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A Computer Motivated Study of Problems in Number Theory 

Abstract 

 
Number Theory is a subject that fascinates both professional number-theorists and 

“recreational” mathematicians. The reason is clear: the objects that are studied are 

concrete, thus useful intuitions about them can be developed through experimenting with 

easy examples. Moreover, employing the computer in such investigations enables many 

more cases to be verified than can be done manually, thus facilitating the statement of a 

true conjecture, which subsequently requires a proof. Additionally, it sometimes paves 

the way towards other, related conjectures. 

The aim of this paper is to report on such a scenario; namely, the presentation of a 

problem, its investigation using the computer and the subsequent problems which arose 

as a result. All of these explorations were interlaced with a study of the necessary number 

theoretic background to effectively tackle the evolving problems. 

  

1. Introduction 

The problems discussed in this paper originated from a graduate course, Problem Solving, 

using Computer Algebra Systems (CAS), given for Israeli mathematics teachers by the 

second author at the Weizmann Institute of Science. (The first author was the teaching 

assistant in the course, and the third author adapted the materials for number theory 

classes.) The main goal of the course was to enable teachers to refresh and extend their 



 3

mathematical knowledge using CAS software as a mathematical tool and a programming 

language. We used Derive, but users of other programs can easily replicate the tasks. 

Since this was a new graduate course, the authors were engaged in producing computer-

based activities to achieve the goal of the course. One activity in Number Theory, 

originally a simple computer exercise, developed into interesting theory, where each 

problem was followed by an answer, and each answer -- again by a problem. The 

computer played a significant role in that sequence of investigations, and as a result we 

were quickly led into the world of Number Theory, starting from classical concepts and 

leading eventually to a conjecture due to Artin in1927, which remains unproved! 

Due to the logistic problem of simultaneously presenting the flow of ideas that evolved in 

the course and the related mathematical background, the paper is presented in the 

following format. For the convenience of the reader, the sequence of investigations will 

be described with intermittent references to a web document “Mathematical Appendix” 

(see http://stwww.weizmann.ac.il/g-math/mathcomp/number-theory.pdf) containing the 

relevant mathematical theory 

 

2. Starting from ‘simple’ problems 

We chose to introduce the software via problems in Number Theory for three reasons:  

1. The numerical power offered by a CAS is very impressive and quite different     

from other technological tools.  

2. Problems in Number Theory appear in the repertoire of mathematicians at all 

levels.  
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3. We can demonstrate clearly how the software's programming language constitutes 

the language of mathematics, using examples from Number Theory. For example, 

the Derive statement, “DIMENSION(SELECT(PRIME(k), k, 1,100))” in effect says    

“create a vector whose elements were SELECTED from the given sequence 

according to the primality criterion, and report the number of elements in this 

vector”. 

Problem 1.  Euclid proved that there is infinite number of primes. How many primes are 

between: 1 and 5,000? 1 and 10,000? 1 and 50,000? What can you say about the 

distribution of primes among the natural numbers? 

To get some feeling of the answers, the participants were advised to utilize the functions 

PRIME, SELECT, DIMENSION, and to represent the findings in a graph (Figure 1). Note 

that this graph is composed of 121 discrete points created by the TABLE command. 

 

Figure 1: Distribution of prime numbers 

Participants were then encouraged to surf to Web sites (see references) where they saw 

similar graphs to those they had produced and read about The Prime Number Theorem: 
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The number of primes not exceeding N, )(Nπ  is asymptotic to 
N

N
ln

 (notation: 

Nln
N~)N(π ). 

True mastery of this topic requires substantial mathematical knowledge in real analysis 

and thus was beyond the scope of the course. However, as a cornerstone of classical 

number theory, it was not an issue to be avoided. Hence, we came up with the following 

didactical bridge: 

(a) Find the number of primes in the intervals [10 m, 10 m+1-1] for different values of m, 

using the command DIMENSION(SELECT(PRIME(n),n,10m, 10m+1-1)); 

(b) Explain the results of (a) in the context of the Prime Number Theorem (PNT). 

The intervals were chosen to draw the learner's attention to the connection between the 

exponents in the definition of the intervals, and the logarithmic function in the theorem. 

The increasingly closer connection between the findings and the results of the PNT, 

served to reinforce participants’ understanding of the statement of the theorem (see Note 

1, Mathematical Appendix.)  

