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CENTER AND MOMENT CONDITIONS FOR RATIONAL ABEL
EQUATION

M. BLINOV, N. ROYTVARF, AND Y. YOMDIN

Abstract. We consider the Abel Equation dy
dz

= p(z)y2 + q(z)y3 as an equa-
tion on the complex plane with p, q – rational functions. The center problem
for this equation (which is closely related to the classical center problem for
polynomial vector fields on the plane) is to find conditions on p and q under
which all the solutions y(z) are univalued functions along the circle |z| = 1.
In [3] we have shown that this problem is closely related to Moment Problem,
namely conditions on p, q for vanishing of all the moments

∫
|z|=1

P iQjdP

with P =
∫

p, Q =
∫

q. We slightly generalize an approach and consider an
arbitrary curve γ ∈ C in place of the unit circle |z| = 1. The aim of this paper
is to give a simple and constructive description of rational functions P and Q
satisfying Moment Condition along γ, and to show that Moment Condition
implies Center Condition for P and Q – Laurent polynomials.

1. Introduction

We consider the classical Center-Focus Problem for homogeneous polynomial
vector fields on the plane (see e.g [12]): let F (x, y), G(x, y) be polynomials in x, y
of degree d. Consider the system of differential equations

(1.1) ẋ = −y + F (x, y), ẏ = x + G(x, y)

A solution x(t), y(t) of (1.1) is closed if it is defined in the interval [0, t0] and
x(0) = x(t0), y(0) = y(t0). The system has a center at the origin if all the solutions
around zero are closed. The classical Center-Focus problem is to find conditions on
F and G such that all the trajectories of this system are closed curves around the
origin.

It was shown in [5] that one can reduce the system (1.1) with homogeneous F ,
G of degree d to the trigonometric Abel equation

(1.2)
dρ

dθ
= p(θ) ρ2 + q(θ) ρ3, θ ∈ [0, 2π],

where p(θ), q(θ) are polynomials in sin θ, cos θ of degrees d + 1, 2d+ 2 respectively.
Then (1.1) has a center if and only if (1.2) has all the solutions periodic on [0, 2π],
i.e. the solutions ρ = ρ(θ) satisfying ρ(0) = ρ(2π). A natural modification of the
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classical center-focus problem is to find conditions on p and q such that (1.2) has a
center.

One can rewrite the differential equation (1.2) in a complex form, expressing
sin θ and cos θ through z = eiθ, i.e.

cos θ =
z + z−1

2
, sin θ =

z − z−1

2i
, ρ = y,

so one obtains p and q in the form of Laurent polynomials in z, and Abel
differential equation is

dy

dz
= p(z) y2 + q(z) y3

considered on the circle z([0, 2π]) = S1.

We generalize slightly the problem and consider Abel equation

(1.3)
dy

dz
= p(z) y2 + q(z) y3

with p(z), q(z) – arbitrary rational functions of the complex variable z.
We assume from the very beginning that the indefinite integrals of p and q do not

contain logarithmic terms, i.e. p =
dP

dz
, q =

dQ

dz
for rational P and Q. Let γ be a

closed curve in C not containing poles of P and Q.

Definition 1.1 (Center Condition). (1.3) has a center along γ if an analytic
continuation along γ of any solution of (1.3) does not ramify.

Consider now the infinitesimal version of this problem:

Definition 1.2 (Tangential center problem). Consider a family y(ε, x) of solutions
along a given closed curve γ of

(1.4)
dy

dz
= p(z) y2 + εq(z) y3,

with y(ε, a) = ya for any ε.
Find conditions on P , Q, under which (1.4) has an infinitesimal (or a tangential)
center, i.e.
1) it has a center for ε = 0

2) ŷ(x) =
d

dε

∣∣∣
ε=0

y(x, ε) is a univalued function along γ.

