visualized
as cartoon-like diagrams and therefore used for the same purpose as diagram-
matic interaction maps [34,1], which are in common use. However, unlike most
interaction maps, rules have precise interpretations [16]. A set of well-posed rules
unambiguously specifies a reaction network, and a model for this network can be
generated through a computational procedure that interprets the rules. Because
the procedure is automatic, once rules are specified, very little mathematical or
computational expertise is required in principle to obtain a mathematical model.
Graphical reaction rules are also close in form to the type of biological knowledge
usually available about a system, which may consist mainly of a list of proteins,
their functional components, and their binding and catalytic activities, even for
a well-studied system. Thus, because graphical rules can be specified essentially
by drawing cartoon-like diagrams (an interface that provides this capability is
in development) and they provide a natural way to formalize biological knowl-
edge, graphical rules may, with maturation of software, allow more biologists to
contribute to the development of mathematical models, which are needed for
predictive understanding of biological systems, which are exceedingly complex.

Finally, rules for biomolecular interactions may be useful for high-throughput
modeling of large numbers of systems and for development of models that include
a large number of distinct interacting biomolecules. Rules are independent units
of a model specification and sets of rules are compositional, which allows models
to be built incrementally. In principle, crude models of a large size could be built
at present from information of pairwise protein-protein interactions currently cat-
alogued in electronic databases, such as the Human Protein Reference Database
[42]. However, large-scale modeling of higher quality will require cataloging the
functional domains involved in interactions and the conditions under which inter-
actions take place. Rules must be expressive enough to encode this information,
and graphical rules are a step forward. The independence of rules facilitates not
only incremental model building but also the consideration of alternative models
and mechanistic hypotheses. For example, to introduce a protein-protein interac-
tion in a system to investigate its effect, one can simply add an appropriate rule
instead of adding and modifying possibly large numbers of interrelated equations
or lines of code. If rules are stored in a machine-readable format in an electronic
database, they can be reused. Rules can be assembled in different ways to define
models for different systems, which may share some components, and models for
different parts of a larger system can be integrated by combining the correspond-
ing sets of rules. Community standards for storing and exchanging rule-based
models of biological systems are currently being discussed [31,22].

4.1 Related Work

We contribute a new application of ideas from formal systems, graph re-
writing, and (sub)graph isomorphism. Our formalism is expressive enough to
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represent protein-protein interactions. There is probably much room for algo-
rithmic improvement. A general framework for graph rewriting closely related to
the present work is that of AGG [49]. Graph rewriting has been used to model di-
verse biological systems [45] and other systems, such as chemical systems [3] and
self-assembling robotic systems [33]. This body of work provided inspiration. A
number of research groups have developed various methods for rule-based mod-
eling of signal-transduction systems. A few key references not already cited are
[40,44,14]. Software tools related to BioNetGen include STOCHSIM [35], Celler-
ator [46], Maude [14,48], BIOCHAM [20], and Moleculizer [37]. Others have also
suggested, like us, the use of graphs to represent proteins and protein-protein
interactions [9,10,48].
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