The object of the next investigation was to try and investigate empirically how many 

natural numbers x , in an interval determined by a given n ,  satisfied the property 

“ 12 −x is divisible by n  “. Indeed ,for a fixed n , and a multiple tn  of  n  for t   an 

arbitrary positive integer, we are looking at all integers in the interval 

}ntn,...tn,tn,tn{ 121 −+++  which is the interval between tn and n)t( 1+ . Specifically, 

Problem 2.   Let 1n ≥  be a natural number. From amongst the numbers  nt,  nt+ 1,  nt + 

2,…, nt + (n - 1), find those x = nt + k for which x2 - 1 is divisible by n. What is, in your 

opinion, the answer for general n? 
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The problem seemed a simple programming exercise: For n = 2, we have 2t, 2t+1, of 

which only (2t + 1)2 - 1 is divisible by two. For n = 3 it is readily seen that the expression 

x2 - 1 divisible by 3 only for x of the forms x = 3t + 1 or x = 3t + 2. For n = 4, amongst x 

=4t, x = 4t + 1, x = 4t + 2, and x = 4t + 3, x2 – 1 is divisible by 4 only for  x = 4t + 1 or x 

= 4t + 3. Note that it is enough to consider just k between 1 and n-1 instead of all natural 

numbers x, (see Note 2, Mathematical Appendix.). Thus, for larger values of n, we apply 

the command that prints all values of k between 1 and n -1, such that the greatest 

common divisor of k2 - 1 and n is equal to n. The results for 72 ≤≤ n  are illustrated in 

Figure 2 below:  

 

Figure 2: k satisfying GCD(k2 –1, n) =n for n=3,4, …, 7 

 For n=2, 3,...,7 the computer investigation seemed to indicate that x2 - 1 is divisible by n 

only for x = nt + 1 and  x = nt + (n - 1). However, the case n = 8 yielded 4 solutions: 

SELECT(GCD(k2 - 1, 8) = 8, k, 1, 7) = [1, 3, 5, 7]. For subsequent values of n,  
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Figure 3 shows the list of k's, satisfying GCD(k2 - 1, n) = n) for n between 8 and 24. 

 

Figure 3: k satisfying GCD(k2 – 1, n) =n  for n = 8, 9, …, 24 

Basically there are two issues of interest in the results shown in Figure 3:  

(a)  numerical patterns in the lists;  

(b)  the growth of the dimension of the lists; more specifically: if and for what values of    

       n, lists of 12 or 16  numbers would be obtained. 

To find an answer to these questions, we defined F(n) as the number of k values 

satisfying GCD(k2 - 1, n)=n. Thus,  

F(n):= DIMENSION(SELECT(GCD(k2 - 1, n)=n, k, 1, n - 1)). 

Whilst F(24)=8; for larger n's, (up to 80…. 119) the values of F(n) are all  2,4 or 8. But 

At this point it was evident that the ‘simple’ problem needed further investigation. It was 

conjectured that the value of F (n) was intimately connected with the factorization of n.  
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Problem 3.  Find F(n). 

We sat down to work on the problem with Derive. Looking for patterns in the data by 

factorizing the n's where a ‘jump’ occurred, yielded the following results: 

  n Factorisation of n F(n) 

8 32  4 

24 32 3⋅  8 

120 32 3 5⋅ ⋅  16 

The conjecture was that the next greater value of F(n) should be 32 and it should be 

achieved for n = 23·3·5·7 = 840. And indeed the computer confirmed that F(840) = 32, 

and that F(23·3·5·7·11) = 64. We could suggest a formula for F(n)! 

It was time to turn the machine off and to prove the conjecture using notions and 

principles from Number Theory. A simultaneous didactical challenge was how to 

introduce this investigation to the group of teachers with varied mathematical 

backgrounds. We will discuss this issue in the concluding section.  

 

3. Formula for F(n) 

Definition.  Let n be a fixed natural number. Then a and b are said to be congruent 

modulo n, symbolized by )(mod nba ≡ , if a - b is divisible by n, i.e. a – b = k·n for some 

integer k. 

Let us note, (see Note 2, Mathematical Appendix.), that any integer a can be represented 

as a = b + kn, where 10 −≤≤ nb . Therefore it is easy to see that if we are interested in 
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numbers modulo n, it is sufficient to consider 0, 1,…, n - 1. Respectively, the notation 

)n(mod)x(f 0≡  means that f(x) is divisible by n . 

In view of the above, Problem 3 can be restated as follows: 

Problem 3 (2nd version). How many solutions does the congruence )n(mod01x 2 ≡−  

have? 

The reader is referred to Note 3, Mathematical Appendix for the mathematical 

background needed to solve this problem. 

