
Graphs

Definitions

• A graph G is a structure with a set of nodes (vertices V)
and edges E connecting the vertices*

so.. G={V,E}
• Two vertices are said to be adjacent if there is a single

edge connecting them
• There may be a passage from vertex a to b and likewise

from b to a. This edge is said to be undirected. If the
passage is one way, the edge is directed

• A graph is connected if every pair of vertices has a
path (set of edges) connecting them

• The number of edges touching a vertex is the degree of
the vertex

*A nuance: a graph cannot have an edge that runs from a vertex back to itself (self-edge). This constraint makes an
important distinction between a graph and a Markov Chain.

How to Implement a Graph on a
Computer: The Adjacency Matrix

• Fundamental to algorithms on graphs

• The matrix index is the vertex; the matrix
entry is the edge measure

0 1 2 6

1 0 3 5

2 3 0 4

6 5 4 0

a b c d

a

b

c

d

a

c

b

d

1

6 5

4

2 3

Here is an undirected graph and its adjacency matrix

c

2

0 1 2 6

1 0

2 3 0 4

5 4 0

a b c d

a

b

c

d

a b

d

1

6
5

4

3

Here is a directed graph and its adjacency matrix

Graph Traversal

Basic algorithms

• Linked list

– Expensive

– Good for sparse graphs

• Adjacency Matrix

– Always requires n2 space and time to construct

– Traverse in linear time

Graph Traversal

• Depth-first searching is one of 2 ways to
traverse a graph (vis à vis breadth-first search)

– The idea is to visit as many vertices (edges) as
possible.

1. Travel as far as possible down into the graph

2. Back up and visit an unvisited vertex

• Repeat 1 and 2 until exhausted

Implementation of DFS*

• Recursion
– DFS: Starting at some vertex a, visit a, mark a visited, and

push a onto the stack
– For each unvisited vertex v adjacent to a, recurse with DFS

until the stack is empty

• Iteration using a stack
– Visit v, push v and mark v visited
– While the stack is not empty

• If no vertex adjacent to the vertex on the top of the stack is
unvisited, pop the stack

• Else select an adjacent unvisited vertex u, visit u, push u and mark
visited

– End while

*From Data Abstraction and Problem Solving with C++ Walls and Mirrors , Carrano, Helman and Veroff,
Addison Wesley 1998

A

C

B

F

D

E
G

A

C

B

F

D

E
G

A

C

B

F

D

E
G

A
A

C

B

F

D

E
G

A

C

B

F

D

E
G

A

C

B

F

D

E
G

A

B

F

B
A

F

B
A

B
A

G

B
A

G

E

A

C

B

F

D

E
G

A

C

B

F

D

E
G

A

C

B

F

D

E
G

C
A

C

B

F

D

E
G

E

B
A

G

E

C

B
A

G

E

B
A

G

D

E

B
A

G

D

7

7

9

10-

14

Some relevance

Some of the computational challenges in this
course that can be laid out in graphical
representation will involve the concept of a
circuit
– A circuit is a cycle is a path that visits either every vertex

(Hamiltonian) or every edge (Eulerian) precisely once.

– A cycle is a circuit that begins and ends at the same vertex (or
edge)

Key Facts

• If the graph is undirected and each vertex is of
even degree, then
– An Eulerian circuit exists
– It can be found in polynomial time
– An Eulerian cycle contains 22n-1-n Hamiltonian circuits

• For an arbitrary graph, a Hamiltonian circuit may
or may not exist
– Making the determination is an NP-hard problem
– The Traveling Salesman Problem (a classic NP-complete

problem) is to find the shortest Hamiltonian circuit
when the edges are distances

Recall…

The depth-first search goes as deeply into a graph
as it can. It does not stop on a target, unlike
algorithms that seek shortest paths

This idea can be exploited to find an Eulerian circuit.
If the graph is Eulerian, and the search uses edges
instead of vertices, the search will return to the
starting vertex, thus defining a cycle.

Piecing together cycles built from untouched edges
will yield a circuit.

Finding an Eulerian circuit

• Use a depth-first search, marking edges visited rather
than vertices visited to yield a cycle

• Search along the vertices on the cycle until there is one
that touches an unvisited edge.

• Use this vertex to start a depth-first search
• Take the cycle so yielded and insert it into the original

cycle at the point in the first cycle where the starting
vertex of the second cycle is encountered

• Repeat seeking untouched edges until there are no
more. We then have visited every edge but once, and
have pieced together an Eulerian circuit. Note that this
required polynomial time.

Modern Theory

An advance (ca. 1946) in graph theory by the Dutch
mathematician Nicholaas Govert DeBruijn has
recently been exploited to facilitate DNA sequencing.

De Bruijn graphs are graphs labeled with string data. The

graph demonstrates the transformations between all pairs

of all strings derived from a prescribed alphabet and string

length. Two vertices are related if one can be transformed

to the other by a directed edge labeled with the overlap, or

shift, usually having the length of one symbol in the

alphabet.

The deBruijn Graph

• The vertices contain overlapping substrings of the
symbols in k-mers

• A vertex has a directed edge to another vertex if
the second vertex is a one-symbol left shift of the
symbols of first vertex, with a new symbol added
to the end (maintaining k-arity) and a directed
edge established

CTGTAGT

Vertex 1 Vertex 2

ACTGTAG

SHIFT

NEW

SYMBOL

A

K=7

Non-overlapping Symbol

De Bruijn

• Hamiltonian Cycles may not exist

• If they exist, Hamiltonian cycles are expensive
to compute (np-Complete)

• Eulerian cycles are cheap and easy

De Bruijn Graph

Exploit Eulerian graph

Given many many k-mers

• Place a prefix of size k-1 on a vertex

• Place the suffix (size k-1) of the same k-mer on
another vertex

• Do this for all k-mers

• For each prefix, align the last letter with the first
letter of some suffix along a directed edge

• The recovered k-mer is on an edge

• When done, follow the directed edges in order

JA

BB

RW

KY

ER

OC

AB

BE

YJ

CKWO

Prefixes and suffixes from the 3-mers of a sequence of letters

JA

BB

RW

KY

ER

OC

AB

BE

YJ

CKWO

JAB

ABB

BBE

BER
ERW

RWO

WOV

CKY

KYJ

YJA

ABE

JAB

ABB

BBE

BER

ERW

RWO

WOC

OCK

CKY

KYJ

YJA

Construction of a deBruijn graph

JAB

ABB

BBE

BER

ERW

RWO

WOC

OCK

CKY

KYJ

YJA

One Eulerian cycle following the directed edges

Are there others?

Is the graph for

every Eulerian

cycle connected?

What about assembling 4-mers for MISSISSIPPI ?

MISS

SSIP ISSI

SSIS

SISS

ISSI

SIPP

IPPI

