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Abstract

An Abel di�erential equation y� � p�x�y� � q�x�y� is said to have a center at
a pair of complex numbers �a� b� if y�a� � y�b� for any its solution y�x� �with the
initial value y�a� small enough�� Let p� q be polynomials and let P �

R
p�Q �

R
q�

P and Q satisfy �Polynomial Composition condition� if there exist polynomials
�P 	 �Q and W such that P �x� � �P �W �x��	 Q�x� � �Q�W �x��	 and W �a� � W �b��
The main result of this paper is that for a 
xed polynomial p �satisfying some
minor genericity restrictions� and for a 
xed degree d of a polynomial q there
exists ��p� d� � � such that for any polynomial q of degree d with the norm of q
at most ��p� d� the Abel equation above has a center if and only if the Polynomial
Composition condition is satis
ed� On this base we also provide an upper bound
for the cyclicity of the zero solution of the Abel equation �i�e� for the maximal
number of periodic solutions which can appear in a small perturbation of the zero
solution��
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� Introduction

Consider the system of di�erential equations

�
�x � �y � F �x� y�
�y � x�G�x� y�

�����

with F �x� y� and G�x� y� vanishing at the origin with their �rst derivatives�
The system ����� has a center at the origin if all the solutions around zero are
closed� The classical Center�Focus problem is to �nd conditions on F and G
necessary and su�cient for system ����� to have a center at the origin�

This problem together with a closely related second part of Hilbert�s �
�th
problem �asking for the maximal possible number of isolated closed trajecto�
ries of ����� with F �x� y� and G�x� y� polynomials of a given degree� persists
till now all the attacks� Many deep partial results have been obtained �see
��� �� ��� 		�� but general center conditions are not known even for F �x� y�
and G�x� y� polynomials of degree 	�

The classical approach to the Center�Focus problem is to analyze the
conditions on the parameters of the system ����� provided by the vanishing
of the �rst several �obstructions� to the existence of the center� If as a result
one can show the existence of the ��rst integral� of ����� then the system has
a center and no further analysis of the obstructions is necessary� The problem
is that already for F �x� y� and G�x� y� polynomials in x and y of degree 	
the obstructions analyzed till now do not necessarily imply the existence of
the �rst integral of any known type�

An alternative approach to both the Center�Focus and Hilbert �
�th prob�
lems is provided by the study of the perturbed integrable situations �in par�
ticular� perturbed Hamiltonian vector �elds�� See ��� �� ���� The investiga�
tion of the perturbation version �or of the in�nitesimal version� of the above
problems led to many important results� in particular� to a serious progress
in understanding of the analytic structure of Abelian integrals �see ���� and
references there��

In the present paper we consider a certain variant of the Center�Focus
problem �closely related to the original one� � the Center�Focus problem for
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the Abel di�erential equation

dy

dx
� p�x�y� � q�x�y�� �����

This problem is to provide necessary and su�cient conditions on p� q and
a� b � C for all the solutions y�x� of ����� to satisfy y�a� � y�b�� The
Abel equation version of the Center�Focus problem has been studied in
��� �� 	� ��� ��� ��� �	� �see also �	��� and in many other publications� As
shown in ���� and in subsequent papers� it suggests important technical sim�
pli�cations and it opens important relations with classical Analysis and Al�
gebra� Still� the Abel equation versions of both the Center�Focus and Hilbert
�
�th problems apparently re�ect the main di�culties of the original classical
ones�

The investigation of the in�nitesimal Center�Focus problem for the Abel
equation has been started in ���� and in subsequent publications of the same
authors and in ��� ��� and others� It turned out to be essentially a certain
problem in Analysis related to the classical Moment problem on one side
and to the Composition algebra of univariate polynomials on the other� By
now a reasonable understanding of the in�nitesimal Center�Focus problem
for the Abel equation has been achieved� especially after the recent results
of ���� ��� �
� ��� ����

The main goal of the present paper is to use the results of this in�nitesi�
mal analysis back in the Center�Focus problem itself �at least� locally�� This
is done by a comparison of the �nonlinear� �Center equations� with their
linear parts�

Let us remind that as in the classical case� also for the Abel equation the
Center conditions in the space of the parameters of the problem are given
by an in�nite set of the �obstructions� i�e� of certain polynomial equations
on the parameters ��Center equations� � see Section 	 below�� Hence� by
Hilbert�s �niteness theorem the Center conditions are in fact provided by a
certain �nite number N of the Center equations� Formally one can say that
the Center�Focus problem is just to �nd this number N � More constructive
approach is to understand the structure of the Center equations and on this
base to produce meaningful necessary and su�cient conditions for the Center
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�obtaining on the way also a bound for N��

This last approach is taken in the present paper� The in�nitesimal anal�
ysis of the Center�Focus problem for the Abel di�erential equation leads to
the �Moment vanishing condition� and to the �Moment equations� which
are the linear parts of the Center equations� The Moment equations imply
�usually� the �Composition condition� which in our setting is the main �and
the only� �Integrability condition�� In particular� the Composition condition
implies Center� Moreover� it implies the vanishing of each nonlinear term
in the Center equations� We translate these analytic and algebraic informa�
tion into the information about the algebro�geometric structure of the Center
equations� Finally� the analysis of this algebro�geometric structure implies
our main results� local Center conditions for the Abel equation� description
of the Bautin ideal and upper bounds for the �cyclicity� of the zero solution
�i�e� for the number of the periodic solutions which can appear in a small
perturbation of the zero one��

