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Number of structures available in the PDB per year 

By Nov. 14th, 2016, total structures deposited in PDB: 124,286 
               X-ray Crystallography: 111,122 (89%) 
               Solution NMR: 11,545 (9%) 
               Electron Microscopy: 1,232 (1%) 
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X-ray diffraction  
data collection 

Crystals Electron Density Map 

Structural Model Diffraction Image 

Model building and refinement 
Data analysis and phase determination 
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X-ray Diffraction 

Each diffraction spot represents a wave. 

The diffraction pattern (the position and intensity of each 
diffraction spot) gives information on the arrangement of 
the atoms in the crystal.  

X-ray 

Crystals 

Detector 

Crystal!

Only the size and contents of one 
unit cell are necessary to describe 
the entire crystal. !

Molecule!

Symmetry!
operation!

Three-dimensional periodic arrangement of a molecule in a 
repeating unit (so called the unit cell) into a lattice.  !
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Unit Cell!

a 

b 

c 

β 
γ  

α 

O 

7 Crystal Systems !
!
14 Bravais Lattices!
!
65 Space Groups !
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From Crystal to Diffraction 

Waves add in 
some directions!
(Constructive)!

Waves subtract in 
other directions!

(Destructive)!

Wave interference 

What are the conditions that produce diffraction?  
- Bragg’s Law  

Scattered waves 
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f(x) = F sin 2π (hx + α) 

f(x) à vertical height of the wave at any horizontal position x along the wave, 
measured in wavelengths, where x=1 implies one full wavelength.  

 

F à amplitude (half its height from peak to valley) 
 

h à frequency (number of wavelengths per radian) 
 

α à phase (position of the wave, in radian, with respect to the origin) 

A simple wave can be described by a periodic function 

λ = 1/h  

F x

Origin 

1 2

α = 0 

f(x) 

x 

f(x) = F sin 2π(hx+α) 

F  = 1 
h = 1 
α = 0 

f(x) = sin 2πx 

x  = 1 

λ = 1/h = 1  

y  = 1 

y  = -1 
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f1 (x) = sin 2πx 

f2 (x) = sin 2πx 

x  = 1/4 

x  = 1/4 

y  = 1 

y  = -1 

y  = 1 

y  = -1 

Constructive interference 

f1 + f2 = 2sin 2πx 
 

x  = 1/4 

y  = 2 

y  = -2 

F = 2 

f1 (x) = sin 2πx 

f2 (x) = sin (2πx + π) 

x  = 1/4 

x  = 1/4 

Destructive interference 

f1 + f2 =  0 
 

x  = 1/4 

F = 0 

Phase differences determine the interference.  
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X 

x = λ/2 x = λ 

O 

Wave scattered from origin 

Wave scattered from point at distance x 

What is the relationship between wave phase differences 
and distance between scattering atoms?      

X O 

Wave scattered from point at distance x 

For constructive interference:  
 
Path distance must be an integral number of wavelengths 

             
Δx = nλ 

What is the relationship between wave phase differences 
and distance between scattering atoms?      

This is the central idea embodied by Bragg’s Law 

x = 3/2 λ x = 2 λ 
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Think of a crystal as a set(s) of 
equivalent parallel planes of atoms.!

d 

θ 

d 

Δx = nλ 

θ 

θ 

a a 

2a = nλ 

2dsinθ = nλ 

What is the relationship between d and θ such 
 that these waves add constructively? 

- Bragg’s Law 

How to describe the planes in a crystal?  
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a 

b 

c 

Lattice indices (h k l) of the atomic planes in a crystal 

•  Three indices hkl identify a particular set of equivalent, parallel 
planes.  

•  The index h gives the number of planes in the set per unit cell in 
the a direction or, equivalently, the number of parts into which the 
set of planes cut the a edge of each cell.  

•  The indices k and l specify how many such planes exist per unit 
cell in the b and c directions.  

(1 0 0) 

(0 0 1) 

(0 1 0) 

Planes apply to the whole lattice 

a

b

(1 0 0) planes 

(0 1 0) planes 

x

y

Lattice point 
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Planes apply to the whole lattice 

a

b

(1 0 0) planes 

(0 1 0) planes 

(1 1 0) planes 

x

y

a

b

(1 2 0) planes 

x

y
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How to describe the diffraction pattern?  

