

THE NATURE OF	CRYSTA	LS: SYMMETRY AN	D THE UNIT CELL		35	
TABLE 2.2. UNIT CELLS AND ALLOWED SPACE GROUPS FOR BIOLOGICAL NACROMOLECULES						
Crystal System	Types of Lattices	Minimum Symmetry of Unit Cell	Unit Cell Edges and Angles	Diffraction Symmetry	Permissible Space Groups	
Triclinic	P	None	$\begin{array}{l} a\neq b\neq c\\ \alpha\neq\beta\neq\gamma\end{array}$	1	P1	
Monoclinic	Р	A single twofold axis	$\begin{array}{l} a \neq b \neq c \\ \alpha = \gamma = 90^\circ \\ \beta \neq 90^\circ \end{array}$	2/m	P2, P2 ₁ C2	
Orthorhombic	P C I F	Three mutually perpendicular twofold axes	$\begin{array}{l} a \neq b \neq c \\ \alpha = \beta = \gamma = 90^{\circ} \end{array}$	mmm	P222, P2:2:12, P222; P2:2:12, C222, C222; I222, 12:2:12; F222	
Tetragonal	P I	A single fourfold axis	$a = b \neq c$ $\alpha = b = \gamma = 90^{\circ}$	4/m 4/mmm	P4, P4 ₂ , P4 ₃ , P4 ₃ , P4 ₂ I4, I4, P422, P4 ₁ 22,	7 Crystal Systems
					P4 ₅ 22, P4 ₂ 22, P42 ₁ 2, P4 ₁ 2,2, P4 ₁ 2,2, P4 ₅ 2,2, P4 ₇ 2,2	14 Bravais Lattices
Teleonald	p	Asingle	$\mathbf{a} = \mathbf{b} = \mathbf{c}$	3	R3	65 Space Groups
rhombohedral	P	threefold axis	$\alpha = \beta = \gamma \neq 90$	° 3 m	P3, P3 ₁ , P3 ₂ R32 P321, P312	
					P3 ₁ 21, P3 ₂ 21, P3 ₁ 12, P3 ₂ 12	
Hexagonal	P	A single sixfold axis	$\begin{array}{l} a=b\neq c\\ \alpha=\beta=90^{\circ}\\ \gamma=120^{\circ} \end{array}$	6/m 6/mmm	P6, P6 ₂ , P6 ₅ , P6 ₃ , P6 ₂ , P6 ₄ P622, P6 ₁ 22,	
					P6,22, P6,22, P6,22, P6,22	
Cubic	P I F	Threefold axes along cube diagonals	$\begin{array}{l} a=b=c\\ \alpha=\beta=\gamma=90 \end{array}$	m3 m3m	P23, P2,3 123, I2,3 F23 P432, P4,32,	
					P4,32, P4,32 1432, 14,32 F432, F4,32	

- Crystals of the protein are *soaked* in solutions of *heavy ions* (strong diffractors), such as ionic complexes of Hg, Pt, or Au, so that such ions bind to one or a few specific sites on the protein.
- "*Isomorphic*": the heavy atom must not disturb crystal packing or the conformation of the protein, likely with the same unit cell dimensions and diffraction patterns.
- There must be *measurable changes* in at least a modest number of reflection intensities. These changes are the handle by which phase estimates are pulled from the data, so they must be clearly detectable, and large enough to measure accurately.

Patterson Function

$$P(u,v,w) = \int_{cell \ V} \rho(x,y,z) \ \rho(x+u,y+v,z+w) dV$$

Key point: can calculate P(u,v,w) from experimental data

$$\rho(\mathbf{x}) = \frac{1}{V} \sum_{h} F_{h} e^{-2\pi i h \mathbf{x}} \qquad \rho(\mathbf{x}+\mathbf{u}) = \frac{1}{V} \sum_{h'} F_{h'} e^{-2\pi i h' (\mathbf{x}+\mathbf{u})}$$
$$\mathsf{P}(\mathbf{u}) = \frac{1}{V^{2}} \sum_{h} \sum_{h'} F_{h} F_{h'} e^{-2\pi i h \mathbf{u}} \int_{cell} e^{-2\pi i (h+h') \mathbf{x} \mathrm{d} \mathbf{v}}$$

The integration is equal to zero, unless
$$h=h'$$
 when it is equal to V,

By Friedel's Law $F_h=F_{-h}$,

$$P(u) = \frac{1}{V} \sum_{h} F_{h}^{2} e^{-2\pi i h u}$$