� Statement of the main results

Consider the Abel di�erential equation

dy

dx
� p�x�y� � q�x�y�� �����

with p�x� � P ��x� and q�x� � Q��x� polynomials in x � C �

De�nition ��� Let a pair of complex numbers �a� b� be given� The solution
y�x� of ����� is called periodic at �a� b� if y�a� � y�b�� Equation ����� is
said to have a center at �a� b� if any its solution �with the initial value y�a�
small enough� is periodic at �a� b� �or equivalently� if y�a� � y�b� for any its
solution y�x� with the initial value y�a� small enough��

For small initial values y�a� the solutions y�x� of ����� are regular in any
�xed disk around 
 � C � Hence we do not need to specify in De�nition ���
the continuation path from a to b for the solutions y�x��

De�nition ��� Polynomials P �x� and Q�x� satisfy a Polynomial Composi�
tion condition �PCC� at �a� b� � C if there exist polynomials �P �w�� �Q�w�

	



and W �x� with W �a� � W �b� such that

P �x� � �P �W �x��� Q�x� � �Q�W �x��� �����

Polynomial Composition condition �PCC� for the polynomials P and Q im�
plies that Abel equation ����� with p�x� � P ��x� and q�x� � Q��x� has a
center at a� b� This simple but basic fact follows via a change of variables
w � W �x� in ������ which closes the integration contour� while the coe��
cients of the transformed equation still remain polynomials� Hence for small
initial values the solutions �y�w� of the transformed equation do not ramify�
But the solutions y�x� of ����� are expressed as y�x� � �y�W �x�� and since
W �a� � W �b� we have y�a� � y�b� for any solution y�x� of ������ A proof of
a similar implication for iterated integrals is given in Proposition 	�� below�
See also �����

For given P�Q the condition �PCC� can be e�ectively veri�ed by alge�
braic calculations�

A composition condition similar to �PCC� has been introduced for a
trigonometric Abel equation in ��� ��� The condition �PCC� has been in�
troduced and intensively studied in ���� ��� �	� ��� 
� �� ��� 	�� There is a
growing evidence supporting the major role played by the Polynomial Com�
position condition �and in general� by the polynomial Composition Algebra
� see ����� in the structure of the Center conditions for the polynomial Abel
equation� In particular� we have no counterexamples to the following �Com�
position conjecture��

Composition conjecture� The Abel equation on the interval �a� b� with p� q
polynomials has a center if and only if �PCC� holds for P �

R
p�Q �

R
q�

This conjecture has been veri�ed for small degrees of p and q and in many
special cases in ���� ��� �	� ��� 
� �� ��� 	���

In this paper we take a �non�symmetric� approach to the Center�Focus
problem for the Abel equation� Namely� we assume the polynomial p in �����
to be �xed while only the degree d of q is �xed and the polynomial q is
allowed to vary inside the space Vd of all the complex polynomials of degree
at most d� We shall show that under certain genericity assumption on the
�xed p locally with respect to q � Vd the Center condition for ����� and the
Composition condition �PCC� are equivalent�
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The assumption on the �xed p which is central for the method used in the
present paper� is given by De�nition ��	 below� Let us stress� however� that
this restriction can be presumably eliminated by considering higher order
perturbations�

Consider the following �one�sided� moments�

mk �

Z b

a

P k�x�q�x�dx� k � 
� �� � � � � ���	�

The vanishing of the momentsmk �which we shall call a �Moment condition��
is also implied by the Composition condition �PCC� �by the same reasons as
above and as in Proposition 	�� below� See also ������

Notice that the validity of the Moment condition does not depend on the
choice of the constant terms in P and Q� This is immediate for Q since only
q � Q� enters into the expression ���	�� The moments for P � c are linearly
expressed through the moments for P and vice versa� so this is true also for
P � In what follows we shall mostly assume that P �a� � Q�a� � 
�

De�nition ��� A polynomial P is called �de�nite	 �with respect to a� b � C �
if for any polynomial q the vanishing of the one�sided moments mk� 
 �
k � �� implies �and hence is equivalent to� the Polynomial Composition
condition �PCC� for P and Q �

R
q�

All polynomials P up to degree � are de�nite� In the space Vl of polynomi�
als P of a �xed degree l � 
 non�de�nite polynomials belong to a certain
proper algebraic subset� More speci�cally� all indecomposable P are de�nite
�for every a �� b�� as well as all P with P ��a� �� 
� P ��b� �� 
� Cheby�
shev polynomial T� is not de�nite with respect to a � �p	��� b � p

	��
������� In the Addendum below we present a survey of the recent results of
��� �� �
� ��� ��� �	� ��� ��� �
� ��� 	�� ��� describing several classes of de�nite
polynomials�

The following theorem is the �rst main result of this paper�

Theorem ��� Let a polynomial p � P � be �xed� with the polynomial P def�
inite� Let the maximal degree d of the polynomials q be �xed� There exists
� � ��p� d� a� b� � 
 depending only on p� a� b and d such that for any q of
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degree d with k Q k� � the equation y� � p�x�y� � q�x�y� has a center at a� b
if and only if P and Q �

R
q satisfy the Polynomial Composition condition

�PCC��

The proof of theorem ��� is given in Section � below�

Remark� In a recent paper �	�� an interesting analysis of the Center�Focus
problem for the Abel di�erential equation is presented� partly similar to our
approach� In particular� theorem ��
 of �	�� is essentially a special case of our
theorem 	�� for p of degree �� Although formally the statement of theorem
��
 of �	�� is weaker �it does not guaranty the uniformity of the �locality size�
with respect to the polynomials q of a �xed degree� we believe that the proof
of theorem ��
 of �	�� essentially provides the uniform bound�

The approach of the present paper allows us to compute also the local
Bautin ideal I of ����� i�e� the ideal in the ring of holomorphic functions on
the ball B� of radius � in Vd generated by all the Taylor coe�cients vk�q�
of the Poincar�e �rst return mapping G on a� b� �See Section 	 below for an
accurate de�nition of G�� Moreover� we can compute also the Bautin index
b�P� d� a� b� which is the minimal number of vk which generate I�

In a similar way we can de�ne the stabilization index of the Moment equa�
tions� More accurately� let us de�ne the �Moment Bautin index� N�P� d� a� b�
as follows�

De�nition ��� For P a de�nite polynomial on a� b and for any natural d
the Moment Bautin index N�P� d� a� b� is the minimal number of the mo�

ments mk �

Z b

a

P k�x�q�x�dx whose vanishing implies for any q � Vd that

the Polynomial Composition condition �PCC� is satis�ed by P and Q �
R
q�

The existence ��niteness� of N�P� d� a� b� follows from the stabilization of the
decreasing sequence of linear subspaces Lj de�ned by the vanishing of the
moments mk� 
 � k � j� in the space Vd� A natural conjecture is that always
N�P� d� a� b� depends only on the degree of P and on d�

The following theorem is the the second main result of this paper�






Theorem ��� Let p � P � be �xed� with P de�nite� The local Bautin ideal I
of Abel equation ����� on a� b coincides with the ideal J generated by all the
moments mi�q�� It is in fact generated by v�� � � � � vN�� or by m�� m�� � � � � mN �
where N � N�P� d� a� b� is the Moment Bautin index� In particular� the
Bautin index b�P� d� a� b� is equal to N�P� d� a� b� � 	�

Theorem ��� implies an explicit bound on the �cyclicity� of the zero
solution y�x� � 
 of the Abel equation ����� i�e� on the number of periodic
�those with y�a� � y�b�� solutions y�x� of ����� which can bifurcate from the
zero solution�

Let a de�nite P and deg q � d be �xed and let � � ��P� d� � 
 be as
de�ned in theorem ���� The following theorem is the third main result of
this paper �it is also proved in Section � below��

Theorem ��� There is � � ��P� d� � 
 such that for any q with k q k� ���
the number of solutions y of the Abel equation ����� satisfying y�a� � y�b�
and jy�a�j � � does not exceed N�P� d� a� b� � 	�

� Poincar�e mapping and Center equations

The Poincar
e �rst return mapping G�y� of Abel equation ����� at a� b � C

associates to each y � ya the value G�y� � y�b� at the point b of the solution
y�x� of ����� satisfying y�a� � ya at the point a� For y � ya su�ciently small
G�y� � y�b� does not depend on the continuation path from a to b� so G�y�
is a regular function for y near zero and it is given by a convergent power
series

G�y� � y �
�X
k��

vk��� a� b�y
k� �	���

where � � ���� ��� � � �� is the ��nite� set of the coe�cients of p� q�

The solution y�x� of ����� is periodic at �a� b� if and only ifG�y�a�� � y�a��
The equation ����� has a center at �a� b� if and only if G�y� � y� Therefore
we get the following simple but basic fact�

Proposition ��� Abel equation ����� has a center at a� b if and only if the
in�nite sequence of equations

vk��� a� b� � 
� k � �� � � � �	���
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is satis�ed�

We shall call equations �	��� the center equation and the set C of the param�
eters � satisfying �	��� we call the Center set�

It is convenient to �free� the endpoint b in �	���� if we denote by G�y� x�
the Poincar�e �rst return mapping G�y� at a� x we obtain the following con�
vergent Taylor representation which can be used to express both the Poincar�e
mapping �as we �x x� and the solutions of ����� �as we �x y��

G�y� x� � y �
�X
k��

vk��� a� x�y
k� �	�	�

One can easily show �by substituting expansion �	�	� into equation ������
that vk�x� � vk��� a� x� satisfy the recurrence relation

������
�����

v��x� � 

v��x� � �
vn�
� � 
 and

v�n�x� � p�x�
X
i�j�n

vi�x�vj�x� � q�x�
X

i�j�k�n

vi�x�vj�x�vk�x�� n � ��

�	���

An immediate consequence is the following�

Proposition ��� The Taylor coe�cients vk��� a� x� are polynomials in a� x
and in �� In particular� for x � b the coe�cients vk��� � vk��� a� b� are
polynomials in the parameters a� b� ��

Proof� This follows from the recurrence relation �	��� via induction by k�

So in fact Center equations �	��� are polynomial ones� By Hilbert�s �nite�
ness theorem the Center set is in fact de�ned by a �nite subsystem of �	���
and in particular it is an algebraic subset of the space of the parameters�

It was shown in ���� that the recurrence relation �	��� can be linearized in
the following sense� consider the inverse Poincar�e mappingG�� associating to
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the end value y�x� � yx of each solution y of ����� its initial value y�a� � ya�
We have a Taylor expansion

ya � G���yx� � yx �
�X
k��

�k��� a� x�y
k
x� �	���

In particular� for x � b we get the inverse to the Poincar�e mapping G at
a� b� Hence the Center condition y�a� � y�b� is equivalent to another in�nite
system of polynomial in � equations

�k��� a� b� � �k��� � 
� k � �� � � � � �	�
�

In fact� one can show �see ����� that for each k � �� � � � the ideals Ik �
fv����� � � � � vk���g and I �k � f������ � � � � �k���g in the ring of polynomials in
� coincide�

It was shown in ���� that for a �xed � the Taylor coe�cients �k�x���k��� a� x�
satisfy a linear recurrence relation

����
���

���x� � 

���x� � �
�n�
� � 
 and
��n�x� � ��n� ���n���x�p�x�� �n� ���n���x�q�x�� n � ��

�	���

Now one can see that each �k��� a� b� � �k��� can be written as a sum of
iterated integrals� each summand has the form Const � R q R p � � � R p R q �the
order and the number of the integrands p and q varies�� More accurately� the
iterated integrals entering the polynomials �k��� are given by

