
String Algorithms

• Sequence and string are synonymous
– Finite number of letters1 from an alphabet, written 

contiguously from left to right   Si..j

AC T G G T C A

• Subsequence
– an ordered subset obtained by removing letters 

from a sequence
A C T G G T C A

A T G G T A       (Both C’s are removed)

• Substring
– Consecutive and complete string of letters found 

in the target string
A C T G G T C A

C T G G T
1Sometimes called symbols or characters
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S, SL, SLI, SLIT, SLITH, SLITHY

SLITHY

Y, HY, THY, ITHY, LITHY, SLITHY

N=6



String Algorithms
• Algorithms for String Matching

– No preprocessing

• Naïve

• Boyer-Moore

– Preprocessing of target string

• Aho-Corasick

– Preprocessing of query string, target string or fixed DB

• Rabin-Karp

• Suffix Tree

• Algorithms for String Alignment
– No preprocessing

• Needleman Wunsch

• Smith Waterman

– Preprocessing of ‘fixed’ Database

• Complicated heuristics such as BLAST, FASTA



STRING MATCHING

Looking for an EXACT substring match



Naïve algorithm

Operates in quadratic time

Complexity ~mn

MATCH



Boyer-Moore

• ‘Smarter’.  Operates in linear time

• Pattern string  s doesn’t ‘walk’ the  target 

string t; it ‘skips along’ the target string

• At each iteration, it chooses the better of:

– Jump the distance derived from the bad 

character heuristic

Or

– Jump the distance derived from the good 

suffix heuristic



Example

• In the dictionary. (296 characters, including spaces, excluding punctuation)

Now o’er the one halfworld

Nature seems dead, and wicked dreams abuse 

The curtain’d sleep; witchcraft celebrates

Pale Hecate’s offerings, and wither’d murder,

Alarum’d by his sentinel, the wolf,

Whose howl’s his watch, thus with his stealthy pace

With Tarquin’s ravishing strides, towards his design

Moves like a ghost

• Look up (19 characters, including spaces, excluding punctuation)

Very roguish finish



i n T a r q u i n s r a v i s h i n g

v e r y r o g u i s h f i n i s h

Good suffix

Bad 

character

i n T a r q u i n s r a v i s h i n g

s p r e s e n t i n g a v e r y r o g

New good 

suffix

New bad 

character

Use naïve algorithm to align last character in s with corresponding character in t. (this is the letter ‘h’)

Then, extend match leftwards for increasing suffixes of both strings  (letters ‘s’, then ‘i’).  Stop with a mismatch, 

identifying the bad character in t (the letter ‘v’)

Jump s 15 characters 

so that old bad 

character in t  aligns 

with a mate in s

Bad Character Heuristic

s

t

Slide s  to the right to align the rightmost occurrence of a same bad character in s (find a letter ‘v’)   with a the bad 

character in t (the ‘v’ identified earlier). This alignment is the rightmost character in the new good suffix.

t

s

Note that we don’t  use this new good suffix just yet; first we must look at the results 

from the good suffix heuristic (next slide)



i n T a r q u i n s r a v i s h i n g

v e r y r o g u i s h f i n i s h

Good suffix

Bad 

character

i n T a r q u i n s r a v i s h i n g

t i n g a v e r y r o g u i s h f i n

New bad 

character

GOOD  SUFFIX Heuristic

Jump 4 characters

s

t

Find the rightmost suffix in s to the left of the original good suffix in s that matches this god suffix

Slide s to align it with a corresponding suffix in t.

As before, use naïve algorithm to align last character in s with corresponding character in t. (this is the letter ‘h’)

Then, extend match leftwards for increasing suffixes of both strings  (letters ‘s’, then ‘i’).  Stop with a mismatch, 

identifying the bad character in t (the letter ‘v’)

s

t
New good 

suffix



Choose the larger jump!



AHO-CORASICK

2 Phases

• Preprocess: Build a finite automaton 

based on the query strings (quadratic 

time)

• Use the target string as input to the 

automaton (linear time)



The Constructed 

Automaton for the string 

‘CATCH’

0 0 1 0 0

1 2 0 0 0

2 0 0 0 3

3 0 4 0 0

4 0 0 5 0

input
A C H T

state

q q q q q

q q q q q

q q q q q

q q q q q

q q q q q





q0 = start
q5 = stop

Note that this abstract machine is specifically an acceptor for the word 

‘catch’. The machine simply halts if ‘catch’ is input , otherwise it remains in q0



Deterministic Finite Automaton

Q: Could this scheme work for 

MISSISSIPPI  ?



