What is Hashing?

A hash is an *into* mapping of some input (number, string) into a usually small and usually integer number

- The input is the *hash key*
- The mapping is the *hash function*
- The output is the *hash value*
- The *hash value* is frequently used to index (hash index) a table (hash table)
 - Doing a lookup in a table by referencing its index is essentially a one cycle operation- really, really fast
Hash Collisions

\[f(x) \neq f(y) \Rightarrow x \neq y \]

BUT

\[f(x) = f(y) \nRightarrow x = y \]

Restated, \(f \) is into, but neither necessarily 1-1 nor even necessarily onto. If it were 1-1 and onto, there would be no such thing as a collision.
Hash Tables

• **Direct-address table**
 – If the table is big enough, every substring maps to an unique location in the table
 – Can be very sparse and very very big

• **Hash table**
 – If the table size is made less than the number of substrings, it becomes a hash table
 • Requires an *into* function (hash function) to generate an index that maps the substring data to the correct location in the table
 • By the Pigeon-hole Theorem, there will be collisions if there are more substrings than locations
Hash Function

A good hash function

- Must map all substrings into the table (index cannot exceed table size)

- Spreads the collisions uniformly over the table, avoiding concentrations of collisions
Issues with a Hash Table

• Size of hash table
• Choice of hashing function
• Hash Collisions
 – Minimize the number of collisions
 – Avoid pockets of collisions - *i.e.*, spread collisions evenly over the table
 – Have a process to handle collisions, both on storage and lookup
 • Chaining
 • Probing
• Hash table lookup efficiency
 – Rapid generation of hash values
Modulus Arithmetic Hashing function

• Although there are other techniques, a tried and true way to hash is by choosing a hash function like $x \ mod \ k$, where x is a numerical representation of a string and k is an integer. k would set the maximum size of the required table.

• If k is a prime number, the collisions are most effectively spread uniformly!*

*The explanation: magic!