I� �

Z b

a

h���x��dx��

Z x�

a

h���x��dx� � � � �

Z xs��

a

h�s
�xs�dxs�� � � ��� �	���

Here 	 are the multi�indices 	 � �	�� � � � � 	s� with 	j � � or �� and h� �
p� h� � q�

Formally integrating recurrence relation �	��� we can obtain in a combina�
torial way the �symbolic� expressions for �k through the sums of the iterated
integrals �	���� The �rst few of these expressions for �k are as follows�
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�� � 


�� � �

�� � �
Z

p � I�

�� � �

Z
p

Z
p�

Z
q � �I�� � I�

�� � �

Z

p

Z
p

Z
p� 	

Z
p

Z
q � �

Z
q

Z
p � �
I��� � 	I�� � �I��

�� � ��I���� � ��I��� � �I��� � 
I��� � 	I��
�� � ���
I����� � 

I���� � �
I���� � 	
I���� � ��I���

� ��I���� � ��I��� � �I���

The basic combinatorial structure of the �symbolic� expressions for �k

produced via the recurrence relation �	��� is given by the following proposi�
tion�

Proposition ��� For each k � � the Poincar
e coe�cient �k is given as the
integer linear combination of the iterated integrals of p and q�

�k �  n�I�� �	���

with the sum running over all the multi�indices 	 � �	�� � � � � 	s� for whichPs
� 	j � k � �� The number of the terms in the expression for �k is the

�k � ���th Fibonacci number� The integer coe�cients n� are given as the
products

n� � ����s!s
r���k �  r

j��	j�� �	��
�

Proof� By induction� Assuming that the result is true for k � m we apply
the recurrence relation �	��� and represent the terms �k�� and �k�� according
to the expression �	���� Integrating the right hand side of �	��� we obtain �k

as the integer sum of the new iterated integrals� each one containing exactly
one integrand more than before the integration� These new iterated integrals
can be naturally split into the two groups corresponding to the two terms on
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the right hand side of the recurrence relation �	���� In the �rst group the new
integrand on the left is p and in the second group it is q� Hence the multi�
indices 	 in these two groups are mutually di�erent and these multi�indices
cover together all the 	 with

Ps
� 	j � k� This proves also that the number of

the terms in the expression for �k is the �k � ���th Fibonacci number� Also
the formula �	��
� for the coe�cients n� follows immediately by induction
from �	����

Remark� Another derivation of the iterated integrals form of the Center
equations has been obtained in ��
� by a completely di�erent method�

As it was mentioned above� we assume in this paper that in the Abel
equation �����

y� � p�x�y� � q�x�y��

the polynomial p is �xed while q is considered as a variable polynomial be�
longing to the space Vd of all the univariate polynomials of a given degree
d� So let us denote by 
 � �
�� � � � � 
d� the coe�cients of the polynomial
q� The parameters 
 form a part of the complete set � of the parameters of
Abel equation ������ In the setting where the polynomial p is �xed we can
consider the expressions �k � �k��� introduced above as the functions �k�
�
of the variables 
 only�

Corollary ��� For each k � � the Poincar
e coe�cient �k�
� is a polynomial
in 
 of the degree �k��

�
��

Proof� The iterated integrals I� are polynomials in 
 of the degree equal to
the number of the appearances of q in the integral� By Proposition 	�	 the
maximal number of the appearances of q in the integrals of the sum �	��� is
equal to �k��

�
��

Proposition 	�	 provides immediately also the following information about
the structure of the polynomials �k�
��

Corollary ��� For each k � 
 the term of the degree 
 in 
 in the polynomial
�k�
� is I����� with the coe�cient ����kk"� The term of the degree � is given
by the integer linear combination of the iterated integrals I� with exactly one
appearance of q�
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Explicit analysis of the symbolic expressions for �k is not easy� Integration
by parts can be used to simplify them but ultimately it leads to a �word
problem� which has been analyzed only partly �and only for the recurrence
relation �	���� in ���� ��� 	��

However� some iterated integrals above containing more than one appear�
ance of both p and q cannot be reduced to the one�sided or double moments
by �symbolic� operations �including integration by parts�� This follows� in
particular� from the example �given in ���� of the Abel equation ����� with
the coe�cients p and q � elliptic functions� for which all the double moments
vanish while the Center equations are not satis�ed�

Below in this paper we always work with the Center equations given by
the system �	�
�� Assuming� as usual� that P �a� � Q�a� � 
 and simplifying
the subsequent equations via the preceding ones we obtain the following
explicit form for the �rst seven Center equations in �	�
�� �see e�g� ������


 � ���b� � �P �b�

 � ���b� � �m� � �Q�b�

 � ���b� � �m�


 � ���b� � �m�


 � ���b� � �m� � �

�

Z b

a

pQ�


 � �	�b� � �m� � �
Z b

a

PpQ�


 � �
�b� � �m� �
Z b

a

�

�
Q�p� �	P �Qq � ��

Z b

a

P ��t�q�t�dt

Z t

a

Pq

The terms mk appearing in these equations are the one�sided moments
���	�� mk �

R b
a
P k�x�q�x�dx� Notice that the �rst of these equations implies

P �b� � P �a� � 
 and the second one implies Q�b� � Q�a� � 
�

The form of these initial Center equations suggests some important gen�
eral patterns which can be proved by a combination of the integration by
parts and of some combinatorial analysis� In particular� the iterated inte�
grals where the integrand q appears exactly once can be transformed via

��



integration by parts to the moments form� By corollary �	��� we see that the
linear in q terms of the Center equations are indeed the moments mk�

Theorem ��� In each �k� k � �� the sum of all the iterated integrals con�
taining exactly one integrand q �i�e� the linear in 
 part of the polynomial

�k�
�� is equal to the �k�	��d one�sided moment mk�� �
R b
a
P k���x�q�x�dx�

taken with the coe�cient ���
The proof of this result is given in ���� �see a remark after Theorem ���
there��

In this paper we use only one additional fact concerning the structure of
the Center equations� It is given by the following proposition�

Proposition ��� If the polynomials P and Q satisfy a Polynomial Compo�
sition condition �PCC� on a� b then for p � P � and q � Q� all the iterated
integrals I� on a� b vanish� In particular� �PCC� implies vanishing of each of
the terms in the Center equations �
����

Proof� Under the factorization P �x� � �P �W �x��� Q�x� � �Q�W �x�� pro�
vided by the Polynomial Composition condition �PCC� we can make a change
of the independent variable x� w �W �x� in the iterated integrals� We get

I� �

Z W �b�

W �a�

h���w��dw�

Z w�

W �a�

h���w��dw� � � �

Z ws��

W �a�

h�s
�ws�dws� �	����

Here h�j
�w� � �p�w� � �P ��w� for 	j � � and h�j

�w� � �q�w� � �Q��w� for

	j � �� Now since �P ��w� and �Q��w� are polynomials� all the subsequent
integrands in �	���� are polynomials� But by the conditions we have W �a� �
W �b� and the most exterior integral must be zero� being the integral of a
certain polynomial over a closed contour�

� Proof of Main Results

To prove the local coincidence of the Center and the Composition conditions
we have to translate the information on the Center equations obtained in
the previous section into the algebro�geometric properties of these equations�
We use the following result which is essentially a version of the �Nakayama
Lemma� in Commutative algebra �see for example ����� chapter �� lemma
	��� adapted to our situation�

�	



Lemma ��� Let f�� � � � � fm be polynomials in n complex variables� Let fi �
f �i �f

�
i � i � �� � � � � m� with all the f �i homogeneous of degree d� and f

�
i having

all the terms of degrees greater than d��
Let C � ff� � 
� � � � � fm � 
g� C� � ff �� � 
� � � � � f �m � 
g� We assume

in addition that f �� � � � � � f
�
m generate the ideal I� of the set C� and that each

f �i vanishes on C��
Then there exists � � 
 such that for the ball B� in C m �

�� C 	B� � C� 	B��
�� In the ring of holomorphic functions on B� the ideals I � ff�� � � � � fmg
and I� � ff �� � � � � � f �mg coincide�

Proof� Since f �i vanish on C
�� they belong to the ideal I� of the set C

�� By
assumption� I� is generated by f

�
i � Hence we have

f �i �
mX
j��

aijf
�
j � �����

with certain polynomials aij�
We can assume that aij�
� � 
� Indeed� since f �j are homogeneous of

degree d�� while all the terms in f
�
i have degrees strictly greater than d�� we

can omit the free terms of aij in ����� and the equality still remains valid�
From fi � f �i � f �i and from ����� we get

�
B�

f�
���
fm

�
CA � �A

�
B�

f ��
���
f �m

�
CA � �����

where �A � �aij� � Id� Since aij�
� � 
� �A�
� � Id� and hence �A is invertible
in a neighborhood of the origin in C m � in particular� in a certain ball B��
� � 
� �Of course� this radius � depends on the polynomials f�� � � � � fm and
on their decomposition fi � f �i � f �i ��

We get �
B�

f ��
���
f �m

�
CA � �A��

�
B�

f�
���
fm

�
CA ���	�

����� and ���	� prove both the conclusions of Lemma ���� coincidence of
the ideals I and I� and of their zero sets C and C� inside B�� This completes

��



the proof�

Remark Assumptions of lemma ��� concerning the degrees of f �i and f �i �
and the fact that f �i generate the ideal of their zero set C

� are essential as
show the following examples�

Example �� Let f ��x�� x�� � x�� f ��x�� x�� � ��� � x��x�� Then C� �
fx� � 
g� but f � f �� � f �� � x�x�� and C � fx� � 
g 
 fx� � 
g� This
example illustrates importance of �separation of degrees� of f � and f ��

Example �� Let f � f � � f � � y� � y�x�� Here C� � fy � 
g� while
C � fy��y � x�� � 
g has two components at 
� Here y� does not generate
the ideal of fy � 
g�

Proof of Theorems ��� and ���� Let a de�nite polynomial p � P � be
�xed as well as the degree d of the polynomial q and the points a� b � C � As
above� Vd denotes the space of complex polynomials q of degree d� We denote
by C � Vd the Center set of the Abel equation ������ i�e� the set of q � Vd for
which ����� has a center� We shall also denote by L � Vd the composition
linear subspace� consisting of those q � Q� � Vd for which P and Q satisfy
the Polynomial Composition condition �PCC��

The Center set C � Vd is de�ned in the space Vd by the in�nite system of
polynomial equations �	�
�� �k�
� � 
� k � �� � � ��

Let N � N�P� d� a� b� be the Moment Bautin index of the de�nite poly�
nomial P on a� b� We apply Lemma ��� to the �rst N � 	 equations of the
system �	�
�� So fi�
� � �i�
� and f �i �
� are chosen to be the linear parts
mi���
� of �i�
� while f

�
i �
� contain all the non�linear in 
 terms of �i�
��

i � �� � � � � N � 	� Clearly� in this case the assumptions of Lemma ��� con�
cerning the degrees of f �i and f �i and the fact that f

�
i generate the ideal of

their zero set C� are satis�ed�

By de�nition of the Moment Bautin index N � N�P� d� a� b� the zero set
C� of the equations f �i �
� � mi���
� � 
 for i � �� � � � � N � 	� is the compo�
sition linear subspace L � Vd� By Proposition 	�� the nonlinear parts f