Construction of a reciprocal lattice 

1)  Choose coordinate axes for reciprocal space that are 
identical to real space, and origin can be arbitrary. 

2)  For each set of lattice planes (h k l), draw a line from the 
origin that is orthogonal to the planes. 

3)  Place reciprocal lattice point (h k l) at a distance 1/d from 
origin, where d is the interplane spacing. 

A reciprocal lattice:  
•  Its lattice dimensions are reciprocal to the original cell 

(and correspond to the reflection positions); 

•  Its ‘size’ (the intensity of the reflection) corresponds to the 
contents of the unit cell.  
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a

b

O x a* 

b* 

O

(1 0 0) planes 

d

x

1/d 

(1 0 0) 

a

b

O x a* 

b* 

O

(2 0 0) planes 

d

x

1/d 

x
(2 0 0) (1 0 0) 
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a

b

O x a* 

b* 

O

(0 1 0) planes 

d

x
1/d 

x
x(0 1 0) 

a

b

O x a* 

b* 

O

(1 1 0) planes 

d

x

1/d 

x
x (1 1 0) x
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a

b

O x a* 

b* 

O

(1 1 0) planes 

x x
x

(1 1 0) 

x

=  (-1 -1 0) planes 

x
(-1 -1 0) 

a

b

O x a* 

b* 

O
x

x x

x x
x

x

x

Reciprocal lattice is symmetric 
about origin 
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Crystal lattice 

(in real space) 

Reciprocal lattice 

(in diffraction space) 

•  An entire set of parallel planes (h k l), not just one plane, acts as a 
single diffractor and produces one reciprocal lattice point. 

The reciprocal lattice 

The reciprocal lattice has the same symmetry as the crystal lattice.  

a* = 
b x c 

a (b x c) 

b* = 
c x a 

b (c x a) 

c* = 
a x b 

c (a x b) 

V = unit cell volume     
= a (b x c) =  b (c x a) =  c (a x b) 

The larger the crystal unit cell, the smaller the reciprocal lattice. 

The mathematical definition of the reciprocal lattice constants is: 



11/15/16 

16 

In orthogonal crystal lattices (α = β = γ = 90°) 

a* = 
1 
a 

Real unit cell 

b* 

c* 
a* 

a 

b 

c 

Reciprocal 
unit cell 

b* = 
1 
b 

c* = 
1 
c 

= 
1 

d100 

= 
1 

d010 

= 
1 

d001 

The reciprocal lattice is spatially linked to the crystal because of the 
way the lattice points are defined, so if we rotate the crystal, the 
reciprocal lattice rotates with it.  

How to link the reciprocal lattice with the diffraction pattern?  

O* 

O 

real lattice 

Bragg’s law in reciprocal space - Ewald Sphere 

1/λ 

x

x

x

x

x

x

x

x

θ 

θ 
x

reciprocal 
lattice 

Incoming
X-ray 

1/d 

P 

A 

- To show how each reciprocal-lattice point must be arranged with respect 
to the X-ray beam in order to satisfy Bragg’s law and produce a reflection 
from the crystal.   

d

Ewald 
Sphere 

Transmitted
X-ray 
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O* 

O 

real lattice 

1/λ 

x

x

x

x

x

x

x

x

θ 

θ 
x

reciprocal 
lattice 

When is Bragg’s law (nλ = 2dsinθ) satisfied? 

θ 

P 

A 

1/d 

sin θ = PO*/AO* = 1/d   à 2dsinθ = λ 
 

= 
PO* 
AO* 

= 
1/d 
2/λ	



= 
λ 
2d	



O* 

O 

real lattice 

1/λ 

x

x

x

x

x

x

x

x

θ 

θ 
x

reciprocal 
lattice 

θ 

P 

A 

Any reciprocal lattice point on the Ewald sphere follows 
the Bragg’s law and produces diffraction! 

detector 
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•  An entire set of parallel planes (h k l), not 
just one plane, acts as a single diffractor 
and produces one reflection hkl. 

•  Whenever crystal is rotated so that a 
reciprocal lattice point comes in contact 
with the Ewald sphere, Bragg’s law is 
satisfied and a reflection occurs.  