Aho-Corasick
The deterministic automaton can be  represented by a 

rooted prefix tree.  Each edge is a character in the 

target string and each node represents a prefix formed 

by the edges along the path from the root to that node.  

When there is a match the query string maps to a leaf of 

the tree.
Root

Leaf

C

A

T

C

H

Here is a prefix tree of 

our simple example



Generalized Aho-Corasick

Many patterns can be represented on a single prefix tree (Keyword 

Tree)

Such trees can be created for entire dictionaries in linear time in a 

preprocessing step.  The tree can then be traversed with a query 

word as needed

Not shown here are the failure links

Root

C

A

T

C

H A

P P

I

N

N
D

D
I

Y



Pro’s and Con’s of String 

Matching Algorithms Thus Far

• Pro

– No false negatives, no false positives

• Con

– Significant overhead/slowdown  by comparing 

characters

– If characters are converted to numbers, the 

numbers can become quite large

• Large arithmetic computational overhead (slowdown)

• Very large numbers can blow RAM



String Searching with ‘Fingerprints’

The Rabin-Karp Algorithm

• Pro

– Because the algorithm uses modular arithmetic, numbers and 

intermediate calculations are constrained, so…

• Very fast

• No threat to RAM limits

– No false negatives

– The probability of a false positive is extremely low

• Con

– False positives are nonetheless possible

• If the probability of a false positive is not deemed low enough, or 

any false positive whatsoever is unacceptable, then some small 

overhead is required for checking



Essence of the Algorithm

• Every possible substring in the target of the same 

length as the query string  is identified. 

• The query string and every target substring so 

identified is converted to an integer

• Each integer is mapped into its remainder modulo p, 

where p is a carefully chosen prime number

• The query string (new) integer is compared to every 

possible target substring (new) integer in the target 

string. 

– When the query and target numbers are not the same, there 

is no match

– When the query and target numbers are the same, there is a 

very high probability of a match



ALANINE Ala A 0

PHENYLALANINE Phe F 9

PROLINE Pro P 8

GLUTAMINE Gln Q 7

ARGININE Arg R 6

SERINE Ser S 5

THREONINE Thr T 4

VALINE Val V 3

TRYPTOPHAN Trp W 2

TYROSINE Tyr Y 1

RABIN-KARP SEARCH
Suppose we have an alphabet consisting only of the letters  AFPQRSTVWY, 

coded by decimal digits.  These digits represent the 10 amino acids found in life 

forms in Star System TGR-75 (our own planet has 20 naturally occurring amino 

acids)

These amino acids combine in a linear chain to form proteins. There are 

thousands of proteins, each with a unique sequence of amino acids in the chain, 

some chains very long (1000’s),  some short (5). All variations of these 

proteins, and all proteins, are all ordered sequentially in a single searchable 

database, totaling seven million entries.  For convenience and storage 

economy, the numeric code is used instead of the alphabet letter.

Numeric 

Code
Amino Acid

Letter



The Computational Problem:
We have just synthesized a new protein (or so 

we think). The sequence of amino acids is 5 

long: Val-Tyr-The-Tyr-Ser (code is 31415). 

We wish to determine whether this protein 

(sequence of amino acids) exists already. We 

agree that it is better to work with the AA codes, 

rather than the names, so we are searching the 

DB for at least one instance of  31415 as our 

target integer



Computational Solution

• Strategy 1:  Combine each successive 5 digits 

in the target into a 5 digit integer, then walk the 

set of target integers, seeking the query integer
– Advantage: No false positives

– Disadvantage: Could be faster: Must walk the DB and make a complex 

comparison each time (polynomial)

– Strategy 2: Preprocess the database, building 

a hash table of hash values, then seek the 

hash value matching the hash value of the 

query 
– Advantage: Fast. Preprocess only once in linear time, search with 

multiple queries in linear time. Smaller database to search

– Disadvantage: Must deal with hash collisions (false positives), although 

still fast



Rabin-Karp
Desired string is 

31415

Hash function is 

xmod p   p=13

Desired hash value 

is 7

Computing the hash 

value while walking the 

target (strategy #1) or 

preprocess DB building a 

hash table (strategy #2)

