Number of structures available in the PDB per year

By Nov. 14th, 2016, total structures deposited in PDB: 124,286
X-ray Crystallography: 111,122 (89\%)
Solution NMR: 11,545 (9\%)
Electron Microscopy: 1,232 (1\%)

Crystal

Three-dimensional periodic arrangement of a molecule in a

From Crystal to Diffraction

Wave interference

Scattering from the atoms in a molecule

Waves add in some directions (Constructive)

Waves subtract in other directions (Destructive)

What are the conditions that produce diffraction?

- Bragg's Law

A simple wave can be described by a periodic function

$$
f(x)=F \sin 2 \pi(h x+\alpha)
$$

$$
\alpha=0
$$

$f(x) \rightarrow$ vertical height of the wave at any horizontal position x along the wave, measured in wavelengths, where $x=1$ implies one full wavelength.
$F \rightarrow$ amplitude (half its height from peak to valley)
$\mathrm{h} \rightarrow$ frequency (number of wavelengths per radian)
$\alpha \rightarrow$ phase (position of the wave, in radian, with respect to the origin)
$f(x)=F \sin 2 \pi(h x+\alpha)$

Constructive interference

Destructive interference

$$
f_{1}(\mathrm{x})=\sin 2 \pi \mathrm{x}
$$

$f_{1}+f_{2}=0$
$x=1 / 4$

$x=1 / 4$

Phase differences determine the interference.

What is the relationship between wave phase differences and distance between scattering atoms?

What is the relationship between wave phase differences and distance between scattering atoms?

Wave scattered from point at distance x

For constructive interference:
Path distance must be an integral number of wavelengths

$$
\Delta x=n \lambda
$$

This is the central idea embodied by Bragg' s Law

What is the relationship between d and θ such that these waves add constructively?

Nobel Prize in Physics 1915
Sir William Henry Bragg and Sir William Lawrence Bragg
for their services in the analysis of crystal
structure by means of X-rays

$$
\Delta \mathrm{x}=\mathrm{n} \lambda
$$

$$
2 \mathrm{a}=\mathrm{n} \lambda
$$

$$
2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda-\text { Bragg's Law }
$$

How to describe the planes in a crystal?

Lattice indices (hkl) of the atomic planes in a crystal

- Three indices hkl identify a particular set of equivalent, parallel planes.
- The index \mathbf{h} gives the number of planes in the set per unit cell in the a direction or, equivalently, the number of parts into which the set of planes cut the a edge of each cell.
- The indices k and I specify how many such planes exist per unit cell in the \mathbf{b} and \mathbf{c} directions.

Planes apply to the whole lattice

Planes apply to the whole lattice

Construction of a reciprocal lattice

A reciprocal lattice:

- Its lattice dimensions are reciprocal to the original cell (and correspond to the reflection positions);
- Its 'size' (the intensity of the reflection) corresponds to the contents of the unit cell.

1) Choose coordinate axes for reciprocal space that are identical to real space, and origin can be arbitrary.
2) For each set of lattice planes (h k I), draw a line from the origin that is orthogonal to the planes.
3) Place reciprocal lattice point (h k I) at a distance 1/d from origin, where d is the interplane spacing.

- An entire set of parallel planes (h k I), not just one plane, acts as a single diffractor and produces one reciprocal lattice point.

The reciprocal lattice

The mathematical definition of the reciprocal lattice constants is:

$$
\begin{aligned}
a^{*} & =\frac{b \times c}{a \cdot(b \times c)} \\
b^{*} & =\frac{c \times a}{b \cdot(c \times a)} \\
c^{*} & =\frac{a \times b}{c \cdot(a \times b)}
\end{aligned}
$$

$$
\mathrm{V}=\text { unit cell volume }
$$

$$
=a \cdot(b \times c)=b \cdot(c \times a)=c \cdot(a \times b)
$$

The reciprocal lattice has the same symmetry as the crystal lattice.
The larger the crystal unit cell, the smaller the reciprocal lattice.