The following theorem was proved originally in [2]:

Theorem 1.3. The functions P and Q define a tangential center if and only if for
all nonnegative k and any a ∈ γ all the moments

(1.5) mk(x) =
∫ x

a

P k(t)dQ(t)

are univalued functions along the curve γ

A slight generalization of this approach leads to the following

Definition 1.4 (Moment Condition). P and Q satisfy Moment Condition along
γ, if mij =

∫
γ P i Qj dP = 0 for all nonnegative i, j.
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Note. The condition mij = 0 for all nonnegative i, j is equivalent to the condition
m̂ij =

∫
γ P i Qj dQ = 0 for all nonnegative i, j. Indeed,

dm̂i,j = Qjd

(
P i+1

i + 1

)
= d

(
QjP i+1

i + 1

)
−P i+1

i + 1
dQj = d

(
QjP i+1

i + 1

)
− j

i + 1
dmi+1,j−1

We shall use notations mij(P, Q, γ) and m̂ij(P, Q, γ).
Moment Condition plays a central role in many questions of Complex Analysis

in one and several complex variables. In classical theorems of Wermer ([1], [13],
[14]) and Harvey-Lawson [6] it is shown that Moment Condition is equivalent to the
fact that the curve Γ = (P, Q)(γ) ⊂ C2 bounds a compact complex one-dimensional
chain in C2.

To formulate our results, we need to consider a composition representation of
the functions P and Q.

Definition 1.5. If there is a rational function W (of degree greater than one) such
that P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)), with some rational P̃ and Q̃, then W is
called a (right) composition common factor of P and Q. If no such W exists,
P and Q are called relatively prime (in composition sense).

We use classical theorems by Wermer and Harvey-Lawson and composition rep-
resentation to produce our constructive description of rational functions, satisfying
Moment Condition:

Theorem 1 Let P , Q be relatively prime (in composition sense) rational functions.
Then mij(P, Q, γ) = 0 for all i, j ≥ 0 if and only if all the poles of P and Q lie on
one side of γ.

Exact formulation of the notion “points lie on one side of a curve” is given in
section 2 below, and all the proofs are given in section 3.

Consider now the case where P and Q are not assumed to be relatively prime.
Let W be the Composition Greatest Common Factor of P and Q, i.e. P = P̃ (W ),
Q = Q̃(W ), with deg W > 1, and P̃ , Q̃ – relatively prime rational functions.

Theorem 2 For P , Q as above, mij(P, Q, γ) = 0 for all i, j ≥ 0 if and only if all
the poles of P̃ and Q̃ lie on the same side of W (γ).

Using these theorems, we lift all the restrictions imposed on our result in [3],
and prove

Theorem 3 For P and Q – Laurent polynomials, vanishing of mij(P, Q, S1) im-
plies Center Condition on S1.

Besides Theorem 3, there are some other special cases where Moment Condition
implies Center one.

Theorem 4 Let P and Q be relatively prime rational functions, and let γ be a
simple closed curve (without self-intersections). Then Moments condition for P
and Q implies center.
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Figure 1. Signed number of intersection points

Corollary Let W be a composition Greatest Common Factor of rational functions
P and Q. If γ and W (γ) are simple closed curves, then Moment Condition implies
Center Condition.

The authors would like to thank F. Pakovich, J.-P. Francoise and G. Henkin for
inspiring discussions.

2. Some preliminary constructions

Both the Center and the Moment Conditions depend only on a homotopy class
of γ as a curve in C without poles of P , Q. Hence we can perturb γ to satisfy any
“general position” requirement. In particular, we always assume below that γ is a
smooth curve with transversal self-intersections.

It is also natural to consider P and Q as defined on the Riemann sphere CP 1 =
C

⋃∞, and γ as a curve in CP 1.
Let p1, . . . , pr be the poles of P and q1, . . . , qs the poles of Q on CP 1. We denote

by ∆ the set {p1, . . . , pr, q1, . . . , qs}.
The condition on γ, which is central in all the results below, is the following: γ

is homologous to zero in CP 1 \∆. However, to treat this condition in a convenient
way, we would like to give it another interpretation: all the poles of P and Q lie on
“one side of γ”. This last condition, being geometrically clear for simple curves γ,
requires more accurate explanation for curves with self-intersections. We give this
(certainly, not new, but essential for our presentation) explanation below, following
closely [1], [13], [14].