�
i �
�

vanish on L� Hence the last condition of Lemma ��� is also satis�ed� We
conclude that there exists � � 
 such that for the ball B� in Vd � C d�� the

��



following is true�

�� CN�� 	 B� � L 	 B�� where CN�� is the zero set of the �rst N � 	
Center equations �k�
� � 
� k � �� � � � � N � 	�

�� In the ring of holomorphic functions onB� the ideals I
�
N�� � f��� � � � � �N��g

and I�N � fm�� � � � � mNg coincide�

Notice that the radius � of the ball B� in Vd where the above conclusions
are valid depends only on the equations �k�
� � 
� k � �� � � � � N and on
their decomposition into the linear and the nonlinear parts� In other words�
� � ��P� d� a� b� depends only on the �xed de�nite polynomial P � the degree
d� and the points a� b�

It remains to notice that for each k � N�� the polynomial �k�
� belongs
to the ideal I�N � fm�� � � � � mNg and hence also to I �N�� � f��� � � � � �N��g�
Indeed� by Proposition 	�� �k�
� vanishes on the Composition subspace L�
Since I�N is the ideal of L we obtain �k�
� � I�N � I �N��� Therefore the ideal
I �N�� coincides with the local Bautin ideal I � f��� � � � � �N��� �N��� � � �g� In
particular� this implies that the Bautin index b�P� d� a� b� is at most N � 	�
On the other hand� b�P� d� a� b� cannot be smaller than N � 	� Indeed� if
the ideal I � I �N�� were generated by a smaller number than N � 	 of the
polynomials �j we could invert the proof of Lemma ��� and to conclude that
a smaller number than N of the moments mj generate the ideal of L � a
contradiction with the de�nition of the Moment Bautin index� Therefore the
Bautin index b�P� d� a� b� is equal to the Moment Bautin index N�P� d� a� b�
plus 	�

From the equality of the local ideals I � I �N�� � I�N we get also the
coincidence of their zero sets inside the ball B��

CN�� 	 B� � C 	 B� � L 	B��

where as above C is the Center set of ����� i�e� the set of zeroes of the Bautin
ideal I� This completes the proof of Theorem ��� and of Theorem ����

Remark� In fact� each of the polynomials �k�
� belongs to the ideal gen�
erated by the moments m�� � � � � mN in the global ring of polynomials in 
�

�




However� the inverse inclusion is valid in only in the domain where we can
invert the corresponding matrix �A �in particular� in B��� In geometric terms�
the result of Theorem ��� does not exclude a possibility that the Center set C
of ����� contains other components besides the Composition set L� However�
these components may appear only �far away� from the origin�

Proof of Theorem ���� This theorem follows directly from Theorem ���
and Theorem ��	�� of ��
�� Formally the results of ��
� are stated for the
Bautin ideal and the Bautin index de�ned in the global ring of polynomials
in 
� while Theorem ��� concerns the Bautin index de�ned in the ring of
functions on the ball Br � Vd� However� for 
 � Br�� all the estimates of ��
�
remain valid via the analytic version of the �E�ective division theorem��

Remark The bounds of ��
� are usually far from being realistic� mostly be�
cause of the �worst case� estimates used in Hironaka�s e�ective division algo�
rithm� We believe that for many analytic families arising in relation to alge�
braic di�erential equations �including the most mysterious one � the Poincar�e
mapping� the �blind� application of the division algorithm can be replaced by
a detailed study of the algebraic propertied of the Taylor coe�cients ak����

In particular� for the �Moment generating function� H�y� �
R b

a
q�x�dx
��yP �x� this

was done in ����� Also in the situation considered in the present paper one
can replace a general division algorithm by an improved version of the �linear
Division Theorem� of ���� combined with an accurate computation of the Mo�
ments Bautin index N�P� d� a� b�� with an estimate of the �non�degeneracy�
of the moment equations� and with a bounding of the norm of the Center
equations �k�
� � 
� We plan to present these results separately�

� Computing the Moment Bautin index in

examples

For P of degree two a convenient method for the analysis of the one�sided
moments has been suggested in �
�� It is based on a representation of Q via
the basis of the ring of polynomials of x considered as a module over the poly�
nomials of P � In this basis �and for P of degree two� the moment equations
get a very simple form� and the matrix representation of these equations can

��



be explicitly analyzed� As a result we can compute explicitly the Moment
Bautin index N�P� d� a� b� for P of degree two with respect to the two zeroes
a� b � C of P � We present this computation below� However� for higher
degrees of P the matrices become much more complicated and only partial
results can be obtained by this method�

In ��� �� ��� �	� ��� an algebraic method for the analysis of the moments
vanishing has been developed� This method introduces a rather delicate
algebraic techniques which relate moments of di�erent orders� Recently this
method has been extended in ��
� to produce quantitative information on
moments �near�vanishing�� In particular� the following result is obtained in
��
�� for a given P and q � Q� de�ne the �moment polynomials� mk�x� by

mk�x� �

Z x

a

P k�t�q�t�dt� �����

where a is one of the roots of P � Notice that the zero moment polynomial
m��x� is equal to Q�x��

We de�ne the �Generalized Moment vanishing� condition requiring that
all the moment polynomials mk�x� vanish at certain �xed zeroes x�� ���� xl
of P � x� � a� The �Generalized Composition condition� is that P �x� �
�P �W �x�� and Q�x� � �Q�W �x�� with �P �
� � 
� �Q�
� � 
 and with W �x�
vanishing at x�� ���� xl�

Theorem ��� Let P be a polynomial of degree m� Fix l di�erent zeroes
x�� ���� xl� x� � a� of P with �l � m � �� Then for any Q of degree d van�
ishing of N�P� d� � ��d � l����l �m�� � � moments mk�x� at all the points
x�� ���� xl implies Generalized Composition condition �which in this case takes
the following form�

P �x� � W n�x�� Q�x� � �Q�W �x���

where W �x� is a certain polynomial vanishing at all the roots of P �
If not all the above moments vanish then the deviation of Q from the

Generalized Composition condition can be estimated through the maximum
of the absolute values of mk�xj�� k � 
� �� ���� N�P� d�� j � �� ���� l�

In particular� this theorem allows us to bound explicitly the Moment
Bautin index N�P� d� a� b� for any P of degree three with respect to any two

��



its zeroes a� b � C � it does not exceed d � �� It provides also an explicit
bound for the �locality size� in the above computations� We plan to present
the corresponding results separately�

So let us �x a polynomial P �x� of degree �� We can always assume that
one of the roots of P �x� is zero and so P �x� � x�x� b�� b �� 
� The following
theorem provides a description of the Moments vanishing conditions for any
polynomial Q�

Theorem ��� Let P �x� � x�x � b�� b �� 
� Let Q be a polynomial of degree
d and let � � �d��� � �� Let mj � mj�b� be de�ned by ������ Then

�� If for some k we have mk � mk�� � � � � � mk�� � 
� then there exists
a polynomial �Q such that Q�x� � �Q�P �x��� In this case all the moments mj

vanish�

�� For any number r � � of the equations mjs � 
� s � �� � � � � r �not neces�
sarily consecutive� there exists a polynomial Q of degree d for which all these
equations are satis�ed� and which cannot be represented as Q�x� � �Q�P �x���

In particular� the Moment Bautin index N�P� d� 
� b� is equal to �d������

Proof� The proof of Theorem ��� consists of several steps� First of all� using
the polynomial P and its derivative P � we can construct a basis for the space
of all the polynomials in x of a given degree� Indeed� the polynomials P �x�k

have the degree �k� and the polynomials P �x�k P ��x� have the degree �k���
respectively� Therefore all these polynomials are linearly independent and
P �x�k� P �x�k P ��x�� k � 
� �� � � � � l� form the basis of of the space V�l�� of all
the polynomials r�x� of the degree at most �l � �� The same polynomials
except P �x�l P ��x� form the basis of V�l�

Thus any polynomial r�x� of the degree �l�� can be uniquely written in
the form

r � P l�	lP
� � �l� � P l���	l��P

� � �l��� � ��� � �	�P
� � ���� �����

We have the following simple proposition�

Proposition ��� The polynomial R�x� has a form R�x� � �R�P �x�� if and
only if in the representation ����� for its derivative r�x� � R��x� all the
coe�cients �j � 
 for j � 
� � � � � l�

��



Proof� If all the coe�cients �j � 
 for j � 
� � � � � l then integrating the
representation ����� we obtain

R � �
	l

l � �
�P l�� � �

	l��
l
�P l � � � �� 	�P � �� ���	�

or R�x� � �R�P �x�� with �R�z� � � �l

l��
�zl�� � � � � � �� Conversely� if R�x� �

�R�P �x�� then di�erentiating this expression we get a representation ����� for
r�x� � R��x� where only the terms P �x�k P ��x� have nonzero coe�cients�

Remark� In fact the ring R of polynomials in x is a module over the poly�
nomials in P � The representation ����� shows that R as a module has exactly
two generators� � and P ��

We return now to the proof of Theorem ���� Represent q�x� � Vd accord�
ing to ������

q�x� � Pm�	mP
� � �m� � Pm���	m��P

� � �m��� � ���� �	�P
� � ���� �����

For any j we get

mj �

Z b

�

P jq � �m

Z b

�

Pm�j � �m��

Z a

�

Pm�j�� � � � �� ��

Z b

�

P j� �����

since all the integrals containing P � vanish on the interval �
� b� with the

endpoints � zeroes of P � De�ning the constants 
j by 
j �

Z b

�

P �t�jdt� we

get the following proposition�

Proposition ��� In the coordinates 	k� �k of ����� the equation mj � 

takes the form

Pm
k�� 
j�k�k � 
�

Therefore� the equationsmj� � 
� � � � � mjn � 
 can be rewritten as the system

�����
����

�m
m�j� � �m��
m�j��� � � � � � ��
j� � 

�m
m�j� � �m��
m�j��� � � � � � ��
j� � 


���
���

� � �
���

���
�m
m�jn�� � �m��
m�jn���� � � � � � ��
jn�� � 


�




i�e� �
BBB�


j� 
j��� � � � 
j��m


j� 
j��� � � � 
j��m
���

���
� � �

���

jn�� 
jn���� � � � 
jn���m

�
CCCA

�
BBB�

��
��
���
�m

�
CCCA � 
�

For n � m this system always has a nonzero solution� According to
Proposition ���� for the corresponding polynomial q � Vd its primitive Q �R
q cannot be represented as Q�x� � �Q�P �x��� This proves the second part

of Theorem ����

To prove the �rst part of this theorem� let us denote by Dk�m the determi�
nant of the system of m consecutive moments equations i�e� the determinant

Dk�m � det

�������

k 
k�� � � � 
k�m
���

���
� � �

���

k�m 
k�m�� � � � 
k��m

�������
�

Proposition ��� For any natural k and m Dk�m �� 
�

Proof� Consider the scalar product� f� g �� � f� g �k �

Z a

�

P �x�kf�x�g�x�dx

on the space of square integrable functions on �
� b�� �Without loss of gener�
ality we can assume b � 
 and so P �x� is positive on �
� b��� Then