•  At a certain orientation of the crystal, only a 
small number of reflections are in 
“diffraction condition”. Therefore, the crystal 
has to be rotated to collect all the 
reflections.  

 

•  The directions of the reflections, as well as 
number of the reflections, depend only on 
the unit-cell dimensions and not upon the 
contents of the unit cell.  

•  The intensity of that reflection depends 
upon the electron distribution and density 
along the planes that produce the 
reflection. 

Diffraction pattern is an image of the reciprocal lattice 

|S| = 1/d 

S 

1)  d is spacing between real crystal lattice planes ~ Small d means high resolution. 

2)  Diffraction position reflects only geometry of crystal and experiment, not contents 
of unit cell. 

3)  The relative intensities of the diffractions contain information about the structure of 
the molecule. 

2d sinθ = λ 
 
d = λ/2sinθ 
 

when θ = 90°,  
 

sinθ = 1 
 

dmin= λ/2  

Higher resolution 

Low resolution 
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In reciprocal space, the lattice spacing is inversely proportional 
to the interplanar spacing within the crystal. The larger the 
crystal unit cell, the smaller the reciprocal lattice.  

Sea salt Protein 

From diffraction data to electron density 

The Fourier transform describes precisely the mathematical 
relationship between an object and its diffraction pattern.  

The Fourier transform allows us to convert a Fourier-series 
description of the reflections to a Fourier-series description of 
the electron density map.  

A reflection can be described by a structure-factor equation, 
containing one term for each atom (or each volume element) in 
the unit cell. In turn, the electron density of each atom is 
described by a Fourier series in which each term is a structure 
factor.  

We use the Fourier transform to convert the structure factors 
F(h, k, l) to ρ(x, y, z), the desired electron density equation.  

How to construct a Fourier series?  
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f (x) = F cos 2π(hx + α) Fourier term 

Fourier series 
f (x) = F0 cos 2π(0x + α0) + F1 cos 2π(1x + α1) + … + Fn cos 2π(nx + αn) 

∑ 
h=0 

n 
= Fh cos 2π(hx + αh) 

∑ 
h 

f (x)= Fh[cos 2π(hx) + i sin 2π(hx)] ∑ 
h 

= Fhe2πi(hx) 

One-dimensional waves 

f (x) = F [cos 2π(hx) + i sin 2π(hx)],   cosθ + i sinθ = eiθ,  θ = 2π(hx), As 

f (x)  the vertical height of the wave at 
 any horizontal position x; 

F       the amplitude of the wave; 
h  frequency; 
α       phase. 

Three-dimensional waves 

∑ 
h 

f (x, y, z) = Fhkle2πi(hx + ky +lz) ∑ 
k 
∑ 
l 

f (x) = F sin 2π(hx + α) 
Or 

(Sum of simple waves) 

(a simple wave) 

The Fourier transform:  

F (h, k, l) = f (x, y, z)e2πi(hx + ky +lz)dxdydz 

x y z 
∫ ∫ ∫ 

f (x, y, z) = F (h, k, l)e-2πi(hx + ky +lz)dhdkdl 
h k l 
∫ ∫ ∫ 

Inverse Fourier transform 

•  Is an operation that transforms a function containing 
variables of one type (say time or a length in Å) into a 
function whose variables are reciprocals of the original 
type (in this case, 1/time or frequency, or reciprocal 
length in Å-1).   

•  Is a precise mathematical description of diffraction. The 
diffraction patterns (in terms of structure factor) are 
Fourier transforms of the corresponding objects and 
arrays (in terms of electron density map). 

Unit cell content 
(Electron density) 

in real space  

Object Diffraction 

Diffraction pattern 
(Structure factor) 
in reciprocal space 

Inverse Fourier transform 
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A structure factor describes one diffracted x-ray, which produces one reflection received at 
the detector. It can be written as a Fourier series in which each term gives the contribution of 
one atom to the reflection hkl.  

