Some Linear Algebra

Basics

- A VECTOR is a quantity with a specified magnitude and direction
- Vectors can exist in multidimensional space, with each element of the vector representing a quantity in a different dimension. When there is only one dimension, the vector is said to be a scalar
- A MATRIX is a rectangular array of quantities
- The rows or columns of a matrix are vectors

Linear Algebra

- Vector and matrix structures are made to exist in a mathematically constructed space, that is, a vector space. They inherit specific algebraic properties from the vector space that make them powerful mathematical objects.
- In our discussion to follow, we mean matrix and vector to represent not only a notational structure, but the structure imbued with the appropriate algebraic properties. We say that the study of these objects is linear algebra

Matrices

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { is a matrix }
$$

Scalar operations on a matrix are done element-wise. For example, if k is a scalar, for scalar multiplication

$$
k \times\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
a+w & b+x \\
c+y & d+z
\end{array}\right] \quad \begin{aligned}
& \text { Matrix addition (and subtraction) is } \\
& \text { straightforward: element by element }
\end{aligned}
$$

Matrix multiplication is a whole different kettle of fish. It is NOT element by element multiplication. Instead it is a convolution, multiplying and mixing rows and columns of both matrices.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
a w+b y & a x+b z \\
c w+d y & c x+d z
\end{array}\right]
$$

Note the process:
First row, first element of M1 times first row, first element of M2

PLUS

First row, second element of M1 times second row, first element of M2
Then
First row, first element of M1 times first row, second element of M2

PLUS

First row, second element of M1 times second row, second element of M2
etc for the second row of M1
check out http://www.purplemath.com/modules/mtrxmult.htm for an easy to understand demo

Consider $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{2}$

Expanding,

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{2}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a^{2}+b c & a b+b d \\
a c+c d & b c+d^{2}
\end{array}\right]
$$

Note:

- The number of rows in the first matrix must equal the number of columns in the second
- Matrix multiplication is not commutative: $\mathrm{AB} \neq \mathrm{BA}$ necessarily

Matrix Multiplication of a Vector

Matrices can multiply vectors (provided the orders of each are the same) using the same rules as matrix multiplication

$$
\begin{aligned}
& M=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { is a matrix } \quad v=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { is a vector } \\
& M \mathbf{v}=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right]
\end{aligned}
$$

Note that the result is a vector. The operation of the matrix on the vector, which 'transforms' the vector to a new direction, can be though of as a rotation

Identity Matrix

The identity matrix is a square matrix that has 1's along its main diagonal and has zero for all other elements. Here it is shown for order 3, but the concept is the same for a square matrix of any order

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

An important property is that if it multiplies any other square matrix M of the same order, the product is still M

Inverse Matrix

If M is an invertible matrix, then its inverse M^{-1} is a square matrix of the same order such that $M M^{-1}=1$

MatrixTranspose

Rows and columns are swapped. Need not be a square matrix

$$
M=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \quad M^{T}=\left[\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right]
$$

Division does not exist, per se. Instead, the dividend is multiplied by the inverse of the divisor

$$
\frac{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}{\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]^{-1}
$$

Determinants

For square matrices only

For a 2×2 matrix, it's easy

$$
\begin{aligned}
& M=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& \operatorname{det} M=|M|=a d-b c
\end{aligned}
$$

Determinants

For a higher order matrices, it's
 $$
M=\left[\begin{array}{lll} a & b & c \\ d & e & f \\ g & h & i \end{array}\right]
$$

The strategy for a 3×3 matrix is to subdivide the matrix into determinants of 2×2 matrices called minors relating to the elements of the first row. The signs alternate. For example

det $M=\quad a(e i-h f)-b(d i-g f)+c(d h-g e)=a e i+b g f+c d h-a h f-b d i-c g e$

The above strategy generalizes to square matrices of order >3

Determinants..who cares?

Why would we care about determinants in this course?