In orthogonal crystal lattices $\left(\alpha=\beta=\gamma=90^{\circ}\right)$

$$
\begin{aligned}
& a^{*}=\frac{1}{a}=\frac{1}{d_{100}} \\
& b^{*}=\frac{1}{b}=\frac{1}{d_{010}} \\
& c^{*}=\frac{1}{c}=\frac{1}{d_{001}}
\end{aligned}
$$

Real unit cell

The reciprocal lattice is spatially linked to the crystal because of the way the lattice points are defined, so if we rotate the crystal, the reciprocal lattice rotates with it.

How to link the reciprocal lattice with the diffraction pattern?

Bragg's law in reciprocal space - Ewald Sphere

- To show how each reciprocal-lattice point must be arranged with respect to the X-ray beam in order to satisfy Bragg's law and produce a reflection from the crystal.

A

- An entire set of parallel planes (h k I), not just one plane, acts as a single diffractor and produces one reflection hkl.
- Whenever crystal is rotated so that a reciprocal lattice point comes in contact with the Ewald sphere, Bragg's law is satisfied and a reflection occurs.
- At a certain orientation of the crystal, only a small number of reflections are in "diffraction condition". Therefore, the crystal has to be rotated to collect all the reflections.
- The directions of the reflections, as well as number of the reflections, depend only on the unit-cell dimensions and not upon the contents of the unit cell.
- The intensity of that reflection depends upon the electron distribution and density along the planes that produce the reflection.

Diffraction pattern is an image of the reciprocal lattice

1) d is spacing between real crystal lattice planes ~ Small d means high resolution.
2) Diffraction position reflects only geometry of crystal and experiment, not contents of unit cell.
3) The relative intensities of the diffractions contain information about the structure of the molecule.

From diffraction data to electron density

The Fourier transform describes precisely the mathematical relationship between an object and its diffraction pattern.

The Fourier transform allows us to convert a Fourier-series description of the reflections to a Fourier-series description of the electron density map.

A reflection can be described by a structure-factor equation, containing one term for each atom (or each volume element) in the unit cell. In turn, the electron density of each atom is described by a Fourier series in which each term is a structure factor.

We use the Fourier transform to convert the structure factors $F(h, k, l)$ to $\rho(x, y, z)$, the desired electron density equation.

How to construct a Fourier series?

One-dimensional waves

As $f(\mathrm{x})=F[\cos 2 \pi(h \mathrm{x})+i \sin 2 \pi(h \mathrm{x})], \quad \cos \theta+i \sin \theta=e^{i \theta}, \quad \theta=2 \pi(h \mathrm{x})$,

$$
f(\mathrm{x})=\sum_{h} F_{h}[\cos 2 \pi(h \mathrm{x})+i \sin 2 \pi(h \mathrm{x})]=\sum_{h} F_{h} e^{2 \pi i(h \mathrm{x})}
$$

Three-dimensional waves

$$
f(x, y, z)=\sum_{h} \sum_{k} \sum_{l} F_{h k i} e^{2 \pi i(h x+k y+k)}
$$

The Fourier transform:

- Is an operation that transforms a function containing variables of one type (say time or a length in Å) into a function whose variables are reciprocals of the original type (in this case, 1/time or frequency, or reciprocal length in \AA^{-1}).
- Is a precise mathematical description of diffraction. The diffraction patterns (in terms of structure factor) are Fourier transforms of the corresponding objects and arrays (in terms of electron density map).

$$
F(\mathrm{~h}, \mathrm{k}, \mathrm{l})=\int_{x} \int_{y} \int_{z} f(\mathrm{x}, \mathrm{y}, \mathrm{z}) e^{2 \pi i(h \mathrm{x}+\mathrm{ky}+\mathrm{zz}) \mathrm{d} x \mathrm{~d} y \mathrm{~d} \mathrm{z}}
$$

$$
\rrbracket \text { Inverse Fourier transform }
$$

$$
f(x, y, z)=\int_{h} \int_{k} \int_{I} F(h, k, l) e^{-2 \pi i(h x+k y+z)} \text { dhdkdl }
$$

Structure factor as a Fourier series

A structure factor describes one diffracted x-ray, which produces one reflection received at the detector. It can be written as a Fourier series in which each term gives the contribution of one atom to the reflection hkl.

