What is Hashing?

A hash is an into mapping of some input (number, string) into a usually small and usually integer number

- The input is the hash key
- The mapping is the hash function
- The output is the hash value
- The hash value is frequently used to index (hash index) a table (hash table)
- Doing a lookup in a table by referencing its index is essentially a one cycle operation- really, really fast

Hash Collisions

$$
\begin{aligned}
& f(x) \neq f(y) \Rightarrow x \neq y \\
& B U T \\
& f(x)=f(y) \ngtr x x=y
\end{aligned}
$$

Restated, \boldsymbol{f} is into, but neither necessarily $1-1$ nor even necessarily onto. If it were $1-1$ and onto, there would be no such thing as a collision.

Hash Tables

- Direct-address table
- If the table is big enough, every substring maps to an unique location in the table
- Can be very sparse and very very big
- Hash table
- If the table size is made less than the number of substrings, it becomes a hash table
- Requires an into function (hash function) to generate an index that maps the substring data to the correct location in the table
- By the Pigeon-hole Theorem, there will be collisions if there are more substrings than locations

Hash Function

A good hash function

- Must map all substrings into the table (index cannot exceed table size)
- Spreads the collisions uniformly over the table, avoiding concentrations of collisions

Issues with a Hash Table

- Size of hash table
- Choice of hashing function
- Hash Collisions
- Minimize the number of collisions
- Avoid pockets of collisions- i.e., spread collisions evenly over the table
- Have a process to handle collisions, both on storage and lookup
- Chaining
- Probing
- Hash table lookup efficiency
- Rapid generation of hash values

Modulus Arithmetic Hashing function

- Although there are other techniques, a tried and true way to hash is by choosing a hash function like $\mathrm{x} \bmod \mathrm{k}$, where x is a numerical representation of a string and k is an integer. k would set the maximum size of the required table
- If \mathbf{k} is a prime number, the collisions are most effectively spread uniformly!*