Let γ subdivide CP 1 into a finite number of simply-connected domains Dj,
j = 1, . . . , N . Let us fix one of these domains, say Di and let us consider the plane
U = CP 1 \ {s}, s – any point in Di. Then we can define the index of γ with
respect to each of the domains Dj , µij(γ) (or, shortly, µj), as the rotation of
the curve γ around any point in Dj (in the plane U).

More accurately, µij(γ) can be defined in several equivalent ways:

a. As an image of γ in the homology group H1(U \ {p}) ∼= Z, p – any point of Dj.

b. As the (signed) number of intersection points with γ of any path, joining s and
p, p – any point of Dj (see figure 1).
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Figure 2. Linking number of p and γ

c. As the linking number in U of the curve γ and the point p ∈ Dj. I.e. for any
complex one-dimensional chain Z in U , such that γ = ∂Z, µij(γ) is the (signed)
number of intersections of Z with p (see figure 2).

Notice that always µii = 0.
Now, all the domains Dj with µij = 0 form “one side” of the curve γ. All the

domains Dk with µik �= 0 form “another side”.

Definition 2.1. Points p1, . . . , pr are “on one side of γ”, if any two of these
points can be joined by a path, for which a signed sum of crossings with γ is equal
to zero. Another equivalent definition is that after fixing a domain Di, containing
one of the points pl, all these points are contained in domains Dj with µij = 0.

Notice that this definition is not symmetric: any two points in the domains Dj

with µij = 0 can be joined by a path with crossing number with γ equal to zero.
This is not true for the domains on the “other side” of γ.

Let ∆̃ = {x1, . . . , xm} be a finite set in CP 1.

Lemma 2.2. A curve γ in CP 1 \ ∆̃ is homologous to zero in CP 1 \ ∆̃ if and only
if all the points of ∆̃ are on one side of γ.

Proof: Assume that the curve γ bounds a complex one-dimensional chain Z̃ in
CP 1 \ ∆̃. We fix one of the points pi of ∆̃ and the domain Di, containing pi.
The chain Z̃ lies, in particular, in U = CP 1 \ {pi} and can be used to compute
the indices of the domains Dj, as defined above. Thus, for any domain Dj with
µij �= 0, Z̃ covers each of the points of Dj with a nonzero multiplicity µij . But
since Z̃ ⊆ CP 1 \ ∆̃, no point of ∆̃ can belong to such Dj .

Conversely, assume that all the points of ∆̃ are on one side of γ. This means
that all the points of ∆̃ belong to the domains Dk with µik = 0. Therefore, each of
the domains Dj with µij �= 0 lies in CP 1 \ ∆̃. Define the complex one-dimensional
chain Z̃ in CP 1 \ ∆̃ as follows: Z̃ =

∑
j

µijD̄j . Clearly, Z̃ ⊆ CP 1 \ ∆̃. Indeed, the

points of ∆̃ can appear only in domains Dj with µij = 0.
Now, using a definition of µij as the crossing number (definition b. above), we

get immediately that γ = ∂Z̃. This completes the proof of the lemma.

Another technical ingredient we need is an interpretation of the composition
(Definition 1.5) in terms of algebraic geometry of rational curves.
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The following facts are very basic in algebraic geometry. We restate them for
convenience of our presentation. For details we address the reader to any classical
algebraic geometry text (e.g. [11], see also [3]).

Lemma 2.3. The curve Y = {(P (t), Q(t)), t ∈ C} ⊆ C2 for rational P and Q is
an algebraic curve.

Lüroth theorem. Any subfield of a field of rational functions is generated by a
rational function.

Corollary 2.4. There exist rational functions W (t), P̄ (t), Q̄(t), s.t. P (t) =
P̄ (W (t)), Q(t) = Q̄(W (t)) and the map

ϕ̄ : C → Y, z 	→ (P̄ (z), Q̄(z))

defines a birational isomorphism between C and Y . In particular, Y is a rational
curve.