Dk�m � det

���������

� P �� P � � � P �� P � � � � � � P �� Pm �
� P �� P � � � P �� P � � � � � � P �� Pm �

���
���

� � �
���

� Pm� P � � � Pm� P � � � � � � Pm� Pm �

���������
is a Gramm determinant of the set of linearly independent vectors P j�x� �
�x�x� b��j� hence it is non�zero�

Now we can complete the proof of Theorem ���� By Proposition ��	 the
vanishing of m consecutive moments mk� mk��� � � � � mk�m implies that in the
representation ����� of q all the coe�cients �j must be zero� By Proposition
��� this implies that Q�x� � �Q�P �x�� which in turn implies the vanishing of

��



all the moments mj�

Remark� One can �nd explicitly the values of 
k� we have


k �

Z b

�

�x�x� b��kdx � ����k b�k��k"

�k��k � ��""
�

Estimating the volume spanned by the vectors P j�x� with respect to the
scalar product � f� g �k we can get an explicit lower bound for the determi�
nants Dk�m� We do not use these bounds in the present paper� In ���� some
explicit bounds for the locality size and for periodic solutions of the Abel
equation are obtained via the methods of ��
��

� Addendum� De�nite polynomials

At present we do not have a complete description of de�nite polynomials�
However� some rather wide classes of de�nite polynomials have been recently
speci�ed� Let us present shortly these classes and give an outline of some
relations between them�

�� Simple end�points� If a and b are simple zeroes of the polynomial P
then it is de�nite on �a� b�� This was shown in ����� Other proofs can be
found in ���� ����

�� Indecomposability� Any indecomposable polynomial P �i�e� not pos�
sessing a nontrivial composition representation P �x� � R�S�x�� with the
degrees of both polynomials R and S greater than �� is de�nite on each in�
terval �a� b� with P �a� � P �b�� This fact is proved in ����� In particular� each
P of a prime degree is indecomposable and hence de�nite on each interval
�a� b� with P �a� � P �b��

�� Simple zeroes not at the end�points� If all the zeroes of P � except
possibly a� b are simple then the polynomial P is de�nite on �a� b�� This is
shown in ����� Another result of ���� is the following� if for any critical value
c of P except possibly 
 the preimage P���c� contains exactly one critical
point of P then P is de�nite on any �a� b� with P �a� � P �b� � 
�

��



�� Real polynomials� Let P be a polynomial with real coe�cients and let
a� b � R� If all the real zeroes of P in the open interval �a� b� are simple then
P is de�nite on �a� b�� This is shown in ����� The techniques presented in �����
Section ���� allow one to prove the following result� let P be a polynomial
with real coe�cients and let a� b � R� P �a� � P �b� � 
� Assume that the
multiplicities of each of the roots of P on the closed interval �a� b� are odd�
Then P is de�nite on �a� b�� �We plan to present the proof of this and other
results for real polynomials separately��

�� Geometry of P ��a� b��� The following results are proved in �����
Let P �x� be a complex polynomial� P �a� � P �b� � 
� Assume that there
exists a path # � C joining a and b such that the curve � � P �#� has only
transversal self�intersections and that the point 
 � P �a� � P �b� is on the
boundary of the exterior domain with respect to the closed curve �� Then
P �x� is de�nite on �a� b��

The following criterion can be explicitly veri�ed in many important ex�
amples� Let P be a complex polynomial with P �a� � P �b� � 
� a� b � C �
Let # be a piecewise�analytic curve in C joining a and b and let � � P �#��
Assume that the open part � n 
 is contained in an open $ with piecewise�
analytic boundary and assume that 
 belongs to the exterior boundary of
$� Then P �x� is de�nite on �a� b�� In particular� this happens for any
P �x� � �x� a��b � x�P��x�� with P��x� �

Pn
k�� akx

k� ak � C � if the convex
hull CH of the coe�cients ak does not contain 
 � C � �In his case $ is some
open cone 	 � Arg�z� � � containing the closed cone with the vertex at

 � C generated by CH��

	� Recursive representation� As it was mentioned above� in ��� �� �
�
��� �	� ��� an algebraic method for the analysis of the moments vanishing
has been developed� which relates between them the moments of di�erent or�
ders� This method provides a general setting of the Moment problem which
is in some aspects more natural that the one used in the present paper� the
moments vanish not only at two points a� b but at a possibly larger number
of the roots of P � Theorem ��� above presents some initial results in this
direction� The notion of a de�nite polynomial can be extended to this gen�
eral setting and some classes of �generalized de�nite polynomials� can be
described� We plan to present these results separately� As the setting of the
present paper is concerned� the Recursive representation method shows that

�	



each polynomial P of degree at most three is de�nite� Another conclusion is
that a polynomial P of degree d having at a� b zeroes of a total multiplicity
d or d� � is de�nite �this follows also from p�	��


� Bernstein Classes� The method of �	�� combines the study of the inte�
gration operator with the �Bernstein Classes� approach of �	��� The result is
that any P is de�nite on �a� b� for a� b di�erent from a certain �nite number
of points �which in general do not coincide with the critical values of P as in
pp� ��	 above��

It was mentioned above that the Chebyshev polynomial T��x� is not de��

nite on the interval ��
p
�

�
�
p
�
�
�� The results of pp� ��� show that each polyno�

mial P of degree at most � is de�nite� Indeed� for degP � � this follows from
p�� �and this was shown also in Section � above�� For deg P � �� 	� � the poly�
nomial P is indecomposable and hence de�nite on any a� b with P �a� � P �b��
Finally� for degP � � either the roots of P at a� b are simple or the remaining
roots are simple� Hence� P is de�nite by p�� or p�	� respectively� This fact
can be proved also by the method of p�
�
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