The essence of the solution lies in the following: 

Let 1 2
1 2 ... sk k k

sn p p p=  be the factorization of n into distinct prime powers. Assume that 

the congruence x ≡  0  (mod 1
1
kp ) has 1t  solutions, the congruence x ≡  0  (mod 2

2
kp ) has 

2t  solutions,…, the congruence   x ≡ 0 (mod sk
sp  ) has  st  solutions. Then f(x)≡ 0 (mod  n) 

has sttt .....21  solutions. 

Thus, calculation of F(n) for a given n involves: 

(1)  Factorization of n as a product of powers of distinct prime powers  ik
ip   for si ≤≤1 ; 

(2)  Counting numbers of solutions of congruences x2-1≡  0  (mod  ik
ip ) for all such ik

ip ;        

(3)  Multiplying the results. 

In this vein, we have: 

Lemma 1. The congruence x2 - 1 ≡  0  (mod αp ), with α a natural number and p an odd 

prime, has only two solutions (mod pa), namely  x = 1 and x = pa-1. 

Lemma 2. The congruence  x2 -1 ≡  0  (mod α2  ) has: 

(1) One solution x = 1 for 1=α ; 
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(2) Two solutions x =1 and x = 3 for α = 2; 

(3) Four solutions x=1, x=2a-1-1, x=2a-1+1, x=2a-1 for α  ≥  3. 

For proof of these Lemmas, see Note 4, Mathematical Appendix. 

Lemmas 1 and 2  prove the following Corollary: 

Corollary.  Let 0 1 2
1 22 ....k k k ks

sn p p p= . 

Then   {
0

1
0

2
0

2 1
( ) 2 2

2 3

s

s

s

if k
F n if k

if k

+

+

≤
= =

≥
 

A final aspect in “hands on” experimentation in the solution of problem 3, was to verify 

this formula using Derive by computing F(n) by this formula, and comparing results with  

straightforward computations of F(n). The testing is shown in Figure 4, where PD(n) 

gives the list of prime divisors of n in increasing order, and the command   

ELEMENT(B,k), gives the k-th element of the list B.  

                             

 

Figure 4: Testing the formula for F(n) 
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4. Why 2? Open road to the theory of primitive roots 

The solution to Problem 3, and the departure in pattern for the prime p=2, led naturally to 

the next realm of investigation, namely: 

Why is 2 not like the other prime numbers, both in the number and nature of solutions 

modulo a2  as α  varies?  

The answers require an understanding of the structure; both additive and multiplicative, 

of nZ , the set of distinct remainders modulo n, and in particular, the introduction of the 

notion of a “generator”.  

Additive generators of nZ : Whilst the set of integers Z  has only one additive generator; 

1, meaning that by adding and subtracting 1's, we can obtain any integer, it was noted, by 

means of the following exercise, that the set Ζ n has many additive generators.  

Exercise 1.  Show that for any  a in Ζ n relatively prime to n, the set   

{0, a, 2a, 3a,…, (n-1)a} coincides with Ζ n , (meaning that by adding and subtracting a's, 

we  obtain all elements of Ζ n ). 

Remark: This fact is easy seen using Derive, for example for n=9= 23 , a=4: 

 [p:=3, α:=2, a:=4] 

VECTOR(MOD(a* i, pα), i, 0, pα -1) = [0,4,8,3,7,2,6,1,5] 

Multiplicative generators of nZ : The core of this theory is furnished by Fermat's Little 

Theorem which was introduced via  the following exercise: 

Problem 4.  For a fixed prime p, study the values of ka  ( modulo p) for different primes  

p and a in Ζ n. Which conclusions can you state? 
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After computations for p=5 (see figure 5) and p=7,11, empirical evidence implied that 1 

appears in all sequences  a1, a2 ,  a3 , a4 , … with the maximal period p-1.  

 

Figure5: residues of ak modulo 5 

In light of the above we could state: 

Fermat's Little Theorem.  If p is a prime number and a is an element of Ζ p  (i.e. a is 

among the numbers 0, 1, …, p-1), then ap-1  ≡ 1 (mod  p), i.e. ap-1 –1  is divisible by p. 

For a reference, see Note 5, Mathematical Appendix. 

Another result which was conjectured : if a sequence   a, a1, a2, a3, a4, …  is periodic with 

period of length p - 1, then all numbers between 1 and p-1 occur as distinct powers of a  

 (7,3), (7,5) etc. 