Definition 2.5. The degree of a map ϕ = (P, Q) : C → Y is the degree of the
algebraic extension [C(t) : C(P, Q)].

Corollary 2.6. If deg ϕ = 1, then ϕ defines birational isomorphism.

Definition 2.7. A rational function W (t) is called Composition Greatest Com-
mon Factor (CGCF) of rational functions P (t), Q(t), if W (t) is a common factor
under composition of P (t) and Q(t), and if W̃ (t) is another common factor of P (t)
and Q(t) under composition, then W (t) = R(W̃ (t)) for a rational function R.

Corollary 2.8. For any rational functions P (t), Q(t) their Composition Greatest
Common Factor W (t) exists and is given by corollary 2.4. CGCF is unique in the
algebra of rational functions under compositions up to composition with invertible
rational functions (i.e. functions of degree 1), i.e. two CGCF of a given function
can be obtained each one from another by (right and left) compositions with linear
functions.

Thus, the “greatest common factor” W of P and Q in composition sense exists,
and it can be found effectively, assuming that we can solve algebraic equations.
Notice, however, that the algebra of compositions of rational functions is rather
complicated (see [9], [10]).

Lemma 2.9. 1) For a rational map ϕ = (P, Q) : C → Y the number of preimages
of almost each point is equal to deg ϕ.
2) [C(t) : C(W (t))] = deg W (t).

Corollary 2.10. The degree of the map ϕ = [P, Q] is equal to the degree of the
rational CGCF of P and Q. If W is CGCF of P and Q, P = P̄ (W ), Q = Q̄(W ),
then ϕ̄ : C → Y , z 	→ (P̄ (z), Q̄(z)) has degree 1.

Thus, for P and Q relatively prime, a mapping ϕ = (P, Q) : C −→ Y ⊆ C2 is
a birational isomorphism. According to a general description of birational isomor-
phisms [11], we can give now a complete topological description of the affine curve
Y . Indeed, for a generic point of Y , ϕ−1(y) consists of one point. There is a finite
number of points y1, . . . , yl ∈ Y , which have more than one preimage under ϕ. Let
ϕ−1(ym) = {xm1, . . . , xmnm}.

Finally, each pole of P or Q in CP 1 corresponds to a point of Y “at infinity”.
Denote, as above, these poles by p1, . . . , pr, q1, . . . , qs, respectively. We get the
following result:
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Theorem 2.11. Affine curve Y ⊆ C2 is homeomorphic (under ϕ = (P, Q)) to
CP 1 \ {p1, . . . , pr, q1, . . . , qs} with the points {xm1, . . . , xmnm} glued together for
each m = 1, . . . , l.

3. Main results

Theorem 3.1. Let P and Q be relatively prime in composition sense. Assume
that one of the poles p1, . . . , pr, q1, . . . , qs belongs to the domain Di of the partition
of CP 1 by γ. Then mkl(P, Q, γ) = 0 for all k, l ≥ 0 if and only if all the poles
p1, . . . , pr, q1, . . . , qs of P and Q are on one side of γ, i.e. they belong to the domains
Dj with the zero indexes µij .

We can give also a description of the complex one-dimensional chain Z in C2,
bounded by Γ = (P, Q)(γ), which exists by Wermer and Harvey-Lawson theo-
rems. Remind that by Lemma 2.2, if all the poles p1, . . . , pr, q1, . . . , qs of P ,
Q are on one side of γ, then γ bounds a complex one-dimensional chain Z̃ in
CP

1 \ {p1, . . . , pr, q1, . . . , qs}.
Theorem 3.2. Let P and Q be relatively prime in composition sense. Then Γ =
(P, Q)(γ) bounds a complex one-dimensional chain Z ⊆ Y ⊆ C2, Z = (P, Q)(Z̃).

The proof of these theorems will be given below.

Consider now the case where P and Q are not assumed to be relatively prime.
Let W be the CGCF of P and Q, i.e. P = P̃ (W ), Q = Q̃(W ), with deg W > 1,
and P̃ , Q̃ – relatively prime rational functions. Perturbing, if necessary, the curve
γ, we can assume, that also the curve W (γ) has only normal crossings.