- The determinant must be non-zero to have a unique inverse
- When matrices represent linear systems, the determinant must be zero in order to have a non-trivial solution

Determinants in finding an inverse

Finding the inverse (if it exists) of a square matrix of order 2 can easily be done with nifty little formula that invokes the determinant:

- Swap the elements on the main diagonal
- Reverse the signs of the 2 off-diagonal elements

$$
M=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- Divide by the determinant

$$
M^{-1}=\frac{1}{|M|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Formulas like this for higher order matrices exist but are ugly. Instead it is customary to use a row-specific technique called the Gauss-Jordan method. The matrix is adjoined to the identity matrix. Row operations (add, subtract, scalar divides and multiplies) are carried out, row by row, until the M part is transformed into the identity. The originally I part will become the inverse of M

$$
M: I — \longrightarrow, I: M^{-1}
$$

Eigenvalues and Eigenvectors

Let Abe an $n \times n$ matrix.
λ is an eigenvalue of A if \exists non-zero vector X in \mathfrak{R}^{n} such that
$A X=\lambda X$
This means that operating (rotating) some vector X by the matrix A yields the very same vector back again, multiplied by a real number, λ, an eigenvalue

If X is a non-zero vector satisfying the above, X is an eigenvector. There can be more than one solution; there are as many solutions (eigenvectors) as the order (n) of the matrix, although the solutions may not be distinct.
A and B are linear transformation matrices

A rotates X_{1} to a new vector AX
B rotates X_{2} to a new vector $B X_{2}$ that is co-linear with X_{2}; it is a scalar multiple of $\mathrm{X}_{2} . \mathrm{BX}_{2}$ is the one of the eigenvectors and the scalar multiple
λ is its eigenvalue

When you do this rotation, you need to know two things about where you end up:

1. What vectors emerge from the rotation (the eigenvectors)
2. What scale factors emerge from the rotation (the eigenvalues)

Given $\mathbf{A X}=\lambda X$, which represents a linear system of equations.

Then, re-writing this:
$A X-\lambda I X=0$ where I is the identity matrix

For this linear system to have a non-trivial solution, its determinant must be zero.
So, $\left|\begin{array}{cc}a_{11}-\lambda & a_{12} \\ a_{21} & a_{22}-\lambda\end{array}\right|=0 \quad$ for a system of rank 2
Solving, we get $\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-\left(a_{12}\right)\left(a_{21}\right)=0 \quad$ (called the characteristic equation) resulting in a quadratic (in a matrix of rank 2) equation in λ. This produces two values for λ in a system of rank $2, \lambda_{1}$ and λ_{2}.

These λ are the characteristic roots, or eigenvalues, of the system. There will be an eigenvector corresponding to each eigenvalue

Example

$$
\begin{aligned}
& \text { For } A=\left(\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right) \text { find } \\
& \left(\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=\lambda\binom{x_{1}}{x_{2}}
\end{aligned}
$$

where λ is the eigenvalue

Ass inear system, $\quad x_{1}+x_{2}=\lambda x_{1}$

$$
\begin{aligned}
& -2 x_{1}+4 x_{2}=\lambda x_{2} \\
& \left|\begin{array}{cc}
\lambda-1 & -1 \\
2 & \lambda-4
\end{array}\right|=0
\end{aligned}
$$

$$
\begin{aligned}
& (\lambda-1)(\lambda-4)+2=0 \\
& \lambda_{1}=2, \lambda_{2}=3
\end{aligned}
$$

Eigenvalues may not be distinct

Finding the eigenvectors for $\lambda_{1}=2$

$$
\left[\begin{array}{cc}
\lambda-1 & -1 \\
2 & \lambda-4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{cc}
2-1 & -1 \\
2 & 2-4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & -1 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Consider the top row $1 v_{1}-1 v_{2}$
Consider the 2 nd row $2 v_{1}-2 v_{2}$$\quad\left[\begin{array}{c}v_{1} \\ -v_{2}\end{array}\right]$
In either case the eigenvector corresponding to eigenvalue λ_{1} is any real number in the first element v_{1} and its negative as the second element v_{2}