The Multiplicative Structure of αp
Z  : 

Denote by *
nZ  the set of all x  in nZ  relatively prime to n. 

Problem 4 and Fermat’s Little Theorem motivated the definition of a multiplicative 

generator of *
nZ ; namely, an element a in *

nZ  whose distinct powers 2 3, , ...,a a a yield the 

whole of *
nZ . Such numbers are also called primitive roots of *

nZ . 
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Consider a particular case, n=p, for p prime . (For reference as to the existence of 

primitive roots of *
pZ  for every prime p, see Note 6, Mathematical Appendix). 

*
pZ  may have several primitive roots, for instance *

5Z  has both 2 and 3 as primitive roots, 

*
7Z  has 3 and 5 as primitive roots; but not every number is a primitive root, for example, 

4  is not a  primitive root of either of *
5Z  or *

7Z  .  

Problem 5. For a given *
pa Z α∈ , study the values of ka modulo n= αp . 

Testing the case 23n =  (Figure 6) it was discovered that no element of 9Z  generated all 

of 9Z  except 0; thus the direct analogue of  Fermat’s Little Theorem is not true. 

 

 

Figure 6: Values of ka modulo 23n =  

However, investigating the above results, it was observed that for  a relatively prime to 9, 

all elements of Ζ 9 relatively prime to 9 were obtained. 

Lemma. There exist  primitive roots αpmod  for odd  p, and every natural number α  . 

For proof, see Note 6 , Mathematical Appendix. 
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At this point we recalled the connection with Problem 3, and explained in terms of 

primitive roots, why )p(modx α12 ≡  has precisely two solutions. (for such an 

explanation, see Note 7, Mathematical Appendix). 

Problem 6: Do there exist primitive roots mod 2α ?  

 Whilst *
2Z  and 2

*
2Z  both have primitive  roots , namely 1 and 3 respectively, as can 

easily be verified, it was conjectured on the basis of the case for odd p,  that *
2nZ  for n≥ 3 

does not have primitive roots, for otherwise the congruence would have two solutions, 

but it has four.  

Exercise 2.  Using Derive, show that *
8Z , *

16Z , *
32Z  do not have primitive roots. (Fig. 7) 

 

Figure 7: Values of ka modulo n = 8 for a in *
8Z  

This leads naturally to the question: What is the structure of *
2nZ for n≥ 3? 

It appears that whilst, as can be seen (see Note 8, Mathematical Appendix) *
2nZ for n≥ 3 

does not have primitive roots, *
2nZ  for n≥ 3 is generated multiplicatively by two 

elements, meaning that multiplying two certain elements of *
2nZ  and their powers, we 

can obtain the whole set *
2nZ .  
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Exercise 3. Show that 5 and 7 are multiplicative generators of *
8Z , 5 and 15 – 

multiplicative generators of *
16Z . 

Indeed, for *
8Z ,   we get 1≡  52 ≡  72  (mod 8), 3 ≡  7*5   (mod 8), 5≡  5  (mod  8), 7 ≡  7  

(mod  8). 

 In the general case (see Note 8, Mathematical Appendix) we get 5 and 2n-1≡ -1(mod 2n) 

are multiplicative generators of *
2nZ , and each of elements of *

2nZ can be represented as 

x ±≡ 5k (mod 2n) for some value of k.  

To check that for the case of *
32Z , we calculated (Figure 8, note that 7 ≡ -1), and indeed 

all the elements of *
32Z  were thus obtained. 

  

Figure 8: 5 and 7 generate all elements of *
32Z  

5. Forward, to Artin's conjecture! 

Reflecting on the classical problems of the previous sections and their solutions, it was 

natural to ask if they connected to a more current area of number theory. We saw that 

a=2 was a primitive root for some *
pZ  with prime p, for example p=2,3,5,11; however, 

for some p values it was not. This begs the following question. For how many primes p, 

will a given fixed number a be a primitive root? Specifically, concentrating on the value 

2a = , the following problem was given to the students:  
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Problem 7.  Let π (N) be the number of primes less than or equal to N, ν 2(N) be the 

number of primes less than or equal to N for which 2  is a primitive root. What is the 

connection between these two numbers for large values of N?  

The following calculations were performed using Derive (in Figure 9 PRIMEPI(N) 

simplifies to π (N) and the function PRIMITIVE_ROOT(N)  simplifies to the smallest 

primitive root modulo N ). 

 
Figure 9: Computing ν 2(N)/ π (N) 

Now the conjecture pointed strongly in the direction of ν 2(N)≈0.376π (N). 