Corollary 3.3. For P , Q as above, mij(P, Q, γ) = 0 for all i, j ≥ 0 if and only if
all the poles of P̃ and Q̃ lie on the same side of W (γ).

Proof: By definition, mij(P, Q, γ) = mij(P̃ , Q̃, W (γ)), and the result follows from
the theorem 3.1.

For P , Q as above, theorem 3.2 can be reformulated accordingly.

Corollary 3.4. The set Md of all the couples (P, Q) of rational functions of degree
d satisfying Moment Condition on γ consists of the open components formed by
relatively prime P , Q, having all the poles “on one side” of γ, and of components
of a smaller dimension, formed by some couples (P, Q) with a nontrivial CGCF.

Proof: Follows directly from Theorem 3.1 and Corollary 3.3

We can give another description of the set M of all the couples of rational
functions , satisfying Moment Condition on γ.

Corollary 3.5. The set M consists of all the couples (P̃ , Q̃) having poles on one
side of γ, , and of those couples (P, Q) which are obtained from the previous ones
by composition P = P̃ (W ), Q = Q̃(W ) with a nontrivial W .

Now we consider the case of P , Q – Laurent polynomials.

Corollary 3.6. The set of Laurent polynomials P , Q with mij(P, Q, S1) = 0 con-
sists of P , Q with poles “on one side of S1” and of P , Q, allowing a composition
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representation P = P̃ (W ), Q = Q̃(W ), with W – Laurent polynomial, P̃ and Q̃ –
usual (algebraic) polynomials.

Proof: Follows from the result above, and from the fact proved in [3]: there are
only two possible composition representation of Laurent polynomials:
a) P = P̃ (W ), Q = Q̃(W ), with P̃ and Q̃ – usual (algebraic) polynomials and W

– Laurent polynomial. In this case all the moments vanish since P̃ and Q̃ have a
pole only at infinity.
b) Another possible factorization is P = P̃ (zm), Q = Q̃(zm), with P̃ and Q̃ –
Laurent polynomials. But the change of variables W = zm preserves the property
of the poles of P and Q to be on one side of S1, QED

Theorem 3.7. For P and Q – Laurent polynomials, vanishing of mij(P, Q, S1)
implies Center Condition on S1.

Proof: By corollary 3.6, Moment Condition for P , Q implies either a composition
representability P = P̃ (W ), Q = Q̃(W ), with P̃ , Q̃ usual polynomials, or a prop-
erty that all the poles of P and Q are on the same side of S1. In both cases the
Abel equation y′ = p(z) y2 + q(z) y3 has a center on S1, since P and Q are regular
(in the first case, after factorization by W ) in a simply-connected domain, bounded
by S1, QED

The problem for rational functions beyond Laurent polynomials is that the con-
dition “all the poles of P and Q are on the same side of γ” is equivalent to the fact
that γ is homologically trivial in CP 1 \ {p1, . . . , pr, q1, . . . , qs}. However, γ may be
homotopically nontrivial.

Consequently, we can not conclude that the Abel equation (1.3) does not ramify
along γ. It would be interesting to find specific examples of rational P and Q and
γ, for which the Moment Condition is satisfied, while the Center Condition is not.

Besides Theorem 3.7, there are some other special cases where Moment Condition
implies Center one.

Corollary 3.8. Let P and Q be relatively prime rational functions and let γ be
a simple closed curve (without self-intersections). Then Moments condition for P
and Q implies center.

Proof: By theorem 3.1 all the poles of P and Q are on the one side of a simple
closed curve γ. Hence γ bounds in CP 1 a simply-connected domain D, where both
P and Q are regular. But then the solutions of (1.3) on D can not ramify, QED

Corollary 3.9. Let W be a composition Greatest Common Factor of rational func-
tions P and Q. If γ and W (γ) are simple closed curves, then Moment Condition
implies Center Condition.

Proof: Follows from the previous result and corollary 3.3.