Efficiently 

(linearly) 

generating a  

new hash value:

Hash collisions are bound to occur

• Take away the high 

order digit

• shift everything left 

with zero-fill 

• add value of new 

right target digit

• Apply hash function

Snippet of the DB

Raw Code

Hash Values

new high-order 

digit



About Efficiency
The efficiency is that working in modulo arithmetic saves combining 5 

digits into a 5 digit integer, then working with a decimal shift and 

finding a remainder.  Here is a naïve way to slide along

31415 30,000 1415 

Let’s slide along the DB from 31415 to the next letter (2), ending in 14152 

So, we need to get to 14150,  then add 2

14152 (31415 (3 10000)) 10 2    

This is 1415

This is 14150

This is 14152

14152 mod 13=8



Working efficiently in modulo 

arithmetic

14152 (31415 (3 10000)) 10 2    

We already know this number 

mod13 is 7; we don’t need to 

re-compute it

     

     
mod13 mod13 mod13

mod13 mod13

3 10000 3 10000

3 3 9

k k k
xy x y

  

  

This is fixed at 10 

mod13=10

It is easy to compute that 2 mod13=2

It is easy to compute 

that 3 mod13 is 3

This value is fixed by the 

problem at 10000 mod 13=3

By theorem:

 

mod13

mod13

mod13 (3

[(7 9) 10 2]

8

14152 ( )) m7 3 10 od2 13

[ 18]



   



   

 

So, walking the DB in modulo arithmetic is highly efficient

Note that if the modulus is greater than 10, it is not 

necessary to do any modulo calculation on the 

single base-10 digits- a further efficiency



What modulus?

Answer: A prime number!

• A prime modulus limits the probability of a 

false positive

• Prime moduli in a modular hashing function 

enhance diffusion and prevent clumping of 

false positives (hash collisions) in a hash table
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( )
: ( )

( )

Ensure that n m

Choose a prime p x at random for any positive integer x

n m
Theorem prob spurious hit

x





 






Probability of false positives*……

*Development follows  Gusfield 

n is the length of the query

m is the length of the target

Let (x)  be the number of prime numbers  any positive integer x, and 

(mn) likewise



False Positives
We need to pick an x such that a random prime number  x is 

neither too big (slows down things) nor too small (too many false 

positives)

Without getting into the nuances of number theory, let us make an 

empirical* choice and let x be nm2. 

In that case, the upper limit on the probability of a false positive is 

2.53/m.

So, for our target snippet of length 19 and our query of length 5,

the probability of a false positive is 2.53/19, or ~13%. Not all that 

great,  but we have a tiny database

But consider our entire Star System TGR-75 database.  If we were 

to pick any prime number  5(7,000,000)2  at random as our 

modulus, the probability of a false positive with that choice would 

be 3.614 10-7.

*If interested, perhaps as a final project, you might explore the prime number counting functions of Gauss and Chebychev



Suffix Trees

• Preprocessing of the target (Tree building: 

linear)

• Linear Search time

• Can generalize to multiple targets

– Allows other functions besides exact matching

– Longest Common Substring

– Wildcards



Suffix Trees : An example

And, has thou slain the Jabberwock?

Come to my arms, my beamish boy!

O frabjous day! Callooh! Callay!'

He chortled in his joy.

-Lewis Carroll



Suffixes of CalloohCallay

CalloohCallay Callay

alloohCallay allay

lloohCallay llay

loohCallay lay

oohCallay ay

ohCallay y

hCallay



Suffixes of CalloohCally: ordered

ay lay

allay llay

alloohCallay lloohCallay

Callay loohCallay

CalloohCallay ohCallay

hCallay oohCallay

y



Constructing the Tree

A Y

LL     AY

OOHCALLAY

Common prefix



Suffix Tree for ‘CalloohCallay”

A

C

L

O

Y

H

Y

LL     AY

ALL AY

OOHCALLAY

AY

AY

OOHCALLAY

CALLAY

HCALLAY

OHCALLAY

L

OOHCALLAY