Structure factor as a Fourier series 

Fourier term 
(One atom) 

fhkl = fj e2πi(hxj + kyj +lzj)  

fhkl        atomic structure factor, the 
contribution of the single atom j to 
reflection hkl; 

fj           scattering factor of atom j - a 
function that amounts to treating 
the atom as a simple sphere of 
electron density.  

xj, yj, zj  the coordinates of atom j in the unit 
cell (real space). 

h, k, l    the indices of a specific reflection in 
the reciprocal lattice satisfying 
Bragg’s law. 

phase   2π(hxj + kyj +lzj) for atom j.  

Fourier series 
(Sum of all atoms) 

Fhkl = fje2πi(hxj + kyj +lzj) ∑ 
j=0 

n 

•  Each diffraction ray is the sum of diffractive contributions from all atoms in unit cell. 

•  The contribution of each atom j to Fhkl depends on (1) what element it is, which 
determines fj, the amplitude of the contribution, and (2) its position in the unit cell (xj, 
yj, zj), which establishes the phase of its contribution.   

Fhkl is a complex number! 

Alternatively, Fhkl can be written as the sum of contributions from each volume 
element of electron density in the unit cell.  

Structure factor as a Fourier series 

Fhkl = ρ(x,y,z)e2πi(hx + ky +lz)dxdydz 

x y z 
∫ ∫ ∫ 

=   ρ(x,y,z)e2πi(hx + ky +lz)dV 

cell V 
∫ 

•  Each volume element contributes to Fhkl with a phase determined by its coordinates 
(x, y, z). 

•  Fhkl is the Fourier transform of ρ(x,y,z) on the set of real-lattice planes (hkl). All of the 
Fhkl s together compose the transform of ρ(x,y,z) on all sets of equivalent, parallel 
planes throughout the unit cell.   

ρ(x,y,z):  the three-dimensional electron density of the molecules that give the 
diffraction.  

V:  the unit-cell volume   
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Electron density as a Fourier series 

If we measure F(h,k,l), we can calculate ρ(x,y,z). !

F(h,k,l) is a wave that has amplitude, frequency and phase. 

 I (h,k,l) = |F(h,k,l)|2 

We can effectively measure |F(h,k,l)|, not F(h,k,l). 

I (h,k,l):  the measured reflection intensity of the reflection hkl.  
 

Frequency: determined by the X-ray source.   

The three-dimensional electron density of the molecules is a wave equation or 
periodic function because it repeats itself in every unit cell.   

What we measure in the experiments: indices of each reflection 
and its intensity.  

∑ 
h 

ρ(x,y,z) = Fhkl e-2πi(hx + ky +lz) ∑ 
k 
∑ 
l 

1 
V 

Inverse Fourier transform 

Phase problem 

∑ 
h 

ρ(x,y,z) = Fhkl e-2πi(hx + ky +lz) ∑ 
k 
∑ 
l 

1 
V 

F

α 
|F| cos α 

i |F| sin α 

Real 

Imaginary 

F = |F| cos α + i |F| sin α =  |F| eiα =  |F| ei2πα' 
  
  

∑ 
h 

ρ(x,y,z) = |Fhkl |ei2πα'hkle-2πi(hx + ky +lz) ∑ 
k 
∑ 
l 

1 
V 

F: the structure factor as a vector 
|F|: the length/amplitude of F, which is proportional to I1/2 

α: the phase angle, α = 2πα' 
 

∑ 
h 

= |Fhkl |e-2πi(hx + ky +lz -α'hkl) ∑ 
k 
∑ 
l 

1 
V 
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Electron Density Map Diffraction Image 

I(h k l) 

α(h k l) 

1) Isomorphous Replacement 

2) Anomalous Scattering 

3) Molecular Replacement 

FP FPH 

Derivative Data Native Data 

Isomorphous Replacement 
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Heavy-atom derivatives 

•  Crystals of the protein are soaked in solutions of heavy ions 
(strong diffractors), such as ionic complexes of Hg, Pt, or Au, 
so that such ions bind to one or a few specific sites on the 
protein. !

•  “Isomorphic”: the heavy atom must not disturb crystal 
packing or the conformation of the protein, likely with the 
same unit cell dimensions and diffraction patterns. !

•  There must be measurable changes in at least a modest 
number of reflection intensities. These changes are the 
handle by which phase estimates are pulled from the data, 
so they must be clearly detectable, and large enough to 
measure accurately. !
!!