Remark. It is interesting to notice that in the question, studied in this paper,
namely, relation between the Moment and the Center Conditions on closed curves
γ, existence of a nontrivial common composition factor W of P and Q seems to
complicate a picture. Indeed, for γ a simple closed curve. W (γ) may have self-
intersections, and thus topological problem mentioned above can arise. Another
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example is given by equation (1.3) with P = ρ and Q = ρ′, where ρ is the Weier-
strass function of a certain period lattice on C. The study of this example has
been started in [4]. It is shown there that for γ a small circle around 0 in C, the
Moment Condition is satisfied while the Center Condition is not. It is important
to notice, that ρ and ρ′, being double periodic on C, have a composition factor-
ization with W : C −→ T – a factorization of C by the periodic lattice. This is
apparently in contrast with the situation for polynomial Moment and Center prob-
lems on the interval [a, b]. Here composition factorization for P and Q (indeed,
with W (a) = W (b)) is equivalent to the Moment condition [8], and conjecturally
is equivalent to the Center. Notice, however, that by [7] the “reduced” Moment
condition mi0(P, Q, [a, b]) = 0 for all i > 0 does not imply Center condition.

Proof of Theorems 3.1 and 3.2:
We have rational P and Q with no nontrivial composition factor. Let, as above,

p1, . . . , pr be the poles of P and q1, . . . , qs be the poles of Q, ∆ = {p1, . . . , pr, q1, . . . , qs}
and let y1, . . . , yl ∈ Y = ϕ(C), ϕ = (P, Q) be multiple points of Y , i.e. the points,
having more than one preimage under ϕ.

Perturbing γ slightly, we can assume the γ is smooth and real analytic. Indeed,
we can represent γ by zeroes of a smooth function F with regular critical points.
Approximating F by a polynomial, while preserving critical points and values,
provides a required analytic approximation of γ. We can assume that γ does not
pass through the preimages under ϕ of the points y1, . . . yl and that γ does not pass
through critical points of P and Q. Hence, denoting Γ = ϕ(γ) the image curve of
γ under ϕ = (P, Q) we obtain that Γ is a smooth real analytic curve in Y with
transversal self-intersections, and ϕ : γ −→ Γ is a 1-1 analytic homeomorphism.

The Moment condition on γ is now written as

mij =
∫

Γ

xi yj dx = m̂ij =
∫

Γ

xi yj dy = 0

for all i, j ≥ 0. Now we apply the theorem of Harvey and Lawson ([6], see also
[13], [1]). It claims that any Γ in C2 that satisfies a moment condition, bounds a
compact complex one-dimensional chain Z in C2.

Lemma 3.10. Z ⊆ Y .

Proof: Γ is a real analytic curve. Hence locally near Γ there is only one complex
analytic curve, containing Γ, namely Y . (Otherwise two complex curves Y and
Ỹ �= Y would intersect on the real curve Γ.) Hence, near Γ, Z ⊆ Y . By analytic
continuation, Z ⊆ Y globally, QED

Corollary 3.11. Γ is homological to zero in Y .

Lemma 3.12. γ is homological to zero in CP 1 \ ∆.

Proof: By theorem 2.11, Y is obtained from CP 1 \∆ by gluing together preimages
of each of the points y1, . . . , yl ∈ Y . But γ does not intersect these preimages,
and gluing a finite number of points together does not influence the first homology
group. Hence the result of the lemma follows from Corollary 3.11

This completes the proof of one direction of the theorem 3.1, since, as it was
explained above, γ is homological to zero in CP 1 \ ∆ if and only if all the poles of
P and Q lie on “one side of γ”.
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Another direction (if all the poles of P and Q are on one side of γ, then all the
moments vanish) is almost immediate: indeed, by lemma 3.12, γ bounds a regular
chain in CP 1 \∆. But then vanishing of the moments follows by Cauchy Theorem.
Theorem 3.1 is proved.

The proof of theorem 3.2 is immediate, since ϕ = (P, Q) is one to one on γ. Hence
Γ = (P, Q)(γ) bounds the complex one-dimensional chain (P, Q)(Z̃) ⊆ Y ⊆ C2,
QED
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