Fourier term
(One atom)

Fourier series
(Sum of all atoms)

$$
F_{h k l}=\sum_{j=0}^{n} f_{j} e^{2 \pi i\left(h x_{j}+k y_{j}+\mid z_{j}\right)}
$$

$f_{\text {hkl }}$ atomic structure factor, the contribution of the single atom j to reflection hkl;
$\mathrm{f}_{j} \quad$ scattering factor of atom $j-\mathrm{a}$ function that amounts to treating the atom as a simple sphere of electron density.
x_{j}, y_{j}, z_{j} the coordinates of atom j in the unit cell (real space).
h, k, l the indices of a specific reflection in the reciprocal lattice satisfying Bragg's law.
phase $2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)$ for atom j.

- Each diffraction ray is the sum of diffractive contributions from all atoms in unit cell.
- The contribution of each atom j to $F_{h k l}$ depends on (1) what element it is, which determines f_{j}, the amplitude of the contribution, and (2) its position in the unit cell $\left(\mathrm{x}_{\mathrm{j}}\right.$, y_{j}, z_{j}), which establishes the phase of its contribution.
$F_{h k l}$ is a complex number!

Structure factor as a Fourier series

Alternatively, $F_{h k l}$ can be written as the sum of contributions from each volume element of electron density in the unit cell.

$$
\begin{aligned}
F_{h k l} & =\int_{x} \int_{y} \int_{z} \rho(x, y, z) e^{2 \pi i(h x+k y+l z)} d x d y d z \\
& =\int_{\text {cell } V} \rho(x, y, z) e^{2 \pi i(h x+k y+l z)} d V
\end{aligned}
$$

$\rho(x, y, z)$: the three-dimensional electron density of the molecules that give the diffraction.
V : the unit-cell volume

- Each volume element contributes to $F_{h k l}$ with a phase determined by its coordinates (x, y, z).
- $F_{h k l}$ is the Fourier transform of $\rho(x, y, z)$ on the set of real-lattice planes (hkl). All of the $F_{h k l} s$ together compose the transform of $\rho(x, y, z)$ on all sets of equivalent, parallel planes throughout the unit cell.

Electron density as a Fourier series

The three-dimensional electron density of the molecules is a wave equation or periodic function because it repeats itself in every unit cell.
$\xrightarrow{\text { Inverse Fourier transform }} \rho(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{1}{\mathrm{~V}} \sum_{h} \sum_{k} \sum_{l} F_{h k l} e^{-2 \pi i(h x+k y+l z)}$
\square If we measure $F(h, k, l)$, we can calculate $\rho(x, y, z)$.
$F(h, k, l)$ is a wave that has amplitude, frequency and phase.
What we measure in the experiments: indices of each reflection and its intensity.

$$
I(h, k, l)=|F(h, k, l)|^{2}
$$

$\mathrm{I}(\mathrm{h}, \mathrm{k}, \mathrm{l})$: the measured reflection intensity of the reflection hkl. Frequency: determined by the X-ray source.
\qquad We can effectively measure $|F(h, k, l)|$, not $F(h, k, l)$.

Phase problem

$\mathbf{F}=|\mathbf{F}| \cos \alpha+\mathrm{i}|\mathbf{F}| \sin \alpha=|\mathbf{F}| e^{\mathrm{i} \alpha}=|\mathbf{F}| e^{\mathrm{i} 2 \pi \alpha^{\prime}}$
F: the structure factor as a vector
$|\mathbf{F}|$: the length/amplitude of \mathbf{F}, which is proportional to $\Gamma^{1 / 2}$
α : the phase angle, $\alpha=2 \pi \alpha^{\prime}$

1) Isomorphous Replacement
2) Anomalous Scattering 3) Molecular Replacement

Heavy-atom derivatives

- Crystals of the protein are soaked in solutions of heavy ions (strong diffractors), such as ionic complexes of Hg, Pt, or Au , so that such ions bind to one or a few specific sites on the protein.
- "Isomorphic": the heavy atom must not disturb crystal packing or the conformation of the protein, likely with the same unit cell dimensions and diffraction patterns.
- There must be measurable changes in at least a modest number of reflection intensities. These changes are the handle by which phase estimates are pulled from the data, so they must be clearly detectable, and large enough to measure accurately.

Make a second derivative!