 In fact Artin's conjecture is the following: (for further details, see Note 9, Mathematical 

Appendix.) 

Artin's conjecture: If a ≠  bn   with  n > 1 , then ν a(N) )≈A π (N), where A is Artin's 

constant, A=0.3739558.... 

As a curiosity, it is worth mentioning that such tables up to N=100,000 were computed 

manually (!) in 1913 by Cunningham. Additionally, the technique of probability theory, 

amongst others are involved  in Number Theory, and led to Artin’s Conjecture as 

described in Note 9, Mathematical Appendix. 
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6. A computer led tour into number theory 

Clearly, thorough treatment of mathematical problems requires formal background. 

However, challenging problem-solving situations can motivate people to obtain the 

knowledge while solving the problems. This is certainly true with Number Theory. 

Sometimes, if you start to experiment with numbers (with or without the computer) it is 

almost impossible to stop until a result has been reached: either by some plausible 

conjecture, or by referring to books. This was the case when we started to explore the 

solutions of   x2 -1 ≡  0 (mod n) and the related issues. 

The appearance of innovative computational environments, like CAS in schools open 

new opportunities for performing experimental mathematics before constructing formal 

proofs. In planning a graduate course for mathematics teachers, Problem Solving, using 

CAS, our intention was that the software would serve not just as a tool for calculation, but 

rather as a learning and communicative environment. Consequently we emphasized its 

programming language for exploring problems in various mathematical topics.  

Regarding Number theory, we started with Problem 1 dealing with the distribution of 

prime numbers and leading to the Prime Number Theorem. Being unable to bring the too 

difficult proof in class, we were presented with an intriguing pedagogical challenge; 

namely that of bridging between the theorem on the one hand and the computer tools at 

our disposal on the other. Thus a new task was created, which can also be used by 

teachers in high school classes. Problem 2 started as a simple exercise of substitutions in 

the expression x2 – 1. When we ourselves worked on it we realized that the problem 

could be extended to a tour into the world of Number Theory. Thus the problem was 
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rephrased as Problem 3: How many solutions does the congruence )n(mod01x 2 ≡−  

have? Evidently this problem can be treated experimentally, but the proof requires a fair 

knowledge in Number Theory. The interesting solution (that we have not found in 

books), intrigued us and consequently the teachers. As to the question Why is 2 not like 

other primes, here more mathematical background in Number Theory was needed, 

specifically, the theory of primitive roots. To enable the teachers to work on it 

experimentally, using the CAS software, a sequence of problems (4-6) and exercises were 

introduced. Reaching this stage, for didactical reasons we considered it important to 

implement the knowledge and tools acquired in an additional related topic. We chose to 

present Artin’s conjecture (see Problem 7), which involves primitive roots and is also 

connected to the Problem 1 that deals with )(Nπ , the number of primes not exceeding N, 

from which we started. At this point we concluded our Number Theory didactical tour. 

The experimental mathematics was followed by discussion of the theory. We could not 

develop a rigid discourse in class because the group of teachers was very heterogeneous 

in terms of mathematical background. Thus we have prepared a mathematical appendix, 

relevant to the problems, to be used by the learners at their level. This pedagogical 

solution of compiling a package of problems for investigating with the computer 

accompanied by a document containing the mathematical background was found helpful 

during the course, where the teachers were advised individually.  

The teachers who participated in the course were graduate students highly motivated to 

accommodate both the advent of innovative technologies and modern theories of learning 

in their teaching and research work. For them constructing new knowledge through 

experimentation, conjectures and investigation was in fact practicing what they preach to 
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their students. Our enthusiasm and motivation in the preparation of the materials for the 

course were transparent and for some of the teachers contagious, thus they asked for 

more explanations on the mathematical appendix and really extended their theoretical 

knowledge. As mentioned at the beginning of the paper, the first part of the course was 

the section on number theory. The great involvement in experimenting the problems with 

the software resulted in fast and good mastery of the CAS environment, easing the work 

in the next sections. Towards the end of the course the teachers were asked to design 

CAS-based activities for their classes. Some prepared learning units on prime numbers 

and their distribution at the intuitive level for junior high school pupils, or for senior high 

school pupils referring to the PNT. Another unit developed by a teacher had to do with 

number of divisors of a given number (with or without using the built-in function of the 

software). 

The series of problems described in this paper together with the mathematical 

appendix can be integrated as a whole or in parts in Number Theory classes. 

Currently the sequence of problems has been assigned to college students as a 

project to complement the requirements in a course on Number Theory. 
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