FPH = FP + FH 

FP 
FH 

FPH 

Quantities we want: 

 FP 

Quantities we know: 

 |FP|: intensities of native diffraction 

 |FPH|: intensities of derivative diffraction 

 FH: structure factors with phases of 
heavy atoms 

  

How to get the phase of Fp?  
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FP
a 

-FH 

FPH 

FP
b 

FP 

How do we choose between FP
a and FP

b? 

FP = FPH – FH FP 
FH 

FPH -FH 

FPH 

FP
a
 

-FH’ 

FPH’ 

FP
b

 

FP 

Make a second derivative! 

FP = FPH’ – FH’ 

∑ 
h 

ρ(x, y, z) = FP
b

 e-2πi(hx + ky +lz) ∑ 
k 
∑ 
l 

1 
V 

α 
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FPH = FP + FH 

FP 
FH 

FPH 

Quantities we want: 

 FP 

Quantities we know: 

 |FP|: intensities of native diffraction 

 |FPH|: intensities of derivative diffraction 

 FH: structure factors with phases of 
heavy atoms 

  

How to get FH?  

ρH(x,y,z) requires knowing the position of heavy atoms in the unit cell. 

Locating heavy atoms in the unit cell 

FH(h,k,l) = ρH(x,y,z) e2πi(hx + ky +lz)dV 

cell V 
∫ 

The Patterson Function 

By definition:  P(u,v,w) = ρ(x,y,z)�ρ(x+u,y+v,z+w)dV 

cell V 
∫ 

x  y  (u v w)=(x1-x2,y1-y2,z1-z2) u  v  

(u v w) 
(x1 y1 z1) 

(x2 y2 z2) 
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Patterson Function 

x  y  u  v  

Patterson peaks will contain points corresponding to vectors 
between atoms in the real cell, i.e. inter-atomic distances (not 
atomic positions though).  

Real Cell Patterson Cell 

P(u,v,w) = ρ(x,y,z)�ρ(x+u,y+v,z+w)dV 

cell V 
∫ 

Patterson Function 

Real Cell Patterson Cell 

1) Patterson is symmetric about origin (centrosymmetry). 

3) Contains N(N-1) non-origin peaks (not counting origin) à gets 
complicated! 

2) Can see pattern of real cell in patterson cell repeated. 
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Patterson Function 

Key point: can calculate P(u,v,w) from experimental data 

P(u,v,w) = ρ(x,y,z) ρ(x+u,y+v,z+w)dV 

cell V 
∫ 

∑ 
h 

ρ(x) = Fh e-2πihx  1 
V 

∑ 
h’ 

ρ(x+u) = Fh’ e-2πih’ (x+u)  1 
V 

∑ 
h 

P(u) = Fh Fh’ e-2πihu ∑ 
h’ 

1 
V2 

e-2πi(h+h’)xdV 

cell V 
∫ 

The integration is equal to zero, unless h=h’ when it is equal to V,  

By Friedel’s Law Fh=F-h,  

∑ 
h 

Fh
2
 e-2πihu  1 

V 
P(u) = 

Patterson Function 

P(u,v,w) = |F(h,k,l)|2 cos 2π(hu + kv + lw) ∑
h k  l 
∑∑

Patterson analysis is simplified for heavy atoms: 

1)  Use (|FPH(h k l)|- |FP(h k l)|)2 as coefficients  

 à “difference map” reflects heavy atom contribution 

2) If atom i contains Zi electrons and atom j contains Zj electrons, the 
corresponding vector rij will have a weight proportional to ZiZj.  

 àheavy atoms, high Z, strong peaks 
3) Calculate (x,y,z) of heavy atoms directly from Harker section peaks 

1 
V 

It is a Fourier summation with intensities as coefficients and 
phase angles equal to zero. 
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Harker Peaks 
Symmetry related atoms give rise to peaks in Patterson map in 
specific locations. Each space group has its own Harker planes.  

x 

y 

z 

(x, y, z) 

(-x, -y, z) 

2 fold 

(u,v,w) = (x-[-x], y-[-y], z-z) 

(u,v,w) = (2x,2y, 0) 

w=0 

(2x,2y, 0) 

u  

v  
w=0 called Harker 
plane (section) 

Native 

A Hg derivative 

Difference map 
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