$\rho(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{1}{\mathrm{~V}} \sum_{h} \sum_{k} \sum_{l} \mathrm{~F}_{\mathrm{P}}^{\mathrm{b}} e^{-2 \pi i(h x+k y+z)}$

$$
F_{P H}=F_{P}+F_{H}
$$

Quantities we want:
$\mathbf{F}_{\mathbf{P}}$
Quantities we know:
$\left|F_{\mathbf{p}}\right|$: intensities of native diffraction
$\left|F_{\mathrm{PH}}\right|$: intensities of derivative diffraction
F_{H} : structure factors with phases of heavy atoms

How to get F_{H} ?

Locating heavy atoms in the unit cell

$$
\mathrm{F}_{\mathrm{H}}(\mathrm{~h}, \mathrm{k}, \mathrm{l})=\int_{\text {cell }} \rho_{\mathrm{H}}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{e}^{2 \pi i(h \mathrm{x}+k \mathrm{y}+\mathrm{z})} \mathrm{dV}
$$

$\rho_{H}(x, y, z)$ requires knowing the position of heavy atoms in the unit cell.
The Patterson Function
By definition: $\quad P(u, v, w)=\int \rho(x, y, z) \cdot \rho(x+u, y+v, z+w) d V$

Patterson Function

$$
P(u, v, w)=\int_{\text {cell }} \rho(x, y, z) \cdot \rho(x+u, y+v, z+w) d V
$$

Patterson peaks will contain points corresponding to vectors between atoms in the real cell, i.e. inter-atomic distances (not atomic positions though).

Patterson Function

1) Patterson is symmetric about origin (centrosymmetry).
2) Can see pattern of real cell in patterson cell repeated.
3) Contains $\mathrm{N}(\mathrm{N}-1)$ non-origin peaks (not counting origin) \rightarrow gets complicated!

Patterson Function

$$
P(u, v, w)=\int_{\text {cell }} \rho(x, y, z) \rho(x+u, y+v, z+w) d V
$$

Key point: can calculate $P(u, v, w)$ from experimental data

$$
\begin{gathered}
\rho(\mathrm{x})=\frac{1}{\mathrm{~V}} \sum_{h} F_{h} e^{-2 \pi i h x} \quad \rho(\mathrm{x}+\mathrm{u})=\frac{1}{\mathrm{~V}} \sum_{h^{\prime}} F_{h^{\prime}} e^{-2 \pi i h^{\prime}(x+u)} \\
\mathrm{P}(\mathrm{u})=\frac{1}{\mathrm{~V}^{2}} \sum_{h} \sum_{h^{\prime}} F_{h} F_{h^{\prime}} \cdot e^{-2 \pi i h u} \int_{\text {cell } V} e^{-2 \pi i\left(h+h^{\prime}\right) \mathrm{xdV}}
\end{gathered}
$$

The integration is equal to zero, unless $\mathrm{h}=\mathrm{h}$ ' when it is equal to V , By Friedel's Law $F_{h}=F_{-h}$,

$$
\mathrm{P}(\mathrm{u})=\frac{1}{\mathrm{~V}} \sum_{h} F_{h}^{2} e^{-2 \pi i h u}
$$

Patterson Function

$$
P(u, v, w)=\left.\frac{1}{V} \sum_{h} \sum_{k} \sum_{1}|F(h, k, l)|\right|^{2} \cos 2 \pi(h u+k v+\mid w)
$$

It is a Fourier summation with intensities as coefficients and phase angles equal to zero.

Patterson analysis is simplified for heavy atoms:

1) Use $\left(\left|F_{\mathrm{PH}}(\mathrm{h} k \mid)\right|-\mid F_{\mathrm{p}}(\mathrm{hkl\mid} \mid)^{2}\right.$ as coefficients \rightarrow "difference map" reflects heavy atom contribution
2) If atom i contains Z_{i} electrons and atom j contains Z_{j} electrons, the corresponding vector $r_{i j}$ will have a weight proportional to $Z_{i} Z_{j}$.
\rightarrow heavy atoms, high Z, strong peaks
3) Calculate (x, y, z) of heavy atoms directly from Harker section peaks

Harker Peaks

Symmetry related atoms give rise to peaks in Patterson map in specific locations. Each space group has its own Harker planes.

$$
(u, v, w)=(x-[-x], y-[-y], z-z)
$$

$$
(u, v, w)=(2 x, 2 y, 0)
$$

$\mathrm{w}=0$
w=0 called Harker